• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Strong Converse Inequality for the Meyer-Knig and Zeller-Durrmeyer Operators?

      2012-12-27 07:05:50QIQIULANANDLIUJUAN

      QI QIU-LANAND LIU JUAN

      (1.College of Mathematics and Information Science,Hebei Normal University,

      Shijiazhuang,050016)

      (2.No.1 Middle Shcool of Handan,Handan,Hebei,056002)

      Strong Converse Inequality for the Meyer-Knig and Zeller-Durrmeyer Operators?

      QI QIU-LAN1AND LIU JUAN2

      (1.College of Mathematics and Information Science,Hebei Normal University,

      Shijiazhuang,050016)

      (2.No.1 Middle Shcool of Handan,Handan,Hebei,056002)

      In this paper we give a strong converse inequality of type B in terms of uni fi ed K-functional(f,t2)(0≤λ≤1,0< α< 2)for the Meyer-Knig and Zeller-Durrmeyer type operators.

      Meyer-Knig and Zeller-Durrmeyer type operator,moduli of smoothness,K-functional,strong converse inequality,Hlder’s inequality

      1 Introduction

      which were the object of several investigations in approximation theory(see[1–3]).In recent years there are many results of strong converse inequalities for various operators(see[4–7]).Since the expression of the moment of the Meyer-Knig and Zeller type operators is very complicated(see[8–10]),we have not seen any result of strong converse inequality for Meyer-Knig and Zeller-Durrmeyer type operators.In this paper,we study the modi fi cation of Meyer-Knig and Zeller-Durrmeyer type operators(f,x):

      Throughout this paper,C denotes a positive constant independent of n and x,which are not necessarily the same at each occurrence.

      2 Lemmas

      In order to prove our main result,we need the following fundamental lemmas.Proof.Using Hlder’s inequality,(2.4)and(2.5),we can get(2.7).The methods to estimate (2.4),(2.5)and(2.6)are similar,so we only give the proof of(2.4).

      First,for k≥1,n=3,by simple calculations,we can get(2.4).

      Secondly,for k≥1,n≥4,one has

      Combining the above inequality with Hlder’s inequality and Lemmas 2.2–2.4,we can get (2.11).We have thus completed the proof of Lemma 2.6.

      The methods of estimating I1,I2,I3are similar,so we estimate I1for an example.It is easy to see that

      3 Main Results

      [1]Becker M,Nessel R J.A global approximation theorem for Meyer-Knig and Zeller operators.Math.Z.,1978,160:195–206.

      [2]Totik V.Approximation by Meyer-Knig and Zeller operators.Math.Z.,1983,182:425–446.

      [3]Totik V.Uniform approximation by Baskakov and Meyer-Knig and Zeller operators.Period. Math.Hungar.,1983,14:209–228.

      [4]Chen W,Ditzian Z.Strong converse inequality for Kantorovich polynomials.Constr.Approx., 1994,10:95–106.

      [5]Gonska H H,Zhou X.The strong converse inequality for Bernstein-Kantorovich operators.Comput.Math.Appl.,1995,30:103–128.

      [6]Guo S,Qi Q.Strong converse inequalities for Baskakakov operators.J.Approx.Theory,2003, 124:219–231.

      [7]Totik V.Strong converse inequalities.J.Approx.Theory,1994,76:369–375.

      [8]Abel U.The moments for the Meyer-Knig and Zeller operators.J.Approx.Theory,1995,82: 352–361.

      [9]Alkemade A H.The second moment for the Meyer-Knig and Zeller operators.J.Approx. Theory,1984,40:261–273.

      [10]Guo S,Qi Q.The moments for Meyer-Knig and Zeller operators.Appl.Math.,2007,27: 719–722.

      [11]Ditzian Z,Totik V.Moduli of Smoothness.New York:Springer-Verlag,1987.

      Communicated by Ma Fu-ming

      41A25,41A36,41A27

      A

      1674-5647(2012)01-0001-09

      date:May 28,2007.

      The NSF(10571040)of China and NSF(L2010Z02)of Hebei Normal University.

      东台市| 武鸣县| 遵义市| 固阳县| 伊吾县| 炉霍县| 沾益县| 神木县| 建阳市| 新竹市| 陇川县| 奉新县| 朔州市| 襄城县| 闽清县| 宜黄县| 项城市| 专栏| 西青区| 卢湾区| 潼南县| 巴林左旗| 南投市| 蒙自县| 承德市| 山阴县| 会宁县| 平安县| 定襄县| 巍山| 延长县| 滕州市| 长治市| 香港| 罗山县| 梨树县| 藁城市| 泉州市| 朝阳市| 民和| 宣恩县|