• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Invertible Linear Maps on the General Linear Lie Algebras Preserving Solvability?

    2012-12-27 07:05:38CHENZHENGXINANDCHENQIONG

    CHEN ZHENG-XIN AND CHEN QIONG

    (School of Mathematics and Computer Science,Fujian Normal University,Fuzhou,350007)

    Invertible Linear Maps on the General Linear Lie Algebras Preserving Solvability?

    CHEN ZHENG-XIN AND CHEN QIONG

    (School of Mathematics and Computer Science,Fujian Normal University,Fuzhou,350007)

    Let Mnbe the algebra of alln×ncomplex matrices andgl(n,C)be the general linear Lie algebra,wheren≥2.An invertible linear mapφ:gl(n,C)→gl(n,C)preserves solvability in both directions if bothφandφ?1map every solvable Lie subalgebra ofgl(n,C)to some solvable Lie subalgebra.In this paper we classify the invertible linear maps preserving solvability ongl(n,C)in both directions.As a sequence,such maps coincide with the invertible linear maps preserving commutativity on Mnin both directions.

    general linear Lie algebra,solvability,automorphism of Lie algbra

    1 Introduction

    Let L be a Lie algebra.Recall that the derived Lie algebra L(1)of L is the Lie ideal[L,L] spanned by all[x,y],x,y∈L.To each Lie algebra L we associated the derived series:

    The Lie algebra L is solvable if there exists a positive integer r such that L(r)={0}.The set of all n×n complex matrices is denoted by Mnwhen considered as a set or a linear space or an algebra.If the linear space Mnis equipped with the Lie product

    then it becomes a general linear Lie algebra,denoted by gl(n,C).

    A lot of attention has been paid to linear preserver problem,which concerns the characterization of linear maps on matrix spaces or algebras that leave certain functions,subsets, relations,etc.,invariant.The earliest paper on linear preserver problem dates back to 1897 (see[1]),and a great deal of e ff ort has been devoted to the study of this type of question sincethen.One may consult the survey papers[2–4]for details.For linear or nonlinear preserver problem concerning linear Lie algebras we refer to the literature[5–12].The author in[7] characterized the invertible linear maps on simple Lie algebras of linear types preserving zero Lie products.Radjavi and Semrl in[11]characterized the nonlinear maps which preserve solvability in both directions on the general linear Lie algebras and the special linear Lie algebras.In this article we determine the invertible linear maps preserving solvability on gl(n,C)in both directions,where an invertible linear map φ:gl(n,C)→gl(n,C)is said to preserve solvability in both directions if for any solvable Lie algebra s?gl(n,C),both φ(s) and φ?1(s)are solvable Lie algebras of gl(n,C).Now we state our main theorem:

    Theorem 1.1Letφ:gl(n,C)→gl(n,C)be an invertible linear map.The following two conditions are equivalent:

    (1)φpreserves solvability in both directions;

    (2)There exists a non-zero scalarμ∈C,a linear functionalfongl(n,C)withf(I)?μand an invertible matrixS∈gl(n,C)such that either

    for everyX∈gl(n,C),whereXtdenotes the transpose ofX.

    The above result determines an explicit form of the linear invertible map preserving solvability described in Theorem 1.1 of[11].In[12],the author proved that any bijective linear commutativity preserving map φ on Mnis also one of the above two standard maps. Thus we have the following corollary.

    Corollary 1.1Letφbe an invertible linear map ongl(n,C).Then the following conditions are equivalent:

    (1)φpreserves solvability in both directions;

    (2)φpreserves zero Lie products in both directions.

    Here we specify some notations for later use.We denote by I the identity matrix in gl(n,C)and by Eijthe matrix in gl(n,C)whose sole nonzero entry 1 is in the(i,j)-position. Let CI be the set{aI|a∈C}of all scalar matrices,H the set of all diagonal matrices in gl(n,C),andn+(resp.,n?)the set of all strictly upper(resp.,low)triangular matrices.Let D be the set of the diagonalizable matrices.Denote the one-dimensional vector space CEstby Lstfor any pair(s,t),1≤st≤n.And denote C?=C?{0}.

    2 Certain Invertible Linear Maps Preserving Solvability

    In this section,we construct certain invertible linear maps preserving solvability in both directions on gl(n,C),which will be used to describe arbitrary invertible linear maps preserving solvability in both directions.

    (A)Inner automorphisms:

    For any invertible matrix T∈gl(n,C),the map

    is an automorphism of gl(n,C),called an inner automorphism of gl(n,C).

    (B)Graph automorphisms:

    Let

    Then ω0is an automorphism of gl(n,C).Both 1 and ω0are called graph automorphism of gl(n,C).

    (C)Scalar multiplication maps:

    For any c∈C?,de fi ne

    We call ψca scalar multiplication map on gl(n,C).It is obvious that any scalar multiplication map is an invertible linear map preserving solvability in both directions.

    (D)Invertible linear maps induced by a linear function on gl(n,C):

    Let f:gl(n,C)→C be a linear function such that

    It is easy to see that the map

    is an invertible linear map,and its inverse is the linear mapde fi ned by

    The map ψfis called an invertible linear map induced by the linear function f.Since

    for any X,Y∈gl(n,C),ψfpreserves solvability in both directions.

    The following lemma is easy to check.

    Lemma 2.1(1)ψc′·ψc=ψc′cfor anyc,c′∈C?;

    (2)σT′·σT=σTT′for any pair of invertible matricesT,T′∈gl(n,C);

    By Lemma 2.1 we have

    3 Proof of the Main Theorem

    Before proving the main theorem,we recall some results from Theorem 1.1,Proposition 2.4 and the proof of Lemma 2.5 in[11].

    Lemma 3.1Letφbe a bijective map ongl(n,C)preserving solvability in both directions. Then

    and two diagonalizable matricesAandBcommute if and only ifφ(A)andφ(B)commute. Moreover,letDk(k=1,2,···,n)be the set of all diagonalizable matrices with exactlykdistinct eigenvalues.Then we have

    for some nonzeroλ∈C?.

    Proof of Theorem 1.1First we prove that Theorem 1.1 holds for n≥3.

    For the sufficient direction,it is easy to see that φ is an invertible linear map and its inverse is given by

    for any X,Y∈gl(n,C),for any solvable Lie subalgebra s of gl(n,C),φ(s)is a solvable Lie subalgebra of gl(n,C).Similarly,φ?1preserves solvability.Thus φ is an invertible linear map preserving solvability in both directions.

    Now we prove the essential direction of the theorem.Let φ be an invertible linear map on gl(n,C)preserving solvability in both directions.First observe that the image(under φ)of a solvable subalgebra generated by a subset X of gl(n,C)is precisely the subalgebra generated by φ(X).We prove the main theorem through the following nine steps.

    Step 1.There exists an invertible matrixS1∈gl(n,C)such that

    For a diagonal matrix

    we have φ(h0)∈D by Lemma 3.1,and so there exists an invertible matrix S1∈gl(n,C) such that

    is a diagonal matrix.Denote

    Then φ1is still an invertible linear map on gl(n,C)preserving solvability in both directions. Let

    Since h0∈Dn,by Lemma 3.1,φ1(h0)∈Dn,and so

    so by Lemma 3.1,

    By the above equality(3.1),we know that φ1(h)is a diagonal matrix.It follows that

    Step 2.For any pair(s,t),1≤st≤n,there exists some pair(p,q),1≤pq≤n, such that

    Consider φ1(H+Lst).Since H+Lstis an(n+1)-dimensional solvable subalgebra containing H,φ1(H+Lst)is also an(n+1)-dimensional solvable subalgebra containing H. First we prove that

    Applying(ad h1)repeatedly on x,we have

    View the above equations(3.2)as a system of linear equations in n2?n variants(2u?1?2v?1)auvEuvfor the pairs(u,v)with coefficients(2u?1?2v?1)k?1.For any(u,v)(u′,v′), it is easy to see that

    So the determinant of coefficients of variants(2u?1?2v?1)auvEuv,being exactly a Vandermonde determinant,takes a nonzero value.So each(2u?1?2v?1)auvEuvcan be written as a linear combination of

    Assume that

    where h∈H,a∈C?.We now need to show that h=0.Otherwise,take

    such that

    and h′,h are linearly independent(do exist).Let

    Since Lst+Ch′′is a two-dimensional solvable subalgebra generated by Estand h′′,φ1(Lst+ Ch′′)is a two-dimensional solvable subalgebra generated by aEpq+h and h′.By

    we see that h=0.Thus

    Step 3.There exists some invertible matrixS2such that

    (1)(φ1·σS2)(H)=H;

    (2)(φ1·σS2)(Lst)?n+for any1≤s<t≤n;

    (3)(φ1·σS2)(Lst)?n?for any1≤t<s≤n.

    It is not difficult to see that(2)is equivalent to the following announcement:

    for any 1≤s≤n?1.

    Since(3)follows from(2)by Step 2,we only need to prove(1)and(?).

    Let

    Now we use decreasing induction on Cardto complete(1)and(?).If

    i.e.,φ1(Lst)?n+for any 1≤s<t≤n,then we choose S2=I to complete the proof.If

    then there exists at least one i∈{1,2,···,n?1}such that φ1(Li,i+1)?n?.Choose an invertible matrix

    By an easy computation,we have the following results:

    (i)σS′(diag{a1,···,ai,ai+1,···,an})=diag{a1,···,ai+1,ai,···,an},and so

    (ii)σS′(Ei,i+1)=?Ei+1,i,and so

    (iii)For any t>i+1,

    (if φ1(Li+1,i)?n?,then φ1(Li,i+1+H+Li+1,i)=H+φ1(Li,i+1)+φ1(Li+1,i)?H+n?is solvable,which contradicts the fact that Li,i+1+H+Li+1,iis not solvable);

    (iii)φ1·σS′induces a permutation on the set{Lst|(s,t)(i,i+1),1≤s<t≤n}. One will see that the number of pairs(s,t),1≤s<t≤n,satisfying that

    is precisely k+1.By induction hypotheses,there exists an invertible matrix S′′such that

    (i)((φ1·σS′)·σS′′)(H)=H;

    (ii)((φ1·σS′)·σS′′)(Lst)?n+for any 1≤s<t≤n.

    Let

    Then by Lemma 2.1(2),the proofs of(1)and(2)are completed.

    In the remainder of this proof,we denote

    Step 4.For anys∈{1,2,···,n?1},there is somej∈{1,2,···,n?1}such that

    By Step 3,

    Since dimφ2(n+)=dimn+,we have

    Sincen+is a solvable subalgebra generated by all Ls,s+1for s∈{1,2,···,n?1},we see thatn+is also generated by all φ2(Ls,s+1)for s∈{1,2,···,n?1}.Then Step 4 holds from Step 2.

    Step 5.There is a graph automorphismωofgl(n,C)such that

    for anys∈{1,2,···,n?1}.

    For any two distinct s,t∈{1,2,···,n?1},|s?t|=1 if and only if the dimension of the solvable subalgebra generated by Ls,s+1and Lt,t+1is 3,and|s?t|>1 if and only if the dimension of the solvable subalgebra generated by Ls,s+1and Lt,t+1is 2.By Step 4,we can set π to be the permutation of{1,2,···,n?1}such that

    for any s=1,2,···,n?1.Since the dimension of the solvable subalgebra generated by Ls,s+1and Lt,t+1is equal to the dimension of the solvable subalgebra generated by Lπ(s),π(s)+1and Lπ(t),π(t)+1,|s?t|=1 if and only if|π(s)?π(t)|=1,and|s?t|>1 if and only if |π(s)?π(t)|>1.Then either

    (1)π(s)=s,1≤s≤n?1,or

    (2)π(s)=n?s,1≤s≤n?1.

    For the case(1),we set ω=I;and for the case(2),we set ω=ω0.Then Step 5 holds.

    Denote

    Step 6.φ3(Lst)=Lstfor anys,t∈{1,2,···,n}andst.

    At first we prove that

    To achieve the aim we use decreasing induction on t?s,where 1≤t?s≤n?1.For t?s=n?1,then t=n,s=1.Since L1n+Lk,k+1is a two-dimensional solvable subalgebra for any k=1,2,···,n?1,the image φ3(L1n+Lk,k+1)is also a two-dimensional subalgebra, which is generated by φ3(L1n)and φ3(Lk,k+1).Assume that

    Then there is some i∈{1,2,···,n?1}such that

    which implies that the subalgebra of gl(n,C)generated by φ3(L1n)and φ3(Li,i+1)is at least three-dimensional,a contradiction.Thus

    for any pair(s,t)satisfying t?s≥k+1,1≤s<t≤n.Let(p,q)be a pair satisfying |p?q|=k and 1≤p<q≤n.There is some i∈{1,2,···,n?1}such that

    The subalgebra t generated by Lpqand Li,i+1is

    which is three-dimensional and solvable.We consider the three-dimensional solvable algebra φ3(t).On the one hand,it is the subalgebra generated by φ3(Lpq)and Li,i+1,i.e.,it is the subalgebra

    As in Step 4,we can similarly prove that for any 1≤i≤n?1,there is some j such that

    For a given i∈{1,2,···,n?1},if the above ji,then the solvability of Lj+1,j+Li,i+1+H will force

    to be solvable,absurd.So

    A similar discussion to the above shows that

    Step 7.There exist a constantv∈C?and a linear functionf′such that

    For any fixed i∈{1,2,···,n},and any two distinct j,ki,Eiiand Ejk+Ekjgenerate a two-dimensional solvable subalgebra of gl(n,C).So φ3(Eii)and φ3(Ekj+Ejk)also generate a two-dimensional subalgebra of gl(n,C).Since

    Denote

    Step 8.There is an invertible matrixS3such that

    for any pair(s,t)such that 1≤s<t≤n by induction on t?s.It is easy to check that

    So it holds for t?s=1.Assume that

    Et?1,t?1+Et?1,tand Es,t?1+Estgenerate a two-dimensional solvable subalgebra,and so (σS3·φ4)(Et?1,t?1+Et?1,t)and(σS3·φ4)(Es,t?1+Est)also generate a two-dimensional solvable subalgebra,where

    First we prove that

    We prove it in the following two cases.

    Case 1.t=1.

    Since

    we see that E11+E21and E13+E23generate a two-dimensional solvable subalgebra of gl(n,C),and so(σS3·φ4)(E11+E21)and(σS3·φ4)(E13+E23)also generate a two-dimensional subalgebra of gl(n,C).SinceCase 2.t>1.

    Since

    we see that Et+1,t+1+Et+1,tand Et?1,t+1+Et?1,tgenerate a two-dimensional solvable subalgebra of gl(n,C),and so(σS3·φ4)(Et+1,t+1+Et+1,t)and(σS3·φ4)(Et?1,t+1+Et?1,t) also generate a two-dimensional solvable subalgebra of gl(n,C).Since

    A similar discussion as above shows that

    Thus Step 8 holds.

    Step 9.There are a nonzero elementμ∈C?,an invertible matrixSand a linear functionfongl(n,C)withf(I)?μsuch that either

    for anyX∈gl(n,C).

    By Step 8,

    and so

    We prove Step 9 in the following two cases:

    Case 1.ω=1.

    In this case,by Lemma 2.1,we have

    and f be the linear function determined by

    Thus Step 9 holds.

    Case 2.ω=ω0.

    In this case,by Lemma 2.1,we have

    Thus Step 9 holds.

    Finally,Theorem 1.1 holds for the case n≥3.

    Next we prove Theorem 1.1 holds for n=2.

    We only need to prove the essential direction.

    Let φ be an invertible linear map preserving solvability on gl(2,C).

    Since

    is a solvable subalgebra of gl(2,C),φ(T2)is a solvable subalgebra of gl(2,C),and so there is an invertible matrix S1such that

    Here σS1·φ is still an invertible linear map preserving solvability on gl(2,C).The set gl(2,C) is a disjoint union of CI,N and D′,where N is the set of all matrices of the form λI+N with N0 and N2=0,and D′is the set of all nonscalar diagonalizable matrices.By Section 3 of[11],each of the sets CI,N,and D′is invariant under σS1·φ.Let

    Since E11,E12generate a two-dimensional solvable subalgebra,φ1(E11)and φ1(E12)also generate a two-dimensional solvable subalgebra.By computation,

    where h∈H,a12,a21∈C.Since E11,E22,E21generate a three-dimensional solvable subalgebra,φ1(E11),φ1(E22)and φ1(E21)generate a three-dimensional solvable subalgebra, denoted by t.Choose

    Then(ad h1)(φ1(E21))∈t,(ad h1)2(φ1(E21))∈t,i.e.,a21E21?a12E12∈t,a21E21+ a12E12∈t.Thus a21E21∈t,a12E12∈t.If a120(resp.,a210),then E12∈t(resp., E21∈t).Thus one of a12,a21is zero and the other is nonzero.Assume that

    In this case φ1(E12),φ1(E21)and φ1(E11?E22)generate a solvable subalgebra of gl(2,C), which contradicts the fact that the subalgebra generated by E21,E12and E11?E22is not solvable.Thus

    Next we prove that h=0.

    We could choose p′,q′∈C so that p′q′,and p′qq′p.Then p′E11+q′E22and h are linearly independent.Let

    Since CE21+Ch′′is a two-dimensional solvable subalgebra generated by h′′and E21,t′is a two-dimensional solvable subalgebra generated by φ1(E21)and φ1(h′′).However,

    a contradiction.Thus

    where a21∈C?.So

    Let f′be a linear function on C determined by

    is an invertible linear map preserving solvability.It is easy to check that

    we see that E11+E12?E21?E22and E21+E12generate a two-dimensional solvable subalgebra of gl(2,C),and so(σS3·φ2)(E11+E12?E21?E22)and(σS3·φ2)(E21+E12) also generate a two-dimensional solvable subalgebra of gl(2,C).By computation,

    and Theorem 1.1 holds for n=2.

    The proof of Theorem 1.1 is completed.

    [1]Frobenius C.Uber die Darstellung der Endlichen Gruppen Durch Lineare Substitutioen.Berlin: Sitzungsber Deutsch Akad Wiss,1897.

    [2]Li C K,Tsing N K.Linear preserver problem:a brief introduction and some special techniques.Linear Algebra Appl.,1992,162-164:217–235.

    [3]Pierce S,Li C K,Loewy R,Lim M H,Tsing N.A survey of linear preserver problems.Linear and Multilinear Algebra,1992,33:1–129.

    [4]Li C K,Pierce S.Linear preserver problem.Amer.Math.Monthly,2001,108:591–605.

    [5]Marcus M.Linear operations of matrices.Amer.Math.Monthly,1962,69:837–847.

    [6]Marcoux L W,Sourour A R.Commutativity preserving linear maps and Lie automorphisms of triangular matrix algebras.Linear Algebra Appl.,1999,288:89–104.

    [7]Wong W J.Maps on simple algebras preserving zero products,II:Lie algebras of linear type.Paci fi c J.Math.,1981,92:469–487.

    [8]Semrl P.Non-linear commutativity preserving maps.Acta Sci.Math.(Szeged),2005,71:781–819.

    [9]Fosner A.Non-linear commutativity preserving maps on Mn(R).Linear and Multilinear Algebra,2005,53:323–344.

    [10]Semrl P.Commutativity preserving maps.Linear Algebra Appl.,2008,429:1051–1070.

    [11]Radjavi H,Semrl P.Non-linear maps preserving solvability.J.Algebra,2004,280:624–634.

    [12]Watkins W.Linear maps that preserve commuting pairs of matrices.Linear Algebra Appl., 1976,14:29–35.

    Communicated by Du Xian-kun

    15A01,17B40

    A

    1674-5647(2012)01-0026-17

    date:June 4,2010.

    The NSF(2009J05005)of Fujian Province and a Key Project of Fujian Provincial Universities—Information Technology Research Based on Mathematics.

    日韩在线高清观看一区二区三区| xxx大片免费视频| 免费在线观看完整版高清| 国产成人午夜福利电影在线观看| 免费黄频网站在线观看国产| 九九爱精品视频在线观看| av在线app专区| 国产色爽女视频免费观看| 国精品久久久久久国模美| 美女内射精品一级片tv| 99久国产av精品国产电影| 97精品久久久久久久久久精品| 婷婷成人精品国产| 美女视频免费永久观看网站| 18禁观看日本| 一级爰片在线观看| 国产在线视频一区二区| 国产女主播在线喷水免费视频网站| 汤姆久久久久久久影院中文字幕| 国产一区二区三区av在线| 免费在线观看黄色视频的| 亚洲欧美精品自产自拍| 国产黄频视频在线观看| 99热网站在线观看| www.熟女人妻精品国产 | 色哟哟·www| 国产激情久久老熟女| 美国免费a级毛片| 久久人人爽人人片av| 国产精品一区二区在线不卡| 日韩制服骚丝袜av| 亚洲av电影在线进入| 2022亚洲国产成人精品| 国产男女内射视频| 欧美xxxx性猛交bbbb| 一个人免费看片子| 日本免费在线观看一区| 国产极品粉嫩免费观看在线| 色视频在线一区二区三区| 国产成人aa在线观看| 亚洲三级黄色毛片| 制服丝袜香蕉在线| 亚洲内射少妇av| 午夜91福利影院| 建设人人有责人人尽责人人享有的| 在线观看一区二区三区激情| 插逼视频在线观看| 成人国语在线视频| 色视频在线一区二区三区| 久久精品夜色国产| 精品国产一区二区三区四区第35| 日本黄大片高清| 中文字幕人妻熟女乱码| 欧美日韩视频高清一区二区三区二| 在线免费观看不下载黄p国产| av黄色大香蕉| 中文字幕另类日韩欧美亚洲嫩草| 日本vs欧美在线观看视频| 久久97久久精品| 天堂俺去俺来也www色官网| 成人午夜精彩视频在线观看| 亚洲一区二区三区欧美精品| 国产精品三级大全| 下体分泌物呈黄色| 欧美老熟妇乱子伦牲交| 亚洲av欧美aⅴ国产| 亚洲精品色激情综合| 国产免费一区二区三区四区乱码| 精品人妻一区二区三区麻豆| 亚洲欧美一区二区三区黑人 | www.熟女人妻精品国产 | 2022亚洲国产成人精品| 国产片内射在线| 在现免费观看毛片| 精品人妻在线不人妻| 精品福利永久在线观看| 丰满乱子伦码专区| 国产精品一二三区在线看| 午夜免费男女啪啪视频观看| 欧美精品一区二区免费开放| 久久韩国三级中文字幕| 亚洲精品一区蜜桃| 纵有疾风起免费观看全集完整版| 九色成人免费人妻av| 欧美 亚洲 国产 日韩一| 高清在线视频一区二区三区| 香蕉丝袜av| 亚洲av男天堂| 久久精品国产综合久久久 | 亚洲内射少妇av| 丝袜脚勾引网站| 亚洲国产看品久久| 久久99一区二区三区| 18禁裸乳无遮挡动漫免费视频| av国产久精品久网站免费入址| 午夜精品国产一区二区电影| 夫妻性生交免费视频一级片| 精品午夜福利在线看| 热re99久久国产66热| 女人被躁到高潮嗷嗷叫费观| 国产精品一区二区在线观看99| 草草在线视频免费看| 最近中文字幕高清免费大全6| 亚洲精品成人av观看孕妇| 韩国精品一区二区三区 | 午夜福利影视在线免费观看| 国产一区有黄有色的免费视频| 中文字幕另类日韩欧美亚洲嫩草| 男女高潮啪啪啪动态图| 麻豆精品久久久久久蜜桃| 亚洲国产精品999| 国产精品偷伦视频观看了| 中国国产av一级| 麻豆精品久久久久久蜜桃| 国产成人一区二区在线| 国产一区二区在线观看日韩| 亚洲成人手机| 巨乳人妻的诱惑在线观看| 日本免费在线观看一区| 久久人人爽人人爽人人片va| 国产精品久久久久久精品电影小说| 美女中出高潮动态图| 国产免费一级a男人的天堂| 久久久国产一区二区| 男人爽女人下面视频在线观看| 国产色婷婷99| 日韩av在线免费看完整版不卡| 丰满乱子伦码专区| 欧美成人精品欧美一级黄| 国产成人午夜福利电影在线观看| 人人妻人人澡人人看| 丝袜美足系列| 亚洲三级黄色毛片| 成人黄色视频免费在线看| 一区二区三区四区激情视频| 精品亚洲成国产av| 91午夜精品亚洲一区二区三区| 欧美精品av麻豆av| 一边摸一边做爽爽视频免费| 九草在线视频观看| 日韩大片免费观看网站| 在线免费观看不下载黄p国产| 人人妻人人爽人人添夜夜欢视频| 免费播放大片免费观看视频在线观看| 亚洲国产精品成人久久小说| 久久亚洲国产成人精品v| 免费观看a级毛片全部| av卡一久久| 免费黄频网站在线观看国产| 欧美亚洲 丝袜 人妻 在线| 国精品久久久久久国模美| 午夜福利视频在线观看免费| 视频在线观看一区二区三区| 男男h啪啪无遮挡| av在线老鸭窝| 欧美精品一区二区免费开放| 卡戴珊不雅视频在线播放| 久久久国产欧美日韩av| 美女大奶头黄色视频| 黑人欧美特级aaaaaa片| 国产色爽女视频免费观看| 亚洲一区二区三区欧美精品| 午夜福利视频精品| 国产爽快片一区二区三区| 黄色一级大片看看| 亚洲综合色网址| 亚洲欧美日韩另类电影网站| 老司机影院毛片| 最近最新中文字幕免费大全7| 久久 成人 亚洲| 亚洲精品一区蜜桃| 22中文网久久字幕| 99久久综合免费| 成年女人在线观看亚洲视频| 日本色播在线视频| 在线 av 中文字幕| 高清视频免费观看一区二区| 精品一区二区三区四区五区乱码 | 欧美最新免费一区二区三区| 午夜久久久在线观看| 韩国av在线不卡| 少妇高潮的动态图| www.熟女人妻精品国产 | 大片电影免费在线观看免费| 女人被躁到高潮嗷嗷叫费观| 一级,二级,三级黄色视频| 久久99热这里只频精品6学生| 97在线人人人人妻| 午夜av观看不卡| 午夜老司机福利剧场| 一区二区日韩欧美中文字幕 | 51国产日韩欧美| 久久久久久久久久成人| 日韩中文字幕视频在线看片| 三上悠亚av全集在线观看| 日本-黄色视频高清免费观看| 97在线视频观看| 婷婷色av中文字幕| av.在线天堂| av天堂久久9| 亚洲美女搞黄在线观看| 欧美日韩成人在线一区二区| 日韩欧美精品免费久久| 亚洲国产精品999| 日本vs欧美在线观看视频| 亚洲精品第二区| 深夜精品福利| 一本色道久久久久久精品综合| 一级黄片播放器| 国产在线免费精品| 自拍欧美九色日韩亚洲蝌蚪91| 久久久精品区二区三区| 99国产综合亚洲精品| 国产亚洲午夜精品一区二区久久| 18禁观看日本| av在线观看视频网站免费| 丝袜美足系列| 考比视频在线观看| 午夜av观看不卡| 国产亚洲欧美精品永久| 国产精品久久久久久精品古装| kizo精华| 日韩制服骚丝袜av| 午夜激情av网站| 99国产精品免费福利视频| 最近最新中文字幕免费大全7| 51国产日韩欧美| 黄色一级大片看看| 少妇的逼好多水| 建设人人有责人人尽责人人享有的| 人人妻人人澡人人爽人人夜夜| 国产成人免费观看mmmm| 另类精品久久| 久久99一区二区三区| 亚洲精品av麻豆狂野| 女的被弄到高潮叫床怎么办| 久久久亚洲精品成人影院| 国产免费视频播放在线视频| 热99久久久久精品小说推荐| 亚洲精品色激情综合| 超碰97精品在线观看| 在线看a的网站| 国产成人av激情在线播放| 高清在线视频一区二区三区| 国产一区二区三区av在线| 国产精品久久久久成人av| 18禁动态无遮挡网站| 十八禁网站网址无遮挡| 中文精品一卡2卡3卡4更新| av不卡在线播放| 又黄又爽又刺激的免费视频.| 如日韩欧美国产精品一区二区三区| 男男h啪啪无遮挡| 国产午夜精品一二区理论片| 十分钟在线观看高清视频www| 欧美亚洲日本最大视频资源| 久久免费观看电影| 久久97久久精品| 国产av一区二区精品久久| 亚洲国产av影院在线观看| 51国产日韩欧美| 90打野战视频偷拍视频| 精品一区在线观看国产| 又黄又爽又刺激的免费视频.| 日本色播在线视频| 99热6这里只有精品| 大香蕉久久网| www.熟女人妻精品国产 | 国产激情久久老熟女| 婷婷成人精品国产| 一级片免费观看大全| 久久青草综合色| 亚洲伊人色综图| 男女边摸边吃奶| 国产成人a∨麻豆精品| 少妇被粗大的猛进出69影院 | 亚洲精品成人av观看孕妇| 老司机影院毛片| 一边亲一边摸免费视频| 中文字幕亚洲精品专区| 美女大奶头黄色视频| 热re99久久国产66热| 午夜免费男女啪啪视频观看| 亚洲精品乱久久久久久| 18禁观看日本| 大香蕉久久成人网| 婷婷色综合www| 深夜精品福利| 搡老乐熟女国产| 国产日韩欧美亚洲二区| 欧美日韩视频精品一区| 99热6这里只有精品| 国产熟女欧美一区二区| 亚洲精品av麻豆狂野| 18+在线观看网站| 黑人高潮一二区| 中文字幕亚洲精品专区| 最黄视频免费看| 日韩 亚洲 欧美在线| 国产熟女欧美一区二区| 亚洲高清免费不卡视频| 波野结衣二区三区在线| 啦啦啦中文免费视频观看日本| 秋霞伦理黄片| 亚洲国产欧美在线一区| 久久久a久久爽久久v久久| 香蕉国产在线看| 美女国产高潮福利片在线看| 肉色欧美久久久久久久蜜桃| 91在线精品国自产拍蜜月| 日韩一区二区视频免费看| 日本wwww免费看| 亚洲五月色婷婷综合| 欧美激情极品国产一区二区三区 | 国产伦理片在线播放av一区| 一级片免费观看大全| 大香蕉97超碰在线| 国产精品久久久久久久电影| 日韩欧美精品免费久久| 国产免费现黄频在线看| 久久精品久久精品一区二区三区| 伦精品一区二区三区| 国产成人精品婷婷| 九九爱精品视频在线观看| 高清黄色对白视频在线免费看| 嫩草影院入口| 成年人免费黄色播放视频| 中国国产av一级| 午夜福利乱码中文字幕| 国产国拍精品亚洲av在线观看| 久久精品国产a三级三级三级| 久久99蜜桃精品久久| 久久久久网色| 日本-黄色视频高清免费观看| 咕卡用的链子| 国产免费现黄频在线看| 少妇猛男粗大的猛烈进出视频| 欧美人与善性xxx| 激情五月婷婷亚洲| 午夜视频国产福利| 久久久精品94久久精品| kizo精华| 青春草亚洲视频在线观看| 精品国产一区二区三区四区第35| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲精品第一综合不卡 | 久久精品熟女亚洲av麻豆精品| 一本色道久久久久久精品综合| 丝瓜视频免费看黄片| 男人操女人黄网站| 免费看av在线观看网站| 婷婷色综合大香蕉| 黄色 视频免费看| 国产黄频视频在线观看| 妹子高潮喷水视频| 亚洲精品日韩在线中文字幕| 国产精品一区www在线观看| 免费女性裸体啪啪无遮挡网站| 日日摸夜夜添夜夜爱| 一区二区日韩欧美中文字幕 | av线在线观看网站| 日韩不卡一区二区三区视频在线| 国产欧美日韩一区二区三区在线| 最新中文字幕久久久久| 韩国精品一区二区三区 | 成人综合一区亚洲| 亚洲国产欧美在线一区| 久久狼人影院| 各种免费的搞黄视频| av黄色大香蕉| 国产精品国产三级国产av玫瑰| 丝袜喷水一区| 精品一区二区三区四区五区乱码 | 亚洲精品,欧美精品| 久久久久国产精品人妻一区二区| 欧美日韩成人在线一区二区| 国产69精品久久久久777片| 1024视频免费在线观看| 久久精品夜色国产| 免费高清在线观看视频在线观看| 性色av一级| 丝袜人妻中文字幕| 久久人人爽人人片av| 亚洲一区二区三区欧美精品| 青春草国产在线视频| 久久久亚洲精品成人影院| 国产成人aa在线观看| 伊人亚洲综合成人网| 色婷婷久久久亚洲欧美| 永久免费av网站大全| 国产老妇伦熟女老妇高清| 满18在线观看网站| 男人爽女人下面视频在线观看| 欧美xxⅹ黑人| 人妻少妇偷人精品九色| 国产黄色免费在线视频| 黄网站色视频无遮挡免费观看| 交换朋友夫妻互换小说| 欧美精品亚洲一区二区| 精品人妻偷拍中文字幕| 少妇 在线观看| 边亲边吃奶的免费视频| 午夜激情av网站| 久久免费观看电影| 一级黄片播放器| 免费高清在线观看视频在线观看| 丰满饥渴人妻一区二区三| 国产精品国产三级专区第一集| 免费黄色在线免费观看| 1024视频免费在线观看| 国产乱来视频区| 国产精品成人在线| 久久精品久久久久久久性| 欧美亚洲 丝袜 人妻 在线| 麻豆乱淫一区二区| 丝袜人妻中文字幕| 在线观看www视频免费| 亚洲激情五月婷婷啪啪| 人妻系列 视频| 日韩av不卡免费在线播放| 国产精品99久久99久久久不卡 | 国产白丝娇喘喷水9色精品| 久久青草综合色| 久久精品人人爽人人爽视色| 一本久久精品| 永久免费av网站大全| 97精品久久久久久久久久精品| 亚洲一区二区三区欧美精品| 亚洲成人一二三区av| 日本午夜av视频| 蜜桃国产av成人99| 成人黄色视频免费在线看| 久久久久久久大尺度免费视频| 波多野结衣一区麻豆| 久久久久久久国产电影| 精品久久久久久电影网| 国产亚洲av片在线观看秒播厂| 黑人高潮一二区| 国产xxxxx性猛交| xxx大片免费视频| 成人综合一区亚洲| 欧美少妇被猛烈插入视频| h视频一区二区三区| 国产高清国产精品国产三级| 欧美激情 高清一区二区三区| 黑人欧美特级aaaaaa片| 日韩,欧美,国产一区二区三区| 天美传媒精品一区二区| 成人免费观看视频高清| 美国免费a级毛片| 免费观看在线日韩| 亚洲国产精品成人久久小说| 免费人妻精品一区二区三区视频| 欧美成人午夜免费资源| www.色视频.com| 亚洲伊人色综图| 爱豆传媒免费全集在线观看| 午夜福利视频在线观看免费| 国产亚洲欧美精品永久| 巨乳人妻的诱惑在线观看| 九色成人免费人妻av| 九色成人免费人妻av| 91成人精品电影| 2018国产大陆天天弄谢| 欧美激情国产日韩精品一区| 精品卡一卡二卡四卡免费| 日本-黄色视频高清免费观看| 最近的中文字幕免费完整| 街头女战士在线观看网站| 999精品在线视频| 一区二区av电影网| 国产又爽黄色视频| 男女国产视频网站| 久久久久国产网址| 亚洲av免费高清在线观看| 日韩av不卡免费在线播放| 妹子高潮喷水视频| 女人精品久久久久毛片| 久久久精品免费免费高清| 在线观看美女被高潮喷水网站| 不卡视频在线观看欧美| 人妻人人澡人人爽人人| 久久久亚洲精品成人影院| 亚洲成人一二三区av| 久久精品久久久久久噜噜老黄| 丁香六月天网| 欧美另类一区| 免费大片黄手机在线观看| 一区二区三区乱码不卡18| 亚洲av日韩在线播放| 国产精品国产三级国产专区5o| 男人操女人黄网站| 亚洲欧美色中文字幕在线| av一本久久久久| 精品少妇黑人巨大在线播放| 欧美人与性动交α欧美软件 | 热99国产精品久久久久久7| 大话2 男鬼变身卡| 婷婷成人精品国产| 最近最新中文字幕免费大全7| 久久这里有精品视频免费| av在线播放精品| 国产熟女欧美一区二区| 97精品久久久久久久久久精品| 国产熟女午夜一区二区三区| 晚上一个人看的免费电影| 十分钟在线观看高清视频www| 久久狼人影院| 久久久久久久精品精品| 国产精品久久久久久久电影| 韩国av在线不卡| 国产熟女午夜一区二区三区| 在线观看一区二区三区激情| 久久热在线av| 国产免费现黄频在线看| 国产黄色视频一区二区在线观看| 国产 一区精品| 高清在线视频一区二区三区| 成人影院久久| 亚洲人成77777在线视频| 王馨瑶露胸无遮挡在线观看| 亚洲av中文av极速乱| 晚上一个人看的免费电影| 亚洲精品乱久久久久久| 久久av网站| 一本久久精品| 人成视频在线观看免费观看| 香蕉精品网在线| 免费不卡的大黄色大毛片视频在线观看| 午夜免费观看性视频| 久久精品久久精品一区二区三区| 久久99一区二区三区| 国产无遮挡羞羞视频在线观看| 人人妻人人澡人人看| 日韩欧美一区视频在线观看| 久久99热这里只频精品6学生| 欧美日韩一区二区视频在线观看视频在线| 少妇熟女欧美另类| 精品久久久久久电影网| 久久毛片免费看一区二区三区| av国产精品久久久久影院| 日本-黄色视频高清免费观看| 建设人人有责人人尽责人人享有的| 菩萨蛮人人尽说江南好唐韦庄| 久久毛片免费看一区二区三区| 色视频在线一区二区三区| 日本免费在线观看一区| 欧美亚洲日本最大视频资源| 日韩中文字幕视频在线看片| 亚洲精品美女久久av网站| 99久国产av精品国产电影| 91aial.com中文字幕在线观看| 久久久a久久爽久久v久久| 丰满迷人的少妇在线观看| 你懂的网址亚洲精品在线观看| 黄网站色视频无遮挡免费观看| av片东京热男人的天堂| 亚洲精品一二三| 日韩欧美精品免费久久| 久久女婷五月综合色啪小说| 亚洲综合精品二区| 精品福利永久在线观看| 久久精品久久久久久久性| av又黄又爽大尺度在线免费看| 中国美白少妇内射xxxbb| 欧美人与性动交α欧美软件 | 丁香六月天网| 亚洲情色 制服丝袜| 最近中文字幕2019免费版| 久久久久国产精品人妻一区二区| 亚洲av男天堂| 色5月婷婷丁香| 欧美人与性动交α欧美软件 | 国产精品久久久av美女十八| 黄色怎么调成土黄色| 日本黄大片高清| 欧美 日韩 精品 国产| 午夜激情久久久久久久| 精品少妇黑人巨大在线播放| 下体分泌物呈黄色| 一区二区av电影网| 色5月婷婷丁香| 国内精品宾馆在线| 欧美日韩视频精品一区| 日韩一区二区视频免费看| 丝袜美足系列| 超色免费av| 夜夜爽夜夜爽视频| 一二三四中文在线观看免费高清| 日韩一本色道免费dvd| 日韩制服丝袜自拍偷拍| 97在线视频观看| 全区人妻精品视频| 久久久精品区二区三区| av又黄又爽大尺度在线免费看| 大香蕉久久网| 97精品久久久久久久久久精品| 久久久久久伊人网av| 久久久久精品人妻al黑| 欧美日韩av久久| 桃花免费在线播放| 色5月婷婷丁香| 色婷婷久久久亚洲欧美| 国产精品秋霞免费鲁丝片| 久久毛片免费看一区二区三区| 99久久精品国产国产毛片| 观看av在线不卡| 免费人成在线观看视频色| 亚洲成人手机| 国产黄频视频在线观看| 精品一区二区三卡| av卡一久久| 只有这里有精品99| 成人综合一区亚洲| 亚洲成人手机|