• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strong Converse Inequality for the Meyer-Knig and Zeller-Durrmeyer Operators?

    2012-12-27 07:05:50QIQIULANANDLIUJUAN

    QI QIU-LANAND LIU JUAN

    (1.College of Mathematics and Information Science,Hebei Normal University,

    Shijiazhuang,050016)

    (2.No.1 Middle Shcool of Handan,Handan,Hebei,056002)

    Strong Converse Inequality for the Meyer-Knig and Zeller-Durrmeyer Operators?

    QI QIU-LAN1AND LIU JUAN2

    (1.College of Mathematics and Information Science,Hebei Normal University,

    Shijiazhuang,050016)

    (2.No.1 Middle Shcool of Handan,Handan,Hebei,056002)

    In this paper we give a strong converse inequality of type B in terms of uni fi ed K-functional(f,t2)(0≤λ≤1,0< α< 2)for the Meyer-Knig and Zeller-Durrmeyer type operators.

    Meyer-Knig and Zeller-Durrmeyer type operator,moduli of smoothness,K-functional,strong converse inequality,Hlder’s inequality

    1 Introduction

    which were the object of several investigations in approximation theory(see[1–3]).In recent years there are many results of strong converse inequalities for various operators(see[4–7]).Since the expression of the moment of the Meyer-Knig and Zeller type operators is very complicated(see[8–10]),we have not seen any result of strong converse inequality for Meyer-Knig and Zeller-Durrmeyer type operators.In this paper,we study the modi fi cation of Meyer-Knig and Zeller-Durrmeyer type operators(f,x):

    Throughout this paper,C denotes a positive constant independent of n and x,which are not necessarily the same at each occurrence.

    2 Lemmas

    In order to prove our main result,we need the following fundamental lemmas.Proof.Using Hlder’s inequality,(2.4)and(2.5),we can get(2.7).The methods to estimate (2.4),(2.5)and(2.6)are similar,so we only give the proof of(2.4).

    First,for k≥1,n=3,by simple calculations,we can get(2.4).

    Secondly,for k≥1,n≥4,one has

    Combining the above inequality with Hlder’s inequality and Lemmas 2.2–2.4,we can get (2.11).We have thus completed the proof of Lemma 2.6.

    The methods of estimating I1,I2,I3are similar,so we estimate I1for an example.It is easy to see that

    3 Main Results

    [1]Becker M,Nessel R J.A global approximation theorem for Meyer-Knig and Zeller operators.Math.Z.,1978,160:195–206.

    [2]Totik V.Approximation by Meyer-Knig and Zeller operators.Math.Z.,1983,182:425–446.

    [3]Totik V.Uniform approximation by Baskakov and Meyer-Knig and Zeller operators.Period. Math.Hungar.,1983,14:209–228.

    [4]Chen W,Ditzian Z.Strong converse inequality for Kantorovich polynomials.Constr.Approx., 1994,10:95–106.

    [5]Gonska H H,Zhou X.The strong converse inequality for Bernstein-Kantorovich operators.Comput.Math.Appl.,1995,30:103–128.

    [6]Guo S,Qi Q.Strong converse inequalities for Baskakakov operators.J.Approx.Theory,2003, 124:219–231.

    [7]Totik V.Strong converse inequalities.J.Approx.Theory,1994,76:369–375.

    [8]Abel U.The moments for the Meyer-Knig and Zeller operators.J.Approx.Theory,1995,82: 352–361.

    [9]Alkemade A H.The second moment for the Meyer-Knig and Zeller operators.J.Approx. Theory,1984,40:261–273.

    [10]Guo S,Qi Q.The moments for Meyer-Knig and Zeller operators.Appl.Math.,2007,27: 719–722.

    [11]Ditzian Z,Totik V.Moduli of Smoothness.New York:Springer-Verlag,1987.

    Communicated by Ma Fu-ming

    41A25,41A36,41A27

    A

    1674-5647(2012)01-0001-09

    date:May 28,2007.

    The NSF(10571040)of China and NSF(L2010Z02)of Hebei Normal University.

    安溪县| 五莲县| 河北省| 子洲县| 吉水县| 柳州市| 赣州市| 吕梁市| 望城县| 疏勒县| 徐汇区| 汽车| 新田县| 和龙市| 连平县| 大宁县| 乌什县| 和静县| 武清区| 永城市| 道孚县| 密山市| 板桥市| 梅州市| 旌德县| 武陟县| 阳新县| 巴彦县| 柳林县| 鸡西市| 金坛市| 麻城市| 诸城市| 光山县| 临桂县| 南华县| 蒙自县| 凤山市| 云南省| 邢台县| 恩施市|