要建婷
摘要:發(fā)散思維卻正好反映了創(chuàng)造性思維“盡快聯(lián)想,多作假設(shè)和提出多種解決問(wèn)題方案”的特點(diǎn),因而成為創(chuàng)造性思維的一種主要形式。在誘導(dǎo)樂(lè)于求異的心理傾向中,培養(yǎng)學(xué)生的發(fā)散思維能力;在誘導(dǎo)變通中,培養(yǎng)學(xué)生的發(fā)散思維能力;在鼓勵(lì)獨(dú)創(chuàng)中,培養(yǎng)學(xué)生的發(fā)散思維能力;在多種形式的訓(xùn)練中,培養(yǎng)學(xué)生的發(fā)散思維能力。
關(guān)鍵詞:數(shù)學(xué)教學(xué) 發(fā)散思維 變通 求異
數(shù)學(xué)教學(xué)以集中思維為主要思維方式,課本上的題目和材料的呈現(xiàn)過(guò)程大都循著一個(gè)模式,學(xué)生習(xí)慣于按照書(shū)上寫(xiě)的與教師教的方式去思考問(wèn)題,用符合常規(guī)的思路和方法解決問(wèn)題,這對(duì)于基礎(chǔ)知識(shí)、基本技能的掌握是必要的,但對(duì)于小學(xué)生學(xué)習(xí)數(shù)學(xué)興趣的激發(fā)、智力能力的發(fā)展,特別是創(chuàng)造性思維的發(fā)展,顯然是不夠的。發(fā)散思維卻正好反映了創(chuàng)造性思維“盡快聯(lián)想,多作假設(shè)和提出多種解決問(wèn)題方案”的特點(diǎn),因而成為創(chuàng)造性思維的一種主要形式。因此,在小學(xué)數(shù)學(xué)教學(xué)的過(guò)程中,在培養(yǎng)學(xué)生初步的邏輯思維能力的同時(shí),要有意識(shí)地培養(yǎng)學(xué)生的發(fā)散思維能力。
一、在誘導(dǎo)樂(lè)于求異的心理傾向中,培養(yǎng)學(xué)生的發(fā)散思維能力
贊可夫說(shuō)過(guò):“凡是沒(méi)有發(fā)自?xún)?nèi)心求知欲和興趣的東西,是很容易從記憶中揮發(fā)掉的”。贊可夫這句話說(shuō)明了發(fā)散思維能力的形成,需要以樂(lè)于求異的心理傾向作為一種重要的內(nèi)驅(qū)力。教師要善于選擇具體題例,創(chuàng)設(shè)問(wèn)題情境,精細(xì)地誘導(dǎo)學(xué)生的求異意識(shí)。對(duì)于學(xué)生在思維過(guò)程中時(shí)不時(shí)地出現(xiàn)的求異因素要及時(shí)予以肯定和熱情表?yè)P(yáng),使學(xué)生真切體驗(yàn)到自己求異成果的價(jià)值。對(duì)于學(xué)生欲尋異解而不能時(shí),教師則要細(xì)心點(diǎn)撥、潛心誘導(dǎo),幫助他們獲得成功,使學(xué)生漸漸生成自覺(jué)的求異意識(shí),并日漸發(fā)展為穩(wěn)定的心理傾向,在面臨具體問(wèn)題時(shí),就會(huì)能動(dòng)地作出“還有另解嗎?”“試試看,再?gòu)牧硪粋€(gè)角度分析一下”的求異思考。
事實(shí)證明,只有在求異心理傾向驅(qū)使下,那些相關(guān)的基礎(chǔ)知識(shí)、解題經(jīng)驗(yàn)才會(huì)處于特別活躍的狀態(tài),也才可能對(duì)數(shù)學(xué)題中的數(shù)量做出各種不同形式的重組,逐步形成發(fā)散思維能力。
二、在誘導(dǎo)變通中,培養(yǎng)學(xué)生的發(fā)散思維能力
變通,是發(fā)散思維的顯著標(biāo)志。要對(duì)問(wèn)題實(shí)行變通,只有在擺脫習(xí)慣性思考方式的束縛,不受固定模式的制約以后才能實(shí)現(xiàn)。因此,在學(xué)生較好地掌握了一般方法后,要注意誘導(dǎo)學(xué)生離開(kāi)原有思維軌道,從多方面思考問(wèn)題,進(jìn)行思維變通。當(dāng)學(xué)生思維閉塞時(shí),教師要善于調(diào)度原型幫助學(xué)生接通與有關(guān)舊知識(shí)和解題經(jīng)驗(yàn)的聯(lián)系,做出轉(zhuǎn)換、假設(shè)、化歸、逆反等變通,產(chǎn)生多種解決問(wèn)題的設(shè)想。
通過(guò)這些誘導(dǎo),能使學(xué)生自覺(jué)地從一個(gè)思維過(guò)程轉(zhuǎn)換到另一個(gè)思維過(guò)程,逐步形成在題中數(shù)量間自由往返調(diào)節(jié)的變通能力,這對(duì)于培養(yǎng)學(xué)生的發(fā)散思維是極為有益的。
三、在鼓勵(lì)獨(dú)創(chuàng)中,培養(yǎng)學(xué)生的發(fā)散思維能力
在分析和解決問(wèn)題的過(guò)程中,學(xué)生能別出心裁地提出新異的想法和解法,這是思維獨(dú)創(chuàng)性的表現(xiàn)。盡管小學(xué)生的獨(dú)創(chuàng)從總體上看是處于低層次的,但它卻孕育著未來(lái)的大發(fā)明、大創(chuàng)造,教師應(yīng)滿腔熱情地鼓勵(lì)他們別出心裁地思考問(wèn)題,大膽地提出與眾不同的意見(jiàn)與質(zhì)疑,獨(dú)辟蹊徑地解決問(wèn)題,這樣才能使學(xué)生的思維從求異、發(fā)散向創(chuàng)新推進(jìn)。
四、在多種形式的訓(xùn)練中,培養(yǎng)學(xué)生的發(fā)散思維能力
在小學(xué)數(shù)學(xué)教學(xué)過(guò)程中,教師可結(jié)合教學(xué)內(nèi)容和學(xué)生的實(shí)際情況,采取多種形式的訓(xùn)練,培養(yǎng)學(xué)生思維的敏捷性和靈活性,以達(dá)到誘導(dǎo)學(xué)生思維發(fā)散,培養(yǎng)發(fā)散思維能力的目的。
1、一題多變。對(duì)題中的條件、問(wèn)題、情節(jié)作各種擴(kuò)縮、順逆、對(duì)比或敘述形式的變化,讓學(xué)生在各種變化了的情境中,從各種不同角度認(rèn)識(shí)數(shù)量關(guān)系。
2、一題多問(wèn)。引導(dǎo)學(xué)生觀察同一事物時(shí),要從不同的角度、不同的方面仔細(xì)地觀察,認(rèn)識(shí)事物,理解知識(shí),這樣既能提高學(xué)生思維的靈活性,又能培養(yǎng)學(xué)生的發(fā)散思維能力。
3、一題多議。提供某種數(shù)學(xué)情境,調(diào)度學(xué)生多方面的舊知、技能或經(jīng)驗(yàn),組織議論,引起思維火花的撞擊。
如算式54÷9,要求學(xué)生從不同角度表述意義:①把54平均分成9份,每份是多少?②54里包含幾個(gè)9?③9除54,所得的商是多少?④54是9的幾倍?⑤多少個(gè)9相加的和是54?⑥學(xué)校有54只花皮球,平均分給一年級(jí)的三個(gè)班,問(wèn)每班得到多少只花皮球?
4、一題多解。在條件和問(wèn)題不變的情況下,讓學(xué)生多角度、多側(cè)面地進(jìn)行分析思考,探求不同的解題途徑。一題多解的訓(xùn)練是培養(yǎng)學(xué)生發(fā)散思維的一個(gè)好方法。它可以通過(guò)縱橫發(fā)散,使知識(shí)串聯(lián)、綜合溝通,達(dá)到舉一反三、融會(huì)貫通的目的。
例如,甲乙兩地相距200千米。一輛貨車(chē),從甲地開(kāi)往乙地,前4小時(shí)行了全程的2/5,照這樣的速度,行全程需要多少小時(shí)?
解法一:200÷(200X2/5÷4)或1÷(2/5÷4)。
從倍數(shù)關(guān)系考慮可得解法二:4X[200÷(200X2/5)]或4X(1÷2/5)。
用比例的辦法得解法三:設(shè)行完全程需要x小時(shí)。200:X=200×2/5:4。
從時(shí)間+路程=單位路程所需的時(shí)間,可得解法四:4÷2/5。
如果把全程看作5個(gè)單位則可獲得下列解法,解法五:(4÷2)×5;解法六:4x(5÷2);解法七:2/5=4/X。
綜上所述,在數(shù)學(xué)教學(xué)中,我們要在多方面時(shí)刻注意培養(yǎng)學(xué)生的發(fā)散思維能力。但是值得注意的是,如果片面地培養(yǎng)學(xué)生的發(fā)散思維能力,就會(huì)失之偏頗。在思維向某一方向發(fā)散的過(guò)程中,仍然需要集中思維的配合,需要嚴(yán)謹(jǐn)?shù)姆治?、合乎邏輯的推理,在發(fā)散的多種途徑、多種方法中,也需要通過(guò)比較判斷,獲得一種最簡(jiǎn)捷、最科學(xué)的方案與結(jié)果。所以,思維的發(fā)散與集中猶如鳥(niǎo)之雙翼,需要和諧配合,才能使學(xué)生的思維發(fā)展到新的水平。