• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      初中數(shù)學(xué)教學(xué)中數(shù)學(xué)思想方法的滲透

      2013-05-16 19:23:03林麗珊
      中華少年·研究青少年教育 2013年7期
      關(guān)鍵詞:思想方法初中教學(xué)滲透

      林麗珊

      摘要:數(shù)學(xué)思想方法是學(xué)生養(yǎng)成良好學(xué)習(xí)架構(gòu)的橋梁,不僅對學(xué)生的學(xué)習(xí)具有普遍的影響,同時幫助學(xué)生養(yǎng)成解決事情的正確的思維方式與思維習(xí)慣。數(shù)學(xué)知識體系建立在數(shù)學(xué)概念之上,而數(shù)學(xué)概念是數(shù)學(xué)思想和方法的媒介,所以初中教學(xué)中,很有必要把數(shù)學(xué)思想方法擺在一個十分重要的位置。

      關(guān)鍵詞:初中數(shù)學(xué) 思想方法 初中教學(xué) 滲透

      1、前言

      在我們長期的教學(xué)實踐過程中,有時只注重具體知識的教授,而忽略了解決問題的策略甚至方法,或者我們稱之為思想的東西,如同“授之魚”而忘了“授之以漁”。這很大程度上影響了學(xué)生的思維鍛煉,影響了他們的智力發(fā)育,同時對他們繼續(xù)學(xué)習(xí)的能力,接受更復(fù)雜知識的能力造成了削弱。隨著教育改革的推進(jìn),越來越多的這條戰(zhàn)線上的同胞認(rèn)識到這一點,正在改進(jìn),傳授具體知識的時候,也注重學(xué)生數(shù)學(xué)思想的培養(yǎng),在教學(xué)中注重數(shù)學(xué)思想方法的滲透,這是不錯的、可喜的。

      2、數(shù)學(xué)思想方法的重要性

      數(shù)學(xué)思想方法是數(shù)學(xué)這門學(xué)科的靈魂,是汲取知識和解決問題的手段,和單純的知識比起來,有更廣泛的實用性。所以在教學(xué)過程中,教授數(shù)學(xué)知識的同時,注意數(shù)學(xué)思想方法的滲透,很重要且十分必要,它能提高教學(xué)效果,提高教學(xué)質(zhì)量,于學(xué)生也是也獲益頗多。

      在學(xué)生掌握了數(shù)學(xué)思想方法之后,運用數(shù)學(xué)知識解決問題時,會一點即通,事半功倍,我們的教學(xué)活動也會成很大成績。在學(xué)習(xí)了基礎(chǔ)知識后,用不同的可能性去激發(fā)他們,挖掘他們的潛力,充分開發(fā)他們的創(chuàng)造性和積極性。

      3、幾種數(shù)學(xué)思想方法

      在這里介紹幾種在初中教學(xué)中經(jīng)常遇到的且很重要的數(shù)學(xué)思想方法:數(shù)形結(jié)合思想、分類討論思想、逆向思維、整體思想方法、類比聯(lián)想的思想和方法、化歸思想。

      3.1 數(shù)形結(jié)合思想

      數(shù)形結(jié)合思想中的“數(shù)”一般指代數(shù),而“形”一般指幾何,這兩者貌似獨立,實則在某些情況下可以互相轉(zhuǎn)化:數(shù)量問題轉(zhuǎn)化為圖形問題,圖形問題轉(zhuǎn)化為數(shù)量問題,由數(shù)想到形,由形想到數(shù)。在初中教學(xué)中會經(jīng)常用到一種東西——數(shù)軸。在學(xué)習(xí)相反數(shù)、絕對值、有理數(shù)大小的比較這些問題時,我們就會遇到它、運用它。提到數(shù)軸就不得不說“數(shù)軸上的點”和“點表示的數(shù)”,兩者的關(guān)系就是數(shù)與形意義。譬如,以后我們會了解到函數(shù)有多種表示方法,除了圖像法和解析法還有列表法。其中有的是用數(shù)來表達(dá)函數(shù),有的是用行來發(fā)反應(yīng)函數(shù),兩種方法來解決一個問題。數(shù)形結(jié)合思想的另一種用途是用代數(shù)方法解決幾何問題。在幾何中,常遇到計算問題,如用數(shù)來表示線段的長度、角的角度、來比較線段的長度、角的大小等等,學(xué)習(xí)幾何的初學(xué)者在此時,經(jīng)常不能聯(lián)系想到代數(shù),將二者分開,這是不好的,很不好的,須得盡早糾正。所以在剛開始的幾何教學(xué)中,能聯(lián)系到代數(shù)的,一定要培養(yǎng)學(xué)生的意識,讓其知道幾何和代數(shù)是不可分割的,一定要聯(lián)系在一起來解決問題,事半功倍。數(shù)與形,形與數(shù),圖形問題抽象成數(shù)字,而數(shù)的問題通過畫圖來提供思路。所以在起步階段,就得給學(xué)生灌輸這種思想,讓他們逐步適應(yīng)且習(xí)慣用這種思想來分析、解決問題,同時提高他們對事物抽象化的能力。

      3.2 分類討論思想

      分類討論是根據(jù)對象不同的屬性將其劃分類,即分析對象,找出他們的相同點和不同的地方,把有相同屬性的分在一類,不同的分在另一類,然后繼續(xù)解決問題。經(jīng)過了分類,復(fù)雜的東西會變得簡單,思路也就會出來?,F(xiàn)在舉一個分類討論的實例:關(guān)于x的方程kx2-6x-9=0有實根,求k的值。首先得考慮x2的系數(shù)k的值:(1)當(dāng)k=0時,原方程為一元一次方程,它有實根,所以k=0;(2)當(dāng)k≠0時,原方程為一元二次方程,要是它有實根,則△≥0,得到k≥-1,所以k≥-1且k≠0。綜上所述:k的取值范圍為k≥-1。

      3.3 逆向思維方法

      逆向思維在生活中是一種很有用的一種思維方式。所謂逆向思維是倒過來或者從問題的反面角度來解決問題,在數(shù)學(xué)中就是逆用某些數(shù)學(xué)公式或思想來解決問題。通過這種方法的學(xué)習(xí),來鍛煉學(xué)生的思維,加強(qiáng)其思維的靈活性,發(fā)散思維。

      3.4 整體思想和方法

      整體思想是指在解決問題分析問題時,不要局限于某一部分或問題本身,要考慮全局,在整體結(jié)構(gòu)上來解決問題。這樣有時問題就方便解決。這樣鍛煉學(xué)生從全局考慮問題,不局限不拘泥。

      3.5 類比聯(lián)想的思想和方法

      類比就是看到一個事物,想到另一樣和他相似的東西,兩樣?xùn)|西又相似或相同之處聯(lián)想正好相反,看到一樣事物,想到另一樣和他不同的東西兩樣?xùn)|西有相克或相反之處。

      3.6 化歸思想

      有理數(shù)的減法我們可以轉(zhuǎn)化為加法解決,同理有理數(shù)的除法可以用乘法解決,這便是用了劃歸思想,在實際解題中,將問題提煉為數(shù)學(xué)問題,而具體地解決數(shù)學(xué)問題時,我們又將其往已有的公理定理上靠,這都是劃歸。在帶領(lǐng)學(xué)生處理某些問題的時候,要注意培養(yǎng)學(xué)生的這種能力,鍛煉其思維。

      以上介紹了幾種數(shù)學(xué)思想方法,對于我們教師知道幾種數(shù)學(xué)思想方法是不夠的,更為重要的是我們得將其滲透到我們的教學(xué)中,讓我們的學(xué)生掌握它們,靈活運用他們。

      4、落實數(shù)學(xué)思想方法的滲透。

      在備課、設(shè)計教學(xué)時,把數(shù)學(xué)思想方法充分融入進(jìn)去。對于數(shù)學(xué)公式、法則、概念,這些已經(jīng)在我們的教材中了,我們要做的是怎樣把數(shù)學(xué)思想方法放進(jìn)去,讓他們能舉一反三,觸類旁通。在思想上重視思想方法,將傳授數(shù)學(xué)知識和滲透數(shù)學(xué)思想方法作為教學(xué)目的,認(rèn)真研究教材,結(jié)合實際內(nèi)容,讓學(xué)生最大程度的掌握必要的數(shù)學(xué)思想方法。通過一定的訓(xùn)練練習(xí),讓學(xué)生能夠由具體問題和例題中,自己總結(jié)出解題方法模式,并自己歸納出數(shù)學(xué)思想。同時在平時訓(xùn)練中,利用數(shù)學(xué)思想方法來指導(dǎo)學(xué)生做題,舉一能反三,十分靈活地有創(chuàng)造性地解決問題,那么該階段的教學(xué)目的就算達(dá)到了。課本上的例題具有很強(qiáng)的代表性,要反復(fù)練習(xí)探索其中的精髓,再由點到面,加深對該型題目的理解。對于個別題目,可以用多種方式解題的,盡量鼓勵學(xué)生去探索,找出其中最好的解題方法。

      數(shù)學(xué)教學(xué)中,經(jīng)常有重點有難點,重點常常就是需要老師有意地使用或者突出數(shù)學(xué)方法之處。而難點,常常就是數(shù)學(xué)思想方法有有變化需要銜接的地方。所以教師要有意識有計劃地使用數(shù)學(xué)思想方法進(jìn)行教學(xué)活動。當(dāng)然,在教師的點撥過程中,要注意方式,不要直接把結(jié)論弄出來,或者過于明顯的指導(dǎo),點撥引導(dǎo)要以發(fā)掘?qū)W生的能力為前提,注重過程,將學(xué)生探索的思路激發(fā)出來,教師再給于糾正,指引讓學(xué)生感受到新思維解問題的奧妙,充分領(lǐng)悟。數(shù)學(xué)概念是思維的基石,包含很多內(nèi)容,能夠由量變到質(zhì)變,因此數(shù)學(xué)思想方法不是一時半會就能夠掌握的,需要教師做多次的滲透,而學(xué)生多次的理解消化,在這個過程中,需要教師耐心,因材施教,注重循序漸進(jìn)。

      5、結(jié)束語

      中學(xué)階段的教學(xué)內(nèi)容可分為兩個階段:較淺內(nèi)容和較深內(nèi)容。較淺內(nèi)容包含簡單的概念、性質(zhì)、公理等。較深內(nèi)容則是指數(shù)學(xué)思想和數(shù)學(xué)方法。前者是基礎(chǔ),只有在掌握好較淺內(nèi)容的前提下,才能學(xué)好后者。因此,作為教師,為了孩子,我們在教學(xué)活動中,要做好數(shù)學(xué)思想方法的滲透。

      猜你喜歡
      思想方法初中教學(xué)滲透
      初中漢語言文學(xué)教學(xué)淺析
      淺談“導(dǎo)學(xué)互動”教學(xué)模式對初中數(shù)學(xué)教學(xué)的作用
      數(shù)學(xué)課堂中的文化滋潤策略
      例談高中數(shù)學(xué)中“轉(zhuǎn)化與化歸”思想的應(yīng)用
      考試周刊(2016年84期)2016-11-11 22:49:06
      把黨的宗旨轉(zhuǎn)化為黨員干部的思想方法和工作方法研究
      淺談初中班級高效管理策略
      巧用西方文化導(dǎo)入,提高初中英語課堂教學(xué)質(zhì)量
      淺談?wù)Z文課堂的情感教育滲透
      在印度佛教大會感受日本“滲透”
      巫溪县| 封开县| 高邮市| 富阳市| 潢川县| 开江县| 凤庆县| 嵩明县| 白沙| 南充市| 名山县| 兴安县| 修文县| 临高县| 铜梁县| 九台市| 越西县| 耒阳市| 含山县| 拜泉县| 合阳县| 治县。| 信丰县| 石家庄市| 乃东县| 旌德县| 阿坝| 沅陵县| 伊春市| 丰台区| 桂林市| 盖州市| 锦屏县| 五大连池市| 朔州市| 达州市| 泸定县| 定州市| 和田市| 盐亭县| 达尔|