• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The influence of the flow rate on periodic flow unsteadiness behaviors in a sewage centrifugal pump*

    2013-06-01 12:29:59PEIJi裴吉YUANShouqi袁壽其YUANJianping袁建平WANGWenjie王文杰
    關(guān)鍵詞:規(guī)則化緩沖帶坑塘

    PEI Ji (裴吉), YUAN Shou-qi (袁壽其), YUAN Jian-ping (袁建平), WANG Wen-jie (王文杰)

    Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China, E-mail: peiji1984@163.com

    (Received September 15, 2012, Revised March 11, 2013)

    The influence of the flow rate on periodic flow unsteadiness behaviors in a sewage centrifugal pump*

    PEI Ji (裴吉), YUAN Shou-qi (袁壽其), YUAN Jian-ping (袁建平), WANG Wen-jie (王文杰)

    Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China, E-mail: peiji1984@163.com

    (Received September 15, 2012, Revised March 11, 2013)

    To design a single-blade pump with a good performance in a wide operational range and to increase the pump reliability in the multi-conditional hydraulic design process, an understanding of the unsteady flow behaviors as related with the flow rate is very important. However, the traditional design often considers only a single design condition, and the unsteady flow behaviors have not been well studied for single-blade pumps under different conditions. A comparison analysis of the flow unsteadiness behaviors at different flow rates within the whole flow passage of the pump is carried out in this paper by solving the three-dimensional unsteady Reynolds-averaged Navier-Stokes equations with the Shear Stress Transport (SST) turbulence model. A definition of the unsteadiness in the pump is made and applied to analyze the unsteady intensity distributions, and the flow rate effect on the complex unsteady flow in the pump is studied quantitatively while the flow mechanism is also analyzed. The CFD results are validated by experimental data collected at the laboratory. It is shown that a significant flow rate effect on the time-averaged unsteadiness and the turbulence intensity distribution can be observed in both rotor and stator domains including the side chamber. The findings would be useful to reduce the flow unsteadiness and to increase the pump reliability under multi-conditions.

    flow rate effect, flow unsteadiness, turbulence intensity, sewage centrifugal pump, multi-conditions

    Introduction

    Due to the Rtor-Stator Interaction (RSI), the flow around the impeller of a single-blade centrifugal pump produces a strongly asymmetrical unsteady effect at both Best Efficiency Point (BEP) and other operating points. This phenomenon, therefore, leads to a periodical hydrodynamic force acting on the impeller surface and results in strong rotor vibrations[1]. The RSI effect in centrifugal pumps was investigated numerically and experimentally. Feng et al.[2-6]investigated the RSI effect in a radial diffuser pump by a comparison among CFD calculated results, PIV and LDV measurement results, and indicated that the RSI has two kinds of effects on centrifugal pumps with diffusers. The first is the downstream effect of the impeller on the stator flow, which is characterized by unsteady effects due to the highly distorted relative impeller flow field and impeller wakes, the second is the upstream effect of the stator on the impeller flow, which causes unsteady pressures on the relative flow and velocity fluctuations.

    Studies of single-blade pumps were carried out by using numerical and experimental methods. Benra et al.[7]presented an investigation of the periodic unsteady flow in a single-blade pump by using the CFD simulation and PIV measurement methods. The results of transient numerical simulations compare very well with the velocity measurements, but this is only true when all flow details are included into the numerical calculation. Pei et al.[8]investigated the flow-induced vibrations of the single-blade sewage water pump impeller under off-design conditions using numerical and experimental methods. Different strategies of the partitioned fluid-structure interaction simulation for a single-blade pump impeller were studied, and results obtained by one-way and two-way coupling strategies were compared and analyzed[9]. Pei et al.[10]evaluated the transient pressure variation in a single-blade pumpunder multi-conditions by defining the standard deviation of the pressure fluctuation in a revolution period. De Souza et al.[11]focused on the optimization of single-blade impeller hydraulics from the perspective of both the performance and the solid handling ability by numerical simulations. Yasuyuka et al.[12]proposed a method of designing a single-blade centrifugal impeller for which the passed particle size is specified based on CFD analysis. De Souza et al.[13]addressed the volute design as applied to single-blade impeller pumps. Keays and Meskell[14]carried out a numerical study of a single-vanned waste-water pump using the commercial CFD software.

    However, the unsteady flow field and the turbulence behavior caused by the RSI should be analyzed for single-blade pumps under different operational conditions, because the pump is not often running only at the design flow rate. The comparison analysis of flow unsteadiness behaviors under different running conditions is important to gain an insight of the complex flow in the pump and to design a singleblade pump with better performance for a wide range of reliable operations.

    This paper focuses on a comparison analysis of flow unsteadiness behaviors under different flow rates for a single-blade centrifugal pump in the whole flow passage. The periodic flow unsteadiness results under different conditions are quantitatively compared by defining the unsteady intensity and the turbulence intensity in both impeller and volute, which can improve the understanding of the impeller-volute interaction in single-blade pumps as related with the flow rate.

    1. Computational model and method

    A commercial single-stage single-suction horizontal centrifugal pump with a single-blade impeller is selected as the calculation model. An overview of the pump rotor and the test pump is shown in Fig.1. The design parameters of the pump are listed in Table 1.

    Three-dimensional, unsteady Reynolds-averaged Navier-Stokes equations are solved using the Shear Stress Transport (SST) turbulence model. The structured grids for computational domains are generated using the grid generation tool ICEM-CFD 12.1 and the grid details are shown in Fig.2 with a total number of grid nodes of 2 182 132 for both rotating and stationary domains. The independence of the solutions from the number of grid nodes is checked by simulating the flow field with different numbers of grid nodes. The maximum non-dimensional wall distancey+<80 is obtained in the complete flow field. Both the hub and shroud side chambers between the impeller and the pump casing are also included in the grid to take the leakage flow effect into account, as shown in Fig.3.

    The discretization in space is of second-order accuracy, and the second-order backward Euler scheme is chosen for the time discretization. The interface between the impeller and the casing is set to the “transient rotor-stator” to capture the transient rotor-stator interaction in the flow, because the relative position between the impeller and the casing changes in each time step with this kind of interface. Two different coordinate systems are utilized for the rotatory and stationary domains, respectively. The inlet boundary condition is set to the total pressure in the stationary frame while the outlet condition is set to the mass flow rate, and all specific values are obtained from laboratory tests. The smooth wall condition is used for the near wall function. The chosen time step Δtfor the transient simulation is 3.47225×10-4s for the nominal rotating speed, corresponding to a changed angle of 3o, therefore, 120 transient results are included for one impeller revolution calculation. Within each time step, 10 iterations may be performed and the iteration stops when the maximum residual is less than 10-3. The convergence criterion for the transient problem is that the result reaches its stable periodicity state, 9 revolutions of the impeller for each operational condition in this case are included. To obtain the stable numerical results, an initial value distribution of the flow parameters as exact as possible is required. To provide this starting solution, a steady calculation with the frozen rotor strategy is made.

    2. Flow unsteadiness definition

    The unsteady intensity and the turbulence intensity, as the indices of the flow unsteadiness, in bothimpeller and volute domains, are defined according to Ref.[2].

    Table 1 Parameters of the pump

    Fig.2 Grid details

    Fig.3 Rotor fluid domain view in a meridional plane

    Fig.4 Velocity triangle

    Due to the CFD calculation based on URANS equations, the velocity component inside the pump consists of two parts: a time-average component and a periodic component, therefore, the random fluctuating velocity components associated with the unsteady phenomena which are not correlated with the impeller frequency are not considered. Each relative velocity component in the rotating domain and each absolute velocity component in the volute region can be expressed as follows:

    whereWurepresents the relative circumferential velocity component,Wrrepresents the relative radial velocity component,CuandCrrepresent the absolute circumferential velocity component and the absolute radial velocity, respectively, and they can be calculated in cylindrical systems according to the azimuth angle from the absolute velocity components inx-axis andy-axis directions. Here the meridional componentCmis assumed to be equal to the radial componentCr.?,?,?and?represent the time-averaged components, obtained from all results in one impeller revolution period.?,?,?and?represent the periodic components caused by different relative impeller circumferential positions to the volute tongue. The velocity components can be shown in a typical velocity triangle of centrifugal pumps, as in Fig.4. The relative velocity components can be obtained from Eqs.(5) and (6)

    wheretφis the impeller position at the instant timet, andTis the period of the pump rotation.

    The time-averaged velocity components can be calculated from Eqs.(7) through (10)

    Fig.5 Definition of angle parameters and monitor points

    In order to examine quantitatively the unsteadiness of the impeller relative flow, the impeller unsteady intensityIuis defined in Eq.(11).Iuis calculated by the root mean square of two periodic components normalized by the impeller tip speedU2. And the time-averaged unsteady intensity?is calculated according to Eq.(12) considering results of 120 time steps in one impeller revolution, and the examined points in the rotor region are in the rotating frame of reference. The stator unsteady intensitySuis defined by the root mean square of two absolute periodic velocity components in Eq.(13), and the time-averaged unsteady intensity?is calculated according to Eq.(14).

    Fig.6 The comparison of experimental and numerical pressure fluctuation results on the casing

    Fig.7 Relative velocity vector distribution at midspan forQ= 33l/s,φ=0o

    Fig.8 Comparison of multi-condition results of time-averaged rotor unsteadiness at midspan

    The turbulence intensityTuis defined in Eqs.(15) and (16) based on the turbulence kinetic energyK(x,y,φ), and the isotropic assumption is used to calculate the turbulence kinetic energy with consideration of two components. The time-averaged turbulence intensity?in one period is calculated according to Eq.(17)

    3. Results of comparison

    For analyzing the flow unsteadiness under various conditions, two coordinate systems are defined, the stationary coordinate frame marked asx,yand the rotating coordinate frame marked asψ,ξ, as shown in Fig.5. The rotating position of the impeller is indicated by defining the rotating angleφbetween the positive axisψo(hù)f the rotating coordinate frame and the positiveyaxis of the stationary coordinate frame in the clockwise direction, andφ=0omeans that the trailing edge of the impeller is at the top position. The angle of the circumferential position in the stationary coordinate is defined asθ, andθ=0owhenx=0 m andy>0 m. The circumferential position angleθincreases in the clockwise direction in thex,ycoordinate system, as shown in Fig.5.

    Experimental data are collected for the model pump in the laboratory of the Institute of Turbomachinery at University of Duisburg-Essen, Germany, to verify the accuracy of the calculation. The transient pressure results at the transient pressure measurement point, shown in Fig.5, on the casing by both CFD and experimental methods are qualitatively compared under multi-conditions, as shown in Fig.6, and the numerical results are validated.

    Figure 7 shows the relative velocity vector distribution at the midspan under the design condition (Q=33l/s) whenφ=0ofrom an unsteady simulation result, and the legend represents the velocity scale in the calculation domain. The stable flow patterns can be observed in the volute domain, and the velocity is relatively small. Therefore, the kinetic energy of the flow is transformed into the pressure energy very well in this volute under the design condition. Because the circumferential velocity of the domain is zero, the relative velocity is equal to the absolute velocity in the volute. In the rotor domain, a significantly unbalanced velocity distribution can be observed because of the asymmetrical blade shape. A relatively low velocity appears near the blade pressure side and the impeller eye position. A relatively large velocity appears near the blade suction side and at the circumferential area of the blade outlet, and the maximum velocity can be found at the outermost position of the impeller. The almost same phenomenon can be observed at each examined flow rate. However, the relative velocity distribution results are obtained at a specified time, the velocity field is also fluctuating with time which is called the unsteadiness in this paper, and this phenomenon cannot be shown in a single figure. To study the intensity distribution of the flow fluctuation and the mechanism of the unsteadiness phenomenon, a number of pictures of flow distributions at each time point or at a number of monitor points at each position containing the time-history results should be obtained to describe the phenomenon in the whole flow passage, which is not efficient and even possible. Therefore, applying the time-averaged unsteadiness intensity coefficients defined in this paper to analyze the unsteadiness mechanism in the pump is a better choice as with the coefficients one can use a single value at each location to describe the unsteadiness intensity with consideration of the whole time-history fluctuating results for an impeller revolution.

    Fig.9 Comparison of multi-condition results of time-averaged volute unsteadiness at midspan

    Fig.10 Comparison of multi-condition results of time-averaged turbulence intensity in the impeller at midspan

    Figure 8 shows the comparison of multi-condition results of the time-averaged rotor unsteadiness coefficients at the midspan. For each flow rate, relatively large values can be observed near the impeller outlet and near the blade pressure side, and the values increase when the flow rate increases. At three examined flow rates, the maximumIuresult can be observed at the trailing edge close to the pressure side of the blade forQ=42 l/s. Because under a large flow rate condition, more power is required from the blade by the fluid while more kinetic energy is transferred to the fluid, and the wake flow with a relatively high velocity near the blade trailing edge will have a stronger interaction downstream with the volute tongue, and a strong velocity fluctuation will appear. At a small flow rate, less power is required from the blade, and a weak interaction between the fluids in the rotor and in the stator is observed, which means a weak periodic velocity fluctuation.

    Figure 10 shows the comparison of multi-condition results of the time-averaged turbulence intensity

    in the impeller at the midspan.Turepresents the flow random fluctuation intensity with consideration of the cumulative effect of the flow results in an impeller revolution. At each flow rate, relatively large values can be observed in the area near the impeller outlet and in the area near the blade pressure side, and the values increase when the flow rate decreases, because at a large flow rate, much more energy of the rotating blade is transferred to the fluid in a relatively strong periodic flow by the RSI effect, and less energy of fluid is spent in the turbulent random fluctuation. At a small flow rate, the periodic flow fluctuation is relatively weak with an unexpected impeller-volute matching as shown in Fig.8 while a chaotic flow with more unstable vortexes will be produced, therefore, more residual energy will be spent in the turbulent velocity random fluctuation. Under the design condition, relatively moderate distribution results are obtained.

    Fig.11 Comparison of multi-condition results of time-averaged turbulence intensity in the volute at midspan

    Fig.12 Comparison of multi-condition results of time-averaged unsteadiness on the cross section of side chambers

    Fig.13 Comparison of multi-condition results of time-averaged turbulence intensity on the cross section of side chambers

    Figure 11 shows the comparison of multi-condition results of time-averaged turbulence intensity in the volute at the midspan. A high turbulent flow can be seen near the tongue for an impeller revolution under each condition, and the area is bigger under the off-design conditions. The reason is that, at large and small flow rates, the flow in the volute is not smooth, the volute tongue will have a great influence on the flow velocity and much energy losses are caused. Therefore, the flow in the area becomes quite chaotic and varies strongly with time.

    Figure 12 shows the comparison of multi-condition results of?on the cross section of the side chambers, and the position of the cross section is shown in Fig.3. The values increase with the increase of the flow rate, because the source of the periodic flow phenomenon is in the impeller and volute channels, the flow in the side chamber is affected by the periodical unsteady flow in the main channel. The periodic unsteadiness intensity increases with the increase of the flow rate, as shown in Fig.8, therefore, the influence on the side chamber flow becomes significant with the increase of the flow rate.

    Figure 13 shows the comparison of multi-condition results of?on the cross section of the side chambers, and the values increase with the increase of the flow rate. The reason is that, at a large flow rate, a higher flow velocity in the pump channel is obtained, and more energy can be transferred to the side chamber fluid. Therefore, a part of energy can make the flow in the side chamber chaotic and make the flow relatively more turbulent in the impeller revolution. Although a relatively large?can be found in the impeller channel at a small flow rate, as shown in Fig.10, the impeller flow can be found to have a small influence on the side chamber flow under this condition.

    4. Conclusions

    To consider the flow rate effect, the behavior of the unsteady flow in the pump is analyzed from a new angle of view by defining the flow unsteadiness coe-fficients for a single-blade centrifugal pump within the whole flow passage. The CFD results are validated by experimental data collected at the laboratory. The unsteadiness distribution results under multi-conditions are studied while the flow mechanism behind that is analyzed. The following conclusions are drawn:

    溝渠生態(tài)修復(fù)區(qū)主要位于河道、灌渠、排澇渠兩側(cè)及坑塘周邊地帶,是維系平原生態(tài)的重要廊道。該區(qū)域農(nóng)田排澇系統(tǒng)不完善、不達(dá)標(biāo)。溝渠直線化、規(guī)則化、硬質(zhì)化嚴(yán)重,在縱向、橫向、垂向上不連續(xù)化。河渠生態(tài)功能喪失,水生態(tài)系統(tǒng)受損??犹帘惶盥?、擠占嚴(yán)重,雨洪調(diào)蓄、入滲、濕地凈化功能減少。該區(qū)以生態(tài)修復(fù)為主,實(shí)施防洪空間擴(kuò)展與達(dá)標(biāo)防洪、溝渠系清理與水系連通、水環(huán)境改善、坑塘恢復(fù)與治理、河濱緩沖帶建設(shè)等措施。

    (1) For the flow in the impeller channel, a strong velocity fluctuation will appear at a large flow rate while a weak periodic velocity fluctuation is observed at a small flow rate.

    (2) A strong velocity fluctuation can be found at a large flow rate near the tongue area in the volute, and at a small flow rate, an unstable flow can be observed in the volute spiral channel with strong velocity fluctuations.

    (3) The extents of the periodic velocity fluctuation and the turbulent random fluctuation increase with the increase of the flow rate in the side chamber channels.

    (4) A comparison analysis can reveal the behaviors of the flow unsteadiness in detail as related with the flow rate, and the findings would be useful to reduce the obvious flow unsteadiness and to increase the pump reliability when the pump is running under multi-operational conditions.

    Acknowledgement

    The authors would like to thank Prof. Benra F.-K. and Dr. Dohmen H. J. from University of Duisburg-Essen in Germany for their kind help and guidance on the research work and for providing the model of the pump.

    [1] BENRA F.-K. Numerical and experimental investigation on the flow induced oscillations of a single-blade pump impeller[J]. Journal of Fluids Engineering, 2006, 128(4): 783-793.

    [2] FENG J., BENRA F.-K. and DOHMEN H. J. Investigation of periodically unsteady flow in a radial pump by CFD simulations and LDV measurements[J]. Journal of Turbomachinery, 2011, 133(1): 011004.

    [3] FENG J., BENRA F.-K. and DOHMEN H. J. Investigation of turbulence and blade orientation effects in a radial diffuser pump by laser doppler velocimetry[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2009, 223(8): 991-999.

    [4] FENG J., BENRA F.-K. and DOHMEN H. J. Unsteady flow visualization at part-load conditions of a radial diffuser pump: By PIV and CFD[J]. Journal of Visualization, 2009, 12(1): 65-72.

    [5] FENG J., BENRA F.-K. and DOHMEN H. J. Application of different turbulence models in unsteady flow simulations of a radial diffuser pump[J]. Forschung Ingenieurwesen, 2010, 74(3): 123-133.

    [6] FENG J., BENRA F.-K. and DOHMEN H. J. Unsteady flow investigation in rotor-stator interface of a radial diffuser pump[J]. Forschung Ingenieurwesen, 2010, 74(4): 233-242.

    [7] BENRA F.-K., DOHMEN H. J. and SOMMER M. Periodically unsteady flow in a single-blade centrifugal pump numerical and experimental results[C]. Proceedings of ASME Fluids Engineering Division Summer Meeting. Houston, USA, 2005, 1: 1223-1231.

    [8] PEI J., DOHMEN H. J. and YUAN S. Q. et al. Investigation of unsteady flow-induced impeller oscillations of a single-blade pump under off-design conditions[J]. Journal of Fluids and Structures, 2012, 35: 89-104.

    [9] PEI J., BENRA F.-K. and DOHMEN H. J. Application of different strategies of partitioned fluid-structure interaction simulation for a single-blade pump impeller[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2012, 226(4): 297-308.

    [10] PEI J., BENRA F.-K. and DOHMEN H. J. et al. Numerical prediction of unsteady pressure field within the whole flow passage of a radial single-blade pump[J]. Journal of Fluid Engineering, 2012, 134(10): 101103.

    [11] De SOUZA B., NIVEN A. and DALY J. Single-blade impeller development using the design of experiments method in combination with numerical simulation[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2008, 222(3): 135-142.

    [12] YASUYUKA N., RYOTA F. and JUNICHIRO F. Design method for single-blade centrifugal pump impeller[J]. Journal of Fluid Science and Technology, 2009, 4(3): 786-800.

    [13] De SOUZA B., NIVEN A. and MCEVOY R. A numerical investigation of the constant-velocity volute design approach as applied to the single blade impeller pump[J]. Journal of Fluids Engineering, 2010, 132(6): 061103.

    [14] KEAYS J., MESKELL C. A study of the behavior of a single-bladed waste-water pump[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2006, 220(2): 79-87.

    10.1016/S1001-6058(13)60415-1

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51239005, 51009072), the National Science and Technology Pillar Program of China (Grant No. 2011BAF14B04).

    Biography: PEI Ji (1984-), Male, Ph. D.

    猜你喜歡
    規(guī)則化緩沖帶坑塘
    治理農(nóng)村坑塘 美化人居環(huán)境
    聊城市坑塘特征分析及重要度評價
    河岸緩沖帶植被布局對氮流失的影響
    農(nóng)村坑塘污染分析及治理建議
    論黨的民主集中制的規(guī)則化
    理論探索(2021年6期)2021-05-26 17:06:22
    數(shù)據(jù)規(guī)則化技術(shù)的研究及應(yīng)用
    數(shù)據(jù)規(guī)則化技術(shù)在焉耆盆地老資料處理中的應(yīng)用
    采用移動掃描成像法實(shí)現(xiàn)高壓氣瓶內(nèi)壁凹坑缺陷檢測
    太湖流域流經(jīng)不同類型緩沖帶入湖河流秋、冬季氮污染特征?
    基于河渠和坑塘聯(lián)通的雨洪資源綜合利用研究
    草草在线视频免费看| 国产一区在线观看成人免费| 亚洲精品色激情综合| 成年女人永久免费观看视频| 国产欧美日韩一区二区三| 国产成人一区二区三区免费视频网站| 免费大片18禁| 夜夜爽天天搞| а√天堂www在线а√下载| or卡值多少钱| 一进一出好大好爽视频| 18禁国产床啪视频网站| 叶爱在线成人免费视频播放| 性色avwww在线观看| 欧美中文日本在线观看视频| 高清在线国产一区| 国产aⅴ精品一区二区三区波| 99热精品在线国产| 国产免费男女视频| 日本一本二区三区精品| 99精品在免费线老司机午夜| 看黄色毛片网站| 午夜日韩欧美国产| 中文资源天堂在线| 亚洲人成网站高清观看| 不卡av一区二区三区| 99视频精品全部免费 在线 | 婷婷精品国产亚洲av在线| 舔av片在线| 偷拍熟女少妇极品色| 色精品久久人妻99蜜桃| 黄片大片在线免费观看| 无人区码免费观看不卡| svipshipincom国产片| 99热这里只有是精品50| 精品国内亚洲2022精品成人| netflix在线观看网站| 日韩国内少妇激情av| 国产黄片美女视频| 精品国产超薄肉色丝袜足j| 18禁观看日本| 久久人人精品亚洲av| 日韩欧美三级三区| 亚洲熟妇熟女久久| 国产精品九九99| 欧美日韩乱码在线| 国产精品久久视频播放| 黑人欧美特级aaaaaa片| 好男人电影高清在线观看| 国产黄a三级三级三级人| 亚洲欧美日韩高清专用| 日日夜夜操网爽| 亚洲成人久久性| 国产高清视频在线观看网站| 麻豆国产av国片精品| 久久久精品大字幕| 一区二区三区高清视频在线| 琪琪午夜伦伦电影理论片6080| 熟女人妻精品中文字幕| 亚洲 欧美一区二区三区| 身体一侧抽搐| 亚洲av电影在线进入| 狂野欧美白嫩少妇大欣赏| 一级毛片精品| 午夜影院日韩av| 叶爱在线成人免费视频播放| www.精华液| 757午夜福利合集在线观看| 搡老岳熟女国产| 成人午夜高清在线视频| av黄色大香蕉| 成人av一区二区三区在线看| 老汉色av国产亚洲站长工具| 老司机午夜十八禁免费视频| 又黄又爽又免费观看的视频| 国产精品,欧美在线| a在线观看视频网站| 最近最新中文字幕大全电影3| 中文亚洲av片在线观看爽| 精品乱码久久久久久99久播| 操出白浆在线播放| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品sss在线观看| а√天堂www在线а√下载| 一卡2卡三卡四卡精品乱码亚洲| 曰老女人黄片| 男女做爰动态图高潮gif福利片| 老鸭窝网址在线观看| www.熟女人妻精品国产| 精品国产超薄肉色丝袜足j| 长腿黑丝高跟| 欧美黄色淫秽网站| 变态另类成人亚洲欧美熟女| 欧美午夜高清在线| 黄色片一级片一级黄色片| 看黄色毛片网站| 亚洲乱码一区二区免费版| 午夜亚洲福利在线播放| 最新美女视频免费是黄的| 欧美三级亚洲精品| 国产一区二区三区在线臀色熟女| 中出人妻视频一区二区| 在线a可以看的网站| 久久中文看片网| 男人和女人高潮做爰伦理| 国产精品电影一区二区三区| 欧美av亚洲av综合av国产av| a在线观看视频网站| 怎么达到女性高潮| 亚洲欧美日韩无卡精品| 日本一二三区视频观看| 99久久99久久久精品蜜桃| 色在线成人网| 十八禁人妻一区二区| 夜夜躁狠狠躁天天躁| 12—13女人毛片做爰片一| 色综合婷婷激情| 日韩精品青青久久久久久| 久久久精品欧美日韩精品| 最新在线观看一区二区三区| 亚洲色图av天堂| 香蕉av资源在线| 久久久色成人| 国产精品乱码一区二三区的特点| 国产精品,欧美在线| 午夜精品久久久久久毛片777| 午夜日韩欧美国产| 丰满的人妻完整版| x7x7x7水蜜桃| 一二三四在线观看免费中文在| 丰满人妻一区二区三区视频av | 最近最新中文字幕大全免费视频| 国产久久久一区二区三区| 全区人妻精品视频| 国产精品女同一区二区软件 | 波多野结衣高清作品| 熟女人妻精品中文字幕| 日韩国内少妇激情av| 美女大奶头视频| 中亚洲国语对白在线视频| 国产成人av激情在线播放| 成人国产一区最新在线观看| 亚洲五月天丁香| 91老司机精品| 美女免费视频网站| 日本一二三区视频观看| 一个人看视频在线观看www免费 | 国产欧美日韩一区二区精品| 欧美激情久久久久久爽电影| 19禁男女啪啪无遮挡网站| 欧美3d第一页| 不卡一级毛片| 欧美在线一区亚洲| 国产精品野战在线观看| 久久亚洲精品不卡| 免费观看的影片在线观看| 免费一级毛片在线播放高清视频| 久久精品国产亚洲av香蕉五月| 久久九九热精品免费| 日韩欧美在线乱码| 久久亚洲精品不卡| 日本撒尿小便嘘嘘汇集6| 婷婷亚洲欧美| 90打野战视频偷拍视频| 成熟少妇高潮喷水视频| 我的老师免费观看完整版| 露出奶头的视频| 老司机福利观看| 国产午夜福利久久久久久| 90打野战视频偷拍视频| 久久国产精品人妻蜜桃| 无遮挡黄片免费观看| 亚洲国产欧美一区二区综合| 欧美高清成人免费视频www| 中文字幕人成人乱码亚洲影| 国产成人aa在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲精品美女久久久久99蜜臀| 国内精品久久久久久久电影| 熟女电影av网| 最近最新中文字幕大全免费视频| 精品久久久久久久久久免费视频| 日韩 欧美 亚洲 中文字幕| 美女cb高潮喷水在线观看 | 亚洲精品中文字幕一二三四区| 伦理电影免费视频| 精品久久久久久,| 成人无遮挡网站| 丁香六月欧美| 国产精品,欧美在线| 久久久久性生活片| 又紧又爽又黄一区二区| 性色av乱码一区二区三区2| 中文字幕最新亚洲高清| www日本黄色视频网| 国产精华一区二区三区| 在线十欧美十亚洲十日本专区| 亚洲,欧美精品.| 很黄的视频免费| 婷婷精品国产亚洲av| 国产午夜精品久久久久久| 亚洲欧美精品综合久久99| 亚洲电影在线观看av| 国产精品女同一区二区软件 | 最近视频中文字幕2019在线8| 欧美国产日韩亚洲一区| 伊人久久大香线蕉亚洲五| 老鸭窝网址在线观看| 国产1区2区3区精品| av欧美777| 久久午夜亚洲精品久久| 国产高清videossex| 九九在线视频观看精品| 99在线人妻在线中文字幕| 国产成人aa在线观看| 亚洲国产日韩欧美精品在线观看 | 少妇丰满av| 国产亚洲精品久久久com| 亚洲中文日韩欧美视频| 美女大奶头视频| cao死你这个sao货| 亚洲第一电影网av| 国产精品亚洲一级av第二区| www.999成人在线观看| 午夜激情福利司机影院| 搞女人的毛片| 亚洲一区二区三区色噜噜| 亚洲精品粉嫩美女一区| 美女 人体艺术 gogo| 成人精品一区二区免费| 欧美av亚洲av综合av国产av| 一本久久中文字幕| 怎么达到女性高潮| 日韩精品青青久久久久久| 一个人免费在线观看的高清视频| 桃色一区二区三区在线观看| 激情在线观看视频在线高清| 久久精品夜夜夜夜夜久久蜜豆| 久久精品91无色码中文字幕| 日韩欧美国产在线观看| 亚洲电影在线观看av| 国产欧美日韩精品亚洲av| 国产欧美日韩一区二区精品| 久久久久久久久免费视频了| 久久久久久人人人人人| 19禁男女啪啪无遮挡网站| 午夜激情福利司机影院| 国产人伦9x9x在线观看| 国产精品一区二区三区四区免费观看 | 制服丝袜大香蕉在线| 91麻豆av在线| 亚洲av五月六月丁香网| 男女床上黄色一级片免费看| 欧美色视频一区免费| 老司机深夜福利视频在线观看| www日本黄色视频网| 欧美zozozo另类| 黄色丝袜av网址大全| 不卡一级毛片| 舔av片在线| 亚洲成a人片在线一区二区| 国产伦在线观看视频一区| 日本五十路高清| 亚洲av电影在线进入| 精品无人区乱码1区二区| 亚洲成av人片在线播放无| 神马国产精品三级电影在线观看| 久久久精品欧美日韩精品| 又爽又黄无遮挡网站| 黑人操中国人逼视频| 亚洲精品一区av在线观看| 日本免费a在线| 亚洲av电影不卡..在线观看| 免费在线观看视频国产中文字幕亚洲| 美女大奶头视频| 色播亚洲综合网| 中文在线观看免费www的网站| 身体一侧抽搐| 嫩草影院精品99| 国产精品一区二区免费欧美| 免费av毛片视频| 婷婷丁香在线五月| 亚洲国产精品999在线| 可以在线观看的亚洲视频| 在线a可以看的网站| 18禁美女被吸乳视频| 日韩欧美在线乱码| АⅤ资源中文在线天堂| 精品久久久久久久久久免费视频| 美女黄网站色视频| 最新美女视频免费是黄的| 亚洲国产看品久久| 精品久久蜜臀av无| 久久久国产欧美日韩av| 国产69精品久久久久777片 | 美女扒开内裤让男人捅视频| 国产一区二区在线观看日韩 | 级片在线观看| 丰满的人妻完整版| 在线播放国产精品三级| 黄色女人牲交| 欧洲精品卡2卡3卡4卡5卡区| 国产主播在线观看一区二区| 法律面前人人平等表现在哪些方面| 午夜福利18| 三级毛片av免费| 999精品在线视频| 精品久久久久久久末码| 日韩精品中文字幕看吧| 两个人视频免费观看高清| 在线观看舔阴道视频| 19禁男女啪啪无遮挡网站| 国产精品一区二区免费欧美| 丰满的人妻完整版| 日韩欧美国产在线观看| 国产91精品成人一区二区三区| 国产激情久久老熟女| 亚洲国产精品999在线| 在线看三级毛片| 18禁观看日本| 欧美日韩福利视频一区二区| 精品电影一区二区在线| 亚洲人成电影免费在线| 久久久久久人人人人人| 国产美女午夜福利| 嫩草影视91久久| 在线观看日韩欧美| 欧美一区二区精品小视频在线| 欧美乱妇无乱码| 在线a可以看的网站| 亚洲国产精品成人综合色| 熟妇人妻久久中文字幕3abv| 亚洲av第一区精品v没综合| 亚洲无线观看免费| 一个人免费在线观看电影 | 久久精品91无色码中文字幕| 在线a可以看的网站| 99久久无色码亚洲精品果冻| 免费av不卡在线播放| 国产精品久久久久久人妻精品电影| 国产午夜精品论理片| 天天添夜夜摸| 国产午夜精品论理片| 国产精品自产拍在线观看55亚洲| 91九色精品人成在线观看| 久久久久久大精品| 9191精品国产免费久久| 精品国产乱码久久久久久男人| 久久精品国产综合久久久| 久久久久久国产a免费观看| 亚洲欧美日韩高清在线视频| 床上黄色一级片| 一级毛片女人18水好多| 麻豆国产97在线/欧美| 怎么达到女性高潮| 亚洲中文av在线| 美女被艹到高潮喷水动态| 国产精品一区二区三区四区久久| 日日夜夜操网爽| 床上黄色一级片| 啦啦啦韩国在线观看视频| www.999成人在线观看| 久久久精品大字幕| 国产精品九九99| 看片在线看免费视频| 久久香蕉国产精品| 午夜日韩欧美国产| 免费大片18禁| 色老头精品视频在线观看| 狠狠狠狠99中文字幕| 香蕉久久夜色| 精品免费久久久久久久清纯| 婷婷亚洲欧美| 日韩高清综合在线| 亚洲精品在线美女| 别揉我奶头~嗯~啊~动态视频| 999久久久精品免费观看国产| 午夜精品在线福利| 男人舔女人的私密视频| 桃色一区二区三区在线观看| 97人妻精品一区二区三区麻豆| 性欧美人与动物交配| 亚洲自拍偷在线| 美女高潮的动态| 少妇人妻一区二区三区视频| 一卡2卡三卡四卡精品乱码亚洲| 在线观看一区二区三区| 高清在线国产一区| 亚洲国产欧洲综合997久久,| 麻豆一二三区av精品| 九九热线精品视视频播放| 99久久99久久久精品蜜桃| 听说在线观看完整版免费高清| 国产午夜精品论理片| 国产黄色小视频在线观看| 亚洲一区二区三区不卡视频| 极品教师在线免费播放| 脱女人内裤的视频| 国产高潮美女av| 亚洲 国产 在线| 制服丝袜大香蕉在线| 国产综合懂色| 亚洲午夜精品一区,二区,三区| 久久中文字幕人妻熟女| 精品久久久久久久久久久久久| 波多野结衣高清无吗| 久99久视频精品免费| 在线观看舔阴道视频| 久久婷婷人人爽人人干人人爱| 97超级碰碰碰精品色视频在线观看| 免费在线观看影片大全网站| 俄罗斯特黄特色一大片| 真实男女啪啪啪动态图| 精品人妻1区二区| 18禁裸乳无遮挡免费网站照片| 国产精品亚洲美女久久久| 一区福利在线观看| 99热6这里只有精品| 国产黄片美女视频| 91av网站免费观看| 少妇的逼水好多| АⅤ资源中文在线天堂| 最近最新中文字幕大全电影3| 久久久久久九九精品二区国产| av女优亚洲男人天堂 | 最近最新中文字幕大全免费视频| 久久久久免费精品人妻一区二区| 久久久国产精品麻豆| 日韩欧美在线乱码| 国产精品日韩av在线免费观看| 国产精品 国内视频| 国产精品野战在线观看| www.999成人在线观看| 欧美一级a爱片免费观看看| 黄色女人牲交| 在线播放国产精品三级| 欧美午夜高清在线| 久久午夜综合久久蜜桃| 日韩欧美一区二区三区在线观看| 成人亚洲精品av一区二区| 日韩欧美国产在线观看| 国产主播在线观看一区二区| 国产激情久久老熟女| 啦啦啦免费观看视频1| 熟女少妇亚洲综合色aaa.| 2021天堂中文幕一二区在线观| 两个人视频免费观看高清| 日本一二三区视频观看| 欧美日韩综合久久久久久 | 好男人在线观看高清免费视频| 老司机在亚洲福利影院| а√天堂www在线а√下载| 日日摸夜夜添夜夜添小说| 国产欧美日韩精品亚洲av| 亚洲在线自拍视频| 十八禁网站免费在线| e午夜精品久久久久久久| 国产三级中文精品| 操出白浆在线播放| 亚洲中文字幕一区二区三区有码在线看 | 男插女下体视频免费在线播放| 亚洲欧美日韩东京热| 岛国在线免费视频观看| 757午夜福利合集在线观看| 岛国在线免费视频观看| www日本在线高清视频| 香蕉丝袜av| 亚洲无线观看免费| 叶爱在线成人免费视频播放| 好看av亚洲va欧美ⅴa在| 国产午夜精品久久久久久| 成人欧美大片| 国产精品九九99| 9191精品国产免费久久| 精品国产乱码久久久久久男人| 香蕉久久夜色| 偷拍熟女少妇极品色| 搡老熟女国产l中国老女人| 淫秽高清视频在线观看| 亚洲中文日韩欧美视频| 国产精品香港三级国产av潘金莲| 中出人妻视频一区二区| 亚洲精品一区av在线观看| 日本撒尿小便嘘嘘汇集6| 国产三级中文精品| bbb黄色大片| ponron亚洲| 在线观看免费午夜福利视频| 免费在线观看影片大全网站| 俺也久久电影网| 亚洲色图av天堂| 国产高清有码在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品日韩av在线免费观看| www.精华液| 男人舔女人下体高潮全视频| 亚洲欧美精品综合久久99| 日本与韩国留学比较| 狂野欧美白嫩少妇大欣赏| 动漫黄色视频在线观看| 青草久久国产| 久久久久久人人人人人| 亚洲人与动物交配视频| 波多野结衣高清无吗| 欧美黄色淫秽网站| 97人妻精品一区二区三区麻豆| 午夜激情福利司机影院| 亚洲成人精品中文字幕电影| 午夜激情福利司机影院| 亚洲成人精品中文字幕电影| www国产在线视频色| 午夜福利欧美成人| 成熟少妇高潮喷水视频| 精华霜和精华液先用哪个| 性欧美人与动物交配| 少妇丰满av| 国产单亲对白刺激| 免费看a级黄色片| 国产亚洲av嫩草精品影院| 国产99白浆流出| 两个人视频免费观看高清| 日本熟妇午夜| 中国美女看黄片| 国产99白浆流出| 精品无人区乱码1区二区| 在线视频色国产色| 校园春色视频在线观看| 亚洲片人在线观看| 三级毛片av免费| 久久精品人妻少妇| 两人在一起打扑克的视频| 午夜福利欧美成人| 欧美3d第一页| 国产蜜桃级精品一区二区三区| 久久久久久久久免费视频了| 国产黄a三级三级三级人| 99国产精品99久久久久| a级毛片a级免费在线| 天天一区二区日本电影三级| www.www免费av| 两个人的视频大全免费| 很黄的视频免费| 嫩草影视91久久| aaaaa片日本免费| 亚洲乱码一区二区免费版| 午夜福利成人在线免费观看| 色噜噜av男人的天堂激情| 久久久久精品国产欧美久久久| 91麻豆精品激情在线观看国产| 日日夜夜操网爽| 免费观看人在逋| 国产精品一区二区精品视频观看| 午夜精品在线福利| 日韩欧美国产一区二区入口| www国产在线视频色| 九九久久精品国产亚洲av麻豆 | 精品无人区乱码1区二区| 成人国产一区最新在线观看| 免费在线观看成人毛片| 最新中文字幕久久久久 | 又粗又爽又猛毛片免费看| 99久久综合精品五月天人人| 18禁国产床啪视频网站| 免费观看精品视频网站| 午夜福利免费观看在线| 波多野结衣巨乳人妻| 日韩欧美免费精品| 国产精品98久久久久久宅男小说| 最近最新免费中文字幕在线| 国产极品精品免费视频能看的| 一本一本综合久久| 18禁观看日本| 欧美乱妇无乱码| 国产精品久久久久久亚洲av鲁大| 法律面前人人平等表现在哪些方面| 久久中文看片网| 韩国av一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 国产高潮美女av| 国产精品亚洲av一区麻豆| 最新中文字幕久久久久 | 又粗又爽又猛毛片免费看| 午夜福利成人在线免费观看| 亚洲av美国av| 亚洲一区二区三区不卡视频| 免费看十八禁软件| 欧美一区二区精品小视频在线| 中出人妻视频一区二区| 一进一出好大好爽视频| 精品国内亚洲2022精品成人| 国产黄色小视频在线观看| 亚洲专区字幕在线| 日韩高清综合在线| 午夜福利在线在线| 欧美一级毛片孕妇| 美女黄网站色视频| 成人精品一区二区免费| 狠狠狠狠99中文字幕| 久久香蕉精品热| 18禁黄网站禁片午夜丰满| 村上凉子中文字幕在线| 亚洲男人的天堂狠狠| 亚洲av美国av| 国产亚洲精品一区二区www| 51午夜福利影视在线观看| 在线a可以看的网站| 99在线视频只有这里精品首页| 欧美日本亚洲视频在线播放| 亚洲成人久久爱视频| 亚洲国产精品sss在线观看| 国产av一区在线观看免费| 国产成人福利小说| 两性午夜刺激爽爽歪歪视频在线观看| 日韩高清综合在线| 成人国产一区最新在线观看|