• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    F-+CH3Cl→CH3F+Cl-反應(yīng)過程中的分子形貌變化

    2012-12-21 06:33:40張明波宮利東
    物理化學(xué)學(xué)報 2012年5期
    關(guān)鍵詞:親核遼寧大連電子密度

    張明波 宮利東

    (1遼寧中醫(yī)藥大學(xué)藥學(xué)院,遼寧大連116600;2遼寧師范大學(xué)化學(xué)化工學(xué)院,遼寧大連116029)

    F-+CH3Cl→CH3F+Cl-反應(yīng)過程中的分子形貌變化

    張明波1,2宮利東2,*

    (1遼寧中醫(yī)藥大學(xué)藥學(xué)院,遼寧大連116600;2遼寧師范大學(xué)化學(xué)化工學(xué)院,遼寧大連116029)

    雙分子親核(SN2)反應(yīng)是重要的基本有機反應(yīng)之一,其中電子從親核基團向離去基團的轉(zhuǎn)移發(fā)揮著關(guān)鍵作用.利用從頭計算方法CCSD(T)/aug-cc-pVDZ和我們發(fā)展的分子形貌理論,對反應(yīng)F-+CH3Cl→CH3F+Cl-進行了研究,給出了反應(yīng)過程中分子形狀和電子轉(zhuǎn)移的動態(tài)變化圖像.結(jié)果表明,沿內(nèi)稟反應(yīng)坐標,從反應(yīng)開始到生成反應(yīng)前復(fù)合物,親核試劑F-的分子內(nèi)稟特征輪廓在緩慢收縮,而其上的電子密度在緩慢增大.此后,F的輪廓迅速膨脹,電子密度急劇下降,尤其是從過渡態(tài)到產(chǎn)物復(fù)合物的過程中.而在反應(yīng)過程中,離去基團Cl的輪廓一直在收縮,其上的電子密度一直在增大.對反應(yīng)過程中電子所受到作用勢的研究表明,隨著反應(yīng)的進行,電子在F與C間受到的作用勢逐漸降低,而在C與Cl間受到的作用勢逐漸升高,清楚地展現(xiàn)反應(yīng)過程中F與C間化學(xué)鍵生成和C與Cl間化學(xué)鍵斷裂的動態(tài)過程.

    從頭計算;分子形貌理論;SN2反應(yīng);電子轉(zhuǎn)移;反應(yīng)機理

    1 Introduction

    Bimolecular nucleophilic substitution(SN2)reactions are one of the fundamental organic reactions,which have been paid great attention from both theoretical and experimental points of view.1-10In particular,halogen exchange reactions of CH3X+Y-→CH3Y+X-(X and Y are halogen atoms),as the simplest prototypes for SN2 reactions,have been extensively studied.11-15Some features of this kind of reactions have been well established.Both theoretical and experimental studies indicate that the preferred gas-phase reaction pathway of such reaction involves a backside attack of the halide ion,Y-,at the carbon atom followed by the familiar“Walden inversion”of the CH3group.16The resulting potential energy profile can be characterized by two local-minima,formed by the association of halide ion with the dipolar halomethane due to the strong attraction between them and separated by a central barrier.1

    Lots of computational studies have been performed on the SN2 reactions,which have provided quantitative information about the reaction energy potential profiles.14,17-21Various methods including HF,MP2,QCISD,CCSD(T),and G2(+)have been used to study the title reaction,presenting a central barrier ranging from 0 to 26 kJ·mol-1.17-21The barrier obtained with MP2(full)/6-31++G**is 25.56 kJ·mol-1.19Studies performed by Gonzales et al.20indicate that B3LYP method gave a transition structure too low in energy compared to CCSD(T)method. By using CCSD(T)method with a basis set of aug-cc-pVQZ, Botschwina et al.21present a definitive theoretical study,recommending that the central barrier should be(13.8±1.3)kJ·mol-1.

    Chemists are interested in not only obtaining accurate results for energetics of chemical reactions,but also exploring other important factors during the reaction process,such as the spatial and electron density changing features.For SN2 reactions,some progresses have already been made toward this end.22-25For instance,by subdividing the charge density and energy into contributions from spatially defined fragments of the total system,Bader et al.22presented a detailed study of the redistribution of the charge density and energy changes for the two gas SN2 reactions.Knoerr and Eberhart23employed several density-based parameters to predict the reactivity of a series of SN2 reactions,and showed that the obtained results correlated well with those from energy-based parameters.Using an ab initio modern valence bond calculation,Blavins and Copper24investigated the influence of the strength of nucleophile and the size of R group on the electronic rearrangements in a series of SN2 identity reactions(X-+RX,X=F,Cl).Geerlings and coworkers25interpreted the variations of the exothermicity and the central barrier of the SN2 reactions(CH3X+Y-→CH3Y+X-) with halogenatoms X and Y,in terms of the hard and soft acids and bases principle(HSAB).In addition,they found that the increase in the electronegativity of Y will decrease the central barrier,but increase the exothermicity of the reactions.

    Recently,Yang et al.26-37have developed a novel model for describing a molecule,the molecular face theory(MFT),based on the potential acting on an electron in a molecule(PAEM). The molecular face is an intrinsic characteristic of molecule, which can present the molecular shape and electron density distribution at the same time.In addition,the molecular recognition and regioselectivity involved in Markovnikov reactions of alkenes have been successfully explained in terms of MFT.36More recently,the molecular face surface area(MFSA)and molecular face volume(MFV)were defined and calculated by a program of our own.It is found that the MFSA and MFV had significant linear correlations with those of the commonly used hard-sphere model and the electron density isosurface.37

    Previous studies have shown that the essence of a SN2 reaction is the transfer of an electron from the nucleophile to the leaving group,and thus the tendency of electron transfer is closely related to the reactivity of a SN2 reaction.38The goal of this work is not to obtain quantitative information about the potential energy surface,which has been well done by others,but to describe the spatial changing and electron transfer features during the reaction course of F-+CH3Cl→CH3F+Cl-in a more vivid way by applying the MFT.

    2 Theoretical and computational details

    2.1 Molecular face theory

    We first introduce the potential acting on an electron in a molecule,on which the definition of the molecular face(MF) is based.For a molecule in electronic ground state,the PAEM can be expressed as32where the first term on the right of Eq.(1)is the attractive potential from all nuclei,the second term is the repulsive potential created by other electrons in the system;ZAis the nuclear charge of atom A,rAis the distance between the electron considered and the nucleus A,summation involving index A is over all atomic nuclei;ρ(r)represents the one-electron density of an electron appearing at position r,and ρ(r,r?)is the two-electron density function,i.e.the probability of finding one electron at r and at the same time finding another electron at r?.

    Considering an electron move within a molecule,its kinetic energy varies with its position relative to other particles in the molecule.If at a special position r,its energy is the same as the potential acting on it,which means that its average kinetic energy is equal to zero,and then r is called a classical turning point of the electron movement.Assuming that the potential,i.e. PAEM,is equal to the minus value of the first vertical ionization potential of this molecule,then we have the classical turning point equation of this electron movement,V(r)=-I,where I is the first vertical ionization potential of the molecule.The molecular intrinsic characteristic contour(MICC)can be defined as the assembly of the classical turning points as the following expression.26-31,34-37in which G denotes the MICC.The MICC has a clear physical meaning as it is an iso-PAEM contour where the PAEM(or one-electron energy)equals the minus ionization potential(-I) of the molecule.Thus,the MICC is a characteristic boundary of the electron movement;outside it is classical-forbidden while inside it is classical-permitted for an electron movement. The electron density distribution on the MICC called frontier electron density or molecular face electron density(MFED),35-37is also a remarkable feature of a molecule.The MFED is a direct indicator of electrophilic and nucleophilic stereo-reactivity and molecular interactions,including hydrogen bonding.35,36When MFED is mapped on the MICC,the MF is defined.35-37The MF,figuratively speaking,can be viewed as an intuitive“face”or an intrinsic characteristic“fingerprint”of a molecule,and it provides not only the spatial but also electron density distribution information of a molecule.

    2.2 Computational details

    In the present work,all geometrical structures considered were optimized at the CCSD(T)/aug-cc-pVDZ level,39-41which has been shown to be necessary to obtain reliable results for the reaction.42With the same model,vertical ionization potentials of these structures were calculated,which is a prerequisite for obtaining the MICC.The calculations mentioned above were carried out with Gaussian 03 program.43

    The PAEM and physical quantities in Eq.(1)were calculated by the configuration interaction method with all single and double substitutions in conjunction with 6-31+G(2d,p)basis set using the ab initio MELD program44and the in-house program developed by us.By a large number of calculations,the PAEM was obtained at each point of a grid covering the molecule, with certain spacing between the grid points.According to Eq. (2),the MICC was obtained by interpolation.Visualization plots of MF were implemented by the MATLAB 7.045and a program of our own.

    3 Results and discussion

    3.1 MFs of CH3F and CH3Cl

    At first,we calculated the molecular faces of CH3F and CH3Cl,presented in Fig.1,where the MFED is denoted by the color index on the right of the picture.So the magnitude of MFED is represented by its darkness,that is,the darkest place has the maximum MFED,and the brightest place has the minimum MFED.It can be seen that the MFs of CH3F and CH3Cl are similar to each other in both shape and electron density distribution.For both of halomethanes,the electron density on the halogen atom region is larger than that on the methyl group region.This is consistent with the fact that in a halomethane the halogen atom can draw bonding electrons towards itself,due to its higher electronegativity relative to methyl group.It has been well established both theoretically and experimentally that the backside attack of the halide ion on the halomethane is more favorable for a SN2 reaction than that from the frontside.42The observed stereoselectivity may partly be explained by difference in the electron density on the MF.Since the nucleophile is negatively charged,larger electron density is unfavorable for the access of the nucleophile due to electrostatic repulsion.So the attack of nucleophile on electron-deficient backside of the halomethanes is preferable to the attack on the electron-rich frontside.

    3.2 Variables for depicting the variations of MF

    To get a full view of the variations of the MFs during the SN2 reaction considered,six snapshots on the C3vpotential energy surface(PES)were considered.Besides the prereaction complex c,the transition structure d,and the product complex e,another two structures,a and b on the reactant side of the PES and one structure f on the product side were also considered.The geometries of c,d and e were obtained by geometrical optimization at the CCSD(T)/aug-cc-pVDZ level with a geometrical constraint of C3vsymmetry.Under the same constraint,the structures of a,b and f were optimized by fixing the bond length of r(C―F)at 0.348,0.320,and 0.143 nm,respectively.The geometries obtained are listed in Table 1,together with the ionization potentials and the Mulliken charges calculated with the same method.The reaction barrier we obtained without zero-point energy correction is 8.36 kJ·mol-1,consistent with result ofAngel and Ervin,42calculated at the same level,but lower than the value((13.8±1.3)kJ·mol-1)of the benchmark calculation at the CCSD(T)/aug-cc-pVQZ level.21The difference is due to relatively small basis set adopted by us,according to the work of Gonzales et al.,20who have performed a systematic study on the effect of basis set on the reaction barrier of the same reaction.

    Fig.1 Molecular faces of(a)CH3F and(b)CH3ClD:electron density

    To display the MFs,the following visual angle is chosen:the atoms F,C,and Cl are positioned along the C3vaxis from left to right in turn;keep one of F―C―H plane perpendicular to the paper plane with the hydrogen atom pointing outward.To quan-titatively demonstrate the changing features of molecular face, we defined several parameters.Fig.2 is one of the C3vcut-plane of the MFs of structure a.The C3vaxis has four crossing points with the MF of structure a,starting from left side of atom F,denoted by Fout,Fin,CF,and Cloutin turn.In the case of structure f (see Fig.3(f)),the corresponding four points are denoted by Fout,CCl,Clin,and Clout.In the following,the distances from these points to the corresponding nuclei and electron densities on these points are employed to delineate the spatial and electron density variations of MF during the reaction course.For example,the distance from the point of Foutto the fluorine nucleus is denoted by r(Fout),and the electron density on Foutis denoted by D(Fout).

    Table 1 Geometrical parameters(length in nm and angle in degree),vertical ionization potentials,Mulliken charges and Dpbcomputed with CCSD(T)/aug-cc-pVDZ level

    Fig.2 Representative characteristic points employed to delineate the shape and electron density evolutions of the reaction system

    3.3 Variations of MFs during the reaction course

    The MFs of each structure(a-f)involved in the reaction pathway are depicted in Fig.3(a-f),respectively.Representative charateristic distances and electron densities on the MFs for structures(a-f)are listed in Table 2.Note that in the following discussion,we use F and Cl to represent fluorine and chlorine element regardless of their true charged state for the sake of simplicity.

    For structure a,where r(C―F)=0.348 nm,the contour of F keeps separated from that of CH3Cl,as shown in Fig.3(a).This means that there exists a classical forbidden region for electron movement between F and CH3Cl and electrons transfer from F to CH3Cl is prohibited.An impressing feature of Fig.3(a)is that the electron density on the F is evidently larger than that on CH3Cl.D(Fout)is tens of times larger than D(Clout)as listed in Table 1.This indicates that at this moment the extra electron of system mainly locates on the F,which is supported by the calculated Mulliken charge of F(-0.990 a.u.).Our calculations show that r(Fin)is 0.016 nm longer than r(Fout),which means that the contour of F expands towards CH3Cl and the interpolarization between F and CH3Cl has taken place.

    As F approaches further to CH3Cl,forming the structure b, where r(C―F)=0.320 nm,the MF of F begins to contact with that of CH3Cl,as shown in Fig.3(b).It is evident that the contour of Fis strongly polarized and swells towards CH3Cl.In the structure b,the classical forbidden region between F and CH3Cl disappears,so the electrons begin to flow between them.This can be viewed as a starting point for the bond forming between F and CH3Cl.However,the electron density on F region remains larger than CH3Cl,as reflected by the color of MF.The Mulliken charge of F(-0.982 a.u.)still keeps close to-1,which indicates that no evident electron transfer occurs as yet.

    Structure c is a prereaction complex formed between F andCH3Cl.As shown in Fig.3(c),the contour of F has fused with that of CH3Cl into a whole in structure c.The electron density on the F region is still larger than that on the Cl region,as indicated by the color of MF of Fig.3(c).According to our calculations,D(Fout)is 7.473×10-3a.u.,much larger than D(Clout),being 0.594×10-3a.u..The Mulliken charges of Cl and F are-0.392 and-0.953 a.u.,respectively,which indicates that the extra electron still locates on F atom by now.

    Table 2 Representative characteristic distances and electron densities on the MFs

    Fig.3 Variations of the MF through the reaction of F-+CH3Cl→Cl-+CH3F

    Structure d is the transition state for the title reaction.As shown in Fig.3(d),the electron density on the MF of F becomes evidently smaller than the previous structures,while that of Cl becomes larger.This indicates that the extra electron has transferred from F to Cl to a certain degree.But the color of MF for F is still darker than that of Cl.In accord with this, the Mulliken charge of F(-0.900 a.u.)is more negative than that of Cl(-0.691 a.u.).Therefore,the electron transfer has only partly fulfilled at the transition state.

    The most obvious changes of the MFs take places from structure d to e,and the latter is the product complex of the reaction.The MF of e is shown in Fig.3(e).The conjoint part between F and C swells evidently with a 0.67 a.u.increasement of r(Fver),while the region that between Cl and C shrinks inward with a 0.16 a.u.decreasement of r(Clver).At the same time,the electron densities on the MF of F greatly decrease dozens of times,and D(Fout)and D(Fver)decrease from 6.00× 10-3and 4.80×10-3a.u.to 0.17×10-3and 0.18×10-3a.u.,respectively;while the electron densities on the MF of Cl greatly get larger,as a result,D(Clout)and D(Clver)consumedly exceed the corresponding D(Fout)and D(Fver).The Mulliken charge of Cl (-0.980 a.u.)also becomes more negative than that of F (-0.633 a.u.),which indicates that the extra electron of the system has almost totally transferred to Cl.This indicates that there is strong bonding effect between F and C,and the bonding interaction of Cl and C gets weaker.

    In structure f,the contour of Cl has separated with that of CH3F completely as shown in Fig.3(f).Similar to the structure a,a classical forbidden region for electron movement appears between CH3F and Cl.There exists evident difference in the electron densities on the MFs of CH3F and Cl.The electron density of Cl region is much larger than that of the CH3F. D(Fout)is 0.07×10-3a.u.,while D(Clout)is 6.13×10-3a.u..This implies that the extra electron is totally localized in the region of Cl,which is corroborated by the calculated Mulliken charge of Cl(-0.994 a.u.).

    It is also interesting to note that the volumes of F and Cl change through the reaction process.In general,the volume of F increases while that of Cl decreases.For instance,from structure a to f,r(Fver)increase from 0.142 to 0.232 nm;on the contrary,r(Clver)decreases from 0.264 to 0.173 nm.Essentially,the molecular face is an iso-PAEM contour,and the variations in atomic size reflect the changes of their electron density.

    3.4 Variation of PEAM through the reaction

    Essentially,chemical reaction is a process,in which electron redistribution occurs among the reagents.So it is natural to describe a chemical reaction with the property of electrons in molecules.Bader contributed distinctive work in this field with atoms in molecule(AIM)theory,which has been widely used to study bond forming/breaking with a certain extent of success.46

    Bond-forming between two reagents means that they can share their electrons with each other.That is to say,electrons are permitted to shuttle between two atoms in case of bonding. The PAEM is the potential felt by an electron in a molecule and thus reflects the easiness for an electron moving from one position to another.So the PAEM can be used as an indicator for the bond strength between two atoms.Here,we calculated the PAEM along the F―C―Cl axis for the six structures shown in Fig.3,and the variations of the PAEM were depicted in Fig.4.It can be seen that the PAEM at atomic nuclei is negatively infinite and rises sharply as the distance of electron to the nucleus increases.This means that there exists a potential well around each nucleus,which traps electrons around the vi-cinity of nuclei as much as possible.Our previous studies32showed that the PAEM surface has a saddle point along a chemical bond,and the energy gap from it to the energy level of zero is defined as Dpb.Dpbhas good linear correlations with the force constant and bond length,and hence characterizes the strength of chemical bond.The calculated Dpbfor the structures considered were listed in Table 1.

    Fig.4 Variations of the PAEM along the F―C―Cl axis through the reaction course

    In structure a,F and CH3Cl are far from each other,the highest point of the PAEM between F and C atom is-0.1072 a.u., which is higher than the minus of the ionization potential (-I=-0.119 a.u.).This implies that,at this moment,electrons of each reagent are localized to itself and no exchange between them is permitted.For structure b,the highest point of PAEM between atoms F and C is-0.153 a.u.,which is lower than the corresponding-I(-0.138 a.u.).So from this point,electrons are allowed to flow between two reagents and a chemical bond begins to form between F and C.As two reagents get closer gradually,viz.from structure c to f,the PAEM between F and C lowers gradually,indicating that more electrons can shuttle between two atoms and C―F bond is strengthened gradually. In contrast,the PAEM between the leaving group Cl and C increases from-1.345 to-0.010 a.u.gradually as the reaction proceeds,indicating that as the Cl―C bond gets weaker and weaker,the movement of electrons between them gets more and more difficult and their previously shared electrons are getting localized to the region of each own.In terms of above descriptions,we can see that the PAEM can loyally reflect the processes of bonding-forming and bond-breaking during the title reaction.

    4 Conclusions

    Using the newly developed molecular face theory,in combination with a high level ab initio CCSD(T)/aug-cc-pVDZ method,the shape changing and electron transfer during the reaction course of F-+CH3Cl→Cl-+CH3F are vividly presented.It is found that the electron density mapped on the MFs of CH3F and CH3Cl can soundly explain stereoselectivity for the attack of a nucleophile.As F approaches CH3Cl,evident interpolarization effect is presented by the MFs.In addition,the variations in electron density on the contours can well reflect the electron transfer features,and the sizes of the nucleophile and leaving groups are closely related to the reaction process.Investigations on the potential acting on an electron in a molecule (PAEM)show that,as the reaction progresses,the PAEM gradually decreases between fluorine and carbon,while it gradually increases between carbon and chlorine.This shed light on the dynamic processes of bond-forming between F and C atoms and bond-breaking between C and Cl atoms.The molecular face model can loyally reflect the essential features of shape evolution and electron transfer involved in a reaction.Both the MF and PAEM can be utilized as a useful tool to describe the dynamic progress of the title reaction.

    (1) Brauman,J.I.;Olmstead,W.N.;Lieder,C.J.Am.Chem.Soc. 1974,96,4030.

    (2) Glukhovtsev,M.N.;Bach,R.D.;Pross,A.;Radom,L.Chem. Phys.Lett.1996,260,558.

    (3) Flanagin,L.W.;Balbuena,P.B.;Johnston,K.P.;Rossky,P.T. J.Phys.Chem.1995,99,5196.

    (4) Wladkowski,B.D.;Brauman,J.I.J.Phys.Chem.1993,97, 13158.

    (5) Duke,A.J.;Bader,R.F.W.Chem.Phys.Lett.1971,10,631.

    (6) Tachikawa,H.;Igarashi,M.Chem.Phys.Lett.1999,303,81.

    (7) Li,C.;Ross,P.;Szulejko,J.E.;McMahon,T.B.J.Am.Chem. Soc.1996,118,9360.

    (8) Hase,W.L.;Sun,L.;Song,K.Science 2002,296,875.

    (9) Hase,W.L.Science 1994,266,998.

    (10) Katherine,V.;Benjamin,I.J.Phys.Chem.C 2011,115,2290.

    (11) Glukhovtsev,M.N.;Pross,A.;Radom,L.J.Am.Chem.Soc. 1995,117,2024.

    (12) Chandrasekhar,J.;Smith,S.F.;Jorgensen,W.L.J.Am.Chem. Soc.1985,107,154

    (13) Zhang,J.;William,L.H.J.Phys.Chem.A 2010,114,9635.

    (14) Parthiban,S.;Oliveira,G.;Martin,J.M.L.J.Phys.Chem.A 2001,105,895.

    (15) DeTuri,V.F.;Hintz,P.A.;Ervin,K.M.J.Phys.Chem.A 1997, 101,5969.

    (16) Chabinyc,M.L.;Craig,S.L.;Regan,C.K.;Brauman,J.I. Science 1998,279,1882.

    (17) Wolfe,S.Can.J.Chem.1984,62,1465.

    (18) Shi,Z.;Boyd,R.J.J.Am.Chem.Soc.1990,112,6789.

    (19) Glukhovtsev,M.N.;Pross,A.;Radom,L.J.Am.Chem.Soc. 1996,118,6273.

    (20) Gonzales,J.M.;Cox,R.S.,III;Brown,S.T.;Allen,W.D.; Schaefer,H.F.,III.J.Phys.Chem.A 2001,105,11327.

    (21) Botschwina,P.;Horn,M.;Seeger,S.;Oswald,R.Ber. Bunsen-Ges.Phys.Chem.1997,101,387.

    (22) Bader,R.F.W.;Duke,A.J.;Messer,R.R.J.Am.Chem.Soc. 1973,95,7715.

    (23) Knoerr,E.K.;Eberhart,M.E.J.Phys.Chem.A 2001,105,880.

    (24) Balvins,J.J.;Copper,D.L.J.Phys.Chem.A 2004,108,914.

    (25) Safi,B.;Choko,K.;Geerlings,P.J.Phys.Chem.A 2001,105, 591.

    (26) Yang,Z.Z.;Davidson,E.R.Int.J.Quantum Chem.1996,62, 47.

    (27) Yang,Z.Z.;Zhao,D.X.Chem.Phys.Lett.1998,292,387.

    (28) Gong,L.D.;Zhao,D.X.;Yang,Z.Z.J.Mol.Struc.-Theochem 2003,636,57.

    (29)Yang,Z.Z.;Zhao,D.X.;Wu,Y.J.Chem.Phys.2004,121, 3452.

    (30) Zhang,M.B.;Yang,Z.Z.J.Phys.Chem.A 2005,109,4816.

    (31)Yang,Z.Z.;Gong,L.D.;Zhao,D.X.;Zhang,M.B.J.Comput. Chem.2005,26,35.

    (32) Zhao,D.X.;Gong,L.D.;Yang,Z.Z.J.Phys.Chem.A 2005, 109,10121.

    (33) Gong,L.D.;Zhao,D.X.;Yang,Z.Z.Sci.China Ser.B-Chem. 2005,48,89.

    (34) Shi,H.;Zhao,D.X.;Yang,Z.Z.Acta Phys.-Chim.Sin.2007, 23,1145.[石 華,趙東霞,楊忠志.物理化學(xué)學(xué)報,2007,23, 1145.]

    (35) Zhao,D.X.;Yang,Z.Z.J.Theor.Comput.Chem.2008,7,303.

    (36)Yang,Z.Z.;Ding,Y.L.;Zhao,D.X.ChemPhysChem 2008,9, 2379.

    (37) Gong,L.D.;Yang,Z.Z.J.Comput.Chem.2010,31,2098.

    (38) Polo,V.;Gonzalez,N.P.;Silvi,B.;Andres,J.Theor.Chem.Acc. 2008,120,341.

    (39) Purvis,G.D.,III;Bartlett,R.J.J.Chem.Phys.1982,76,1910.

    (40) Scuseria,G.E.;Janssen,C.L.;Schaeffer,H.F.,III.J.Chem. Phys.1988,89,7382.

    (41) Woon,D.E.;Dunning,T.H.,Jr.J.Chem.Phys.1993,98,1358.

    (42)Angel,L.A.;Ervin,K.M.J.Phys.Chem.A 2001,105,4042.

    (43) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, RevisionA.01.Gaussian Inc.:Pittsburgh,PA,2003.

    (44)Davidson,E.R.MELD Program Description;ESCOM:New York,1990.

    (45) Matlab 7.0,Release 14;The Mathworks Inc.:Natick,MA,2005.

    (46) Bader,R.F.W.Accounts Chem.Rev.1985,18,9.

    December 27,2011;Revised:March 7,2012;Published on Web:March 8,2012.

    Evolution of the Molecular Face during the Reaction Process of F-+CH3Cl→CH3F+Cl-

    ZHANG Ming-Bo1,2GONG Li-Dong2,*
    (1College of Pharmacy,Liaoning University of Traditional Chinese Medicine,Dalian 116600,Liaoning Province,P.R.China;2School of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China)

    Bimolecular nucleophilic substitution(SN2)reactions are among the fundamental organic reactions,in which electron transfer from the nucleophilic group to the leaving group plays an essential role.We use a high-level ab initio CCSD(T)/aug-cc-pVDZ method in conjunction with our previouslydeveloped molecular face(MF)theory,to investigate the SN2 reaction F-+CH3Cl→CH3F+Cl-.Dynamic representations of molecular shape evolution and electron transfer features throughout the reaction are vividly presented.It is found that along the intrinsic reaction coordinate(IRC),from the beginning of the reaction to the prereaction complex,the molecular intrinsic characteristic contour(MICC)of the nucleophile (F-)contracts slowly,while the electron density on the MICC increases slowly.The MICC of F then expands quickly,and the electron density decreases sharply,especially from the transition state to the product complex.However,for the leaving group(Cl),the MICC contracts,and the electron density increases all along the reaction.Investigations of the potential acting on an electron in a molecule(PAEM)show that,as the reaction progresses,the PAEM gradually decreases between fluorine and carbon,while it gradually increases between carbon and chlorine.This study enhances our understanding of the dynamic processes of bond-forming between F and C atoms and bond-breaking between C and Cl atoms.

    Ab initio calculation;Molecular face theory;SN2 reaction;Electron transfer;Reaction mechanism

    10.3866/PKU.WHXB201203082

    ?Corresponding author.Email:gongjw@lnnu.edu.cn;Tel:+86-411-82158977.

    The project was supported by the National Natural Science Foundation of China(21133005,21073080,21011120087,20703022).

    國家自然科學(xué)基金(21133005,21073080,21011120087,20703022)資助項目

    O641

    猜你喜歡
    親核遼寧大連電子密度
    有機化學(xué)微課設(shè)計思路探討——以雙分子親核取代反應(yīng)為例
    云南化工(2021年9期)2021-12-21 07:44:20
    遼寧大連:10年資助4207名農(nóng)民工上大學(xué)
    顧及地磁影響的GNSS電離層層析不等像素間距算法*
    不同GPS掩星電離層剖面產(chǎn)品相關(guān)性分析
    測繪通報(2019年11期)2019-12-03 01:47:34
    等離子體電子密度分布信息提取方法研究
    一種適用于電離層電子密度重構(gòu)的AMART算法
    孫子垚
    “白草莓”亮相遼寧大連
    A 3-fold Interpenetrated lvt Cd(II) Network Constructed from 4-[(3-pyridyl)methylamino]benzoate Acid①
    有關(guān)親核取代反應(yīng)和β—消去反應(yīng)的教學(xué)思考
    .国产精品久久| 大话2 男鬼变身卡| 十八禁网站网址无遮挡 | 亚洲色图av天堂| 欧美区成人在线视频| 高清午夜精品一区二区三区| 熟女电影av网| 五月伊人婷婷丁香| 少妇人妻一区二区三区视频| 国产 一区精品| 国产一区亚洲一区在线观看| 嫩草影院精品99| 日本av手机在线免费观看| 久久久久九九精品影院| 三级国产精品片| 欧美成人精品欧美一级黄| 欧美97在线视频| 大香蕉久久网| 免费av不卡在线播放| 在线观看av片永久免费下载| 国产三级在线视频| 少妇丰满av| 最近最新中文字幕免费大全7| 97在线视频观看| av在线天堂中文字幕| 国产免费视频播放在线视频 | 少妇人妻精品综合一区二区| 成人av在线播放网站| 麻豆成人午夜福利视频| 午夜激情福利司机影院| 丰满少妇做爰视频| 18禁在线播放成人免费| 久久久久久伊人网av| 在线免费观看的www视频| 精品久久国产蜜桃| 少妇裸体淫交视频免费看高清| 99久国产av精品国产电影| 国产中年淑女户外野战色| 乱码一卡2卡4卡精品| 日韩,欧美,国产一区二区三区| 国产高潮美女av| 久久99蜜桃精品久久| 一级毛片 在线播放| 日韩欧美三级三区| 国产精品爽爽va在线观看网站| 男女视频在线观看网站免费| 午夜福利视频1000在线观看| 啦啦啦啦在线视频资源| 亚洲精品一区蜜桃| 国产淫语在线视频| kizo精华| 黄色日韩在线| 国产高潮美女av| 男女边摸边吃奶| 日韩欧美精品v在线| 午夜福利成人在线免费观看| 极品教师在线视频| 精品亚洲乱码少妇综合久久| 18+在线观看网站| 伦理电影大哥的女人| 久久久久久久久久人人人人人人| 蜜臀久久99精品久久宅男| 久久久国产一区二区| 男插女下体视频免费在线播放| 99热这里只有是精品在线观看| 成人二区视频| 亚洲国产精品国产精品| 国产午夜精品一二区理论片| av专区在线播放| 最近视频中文字幕2019在线8| 久久久久久伊人网av| 日韩伦理黄色片| 精品熟女少妇av免费看| 国产精品1区2区在线观看.| 三级经典国产精品| kizo精华| 国产成人freesex在线| 中文字幕久久专区| 在线观看人妻少妇| 中文字幕亚洲精品专区| 少妇人妻精品综合一区二区| 午夜久久久久精精品| 欧美97在线视频| 久久精品熟女亚洲av麻豆精品 | 99久久精品一区二区三区| 在线a可以看的网站| 少妇人妻一区二区三区视频| 亚洲一级一片aⅴ在线观看| 日本猛色少妇xxxxx猛交久久| 久久久久九九精品影院| 亚洲美女搞黄在线观看| 亚洲国产日韩欧美精品在线观看| 午夜福利在线观看免费完整高清在| 神马国产精品三级电影在线观看| 久久久午夜欧美精品| 五月玫瑰六月丁香| 一夜夜www| 99热6这里只有精品| 久久久久久久大尺度免费视频| 青春草视频在线免费观看| 尾随美女入室| 国产毛片a区久久久久| 成年女人看的毛片在线观看| 亚洲精品日韩在线中文字幕| 日本黄大片高清| 国产午夜福利久久久久久| 九九在线视频观看精品| 欧美xxⅹ黑人| 亚洲欧美精品自产自拍| 99视频精品全部免费 在线| 日韩av在线免费看完整版不卡| 亚洲美女视频黄频| 亚洲最大成人av| 亚洲综合精品二区| 欧美极品一区二区三区四区| 99久久九九国产精品国产免费| 自拍偷自拍亚洲精品老妇| 男女国产视频网站| 午夜精品国产一区二区电影 | 全区人妻精品视频| 一级a做视频免费观看| 秋霞在线观看毛片| 国产一区二区三区综合在线观看 | 精华霜和精华液先用哪个| 一个人观看的视频www高清免费观看| 久久精品国产鲁丝片午夜精品| 夜夜看夜夜爽夜夜摸| 少妇的逼好多水| 少妇熟女欧美另类| 美女脱内裤让男人舔精品视频| 国产av不卡久久| 最近的中文字幕免费完整| 国产激情偷乱视频一区二区| 3wmmmm亚洲av在线观看| 成人av在线播放网站| 午夜免费男女啪啪视频观看| 草草在线视频免费看| 欧美成人一区二区免费高清观看| 免费人成在线观看视频色| 亚洲av国产av综合av卡| 久久午夜福利片| 中文字幕久久专区| 国内揄拍国产精品人妻在线| 最近2019中文字幕mv第一页| h日本视频在线播放| 久久久久久久久久黄片| 久热久热在线精品观看| 麻豆久久精品国产亚洲av| 99九九线精品视频在线观看视频| 真实男女啪啪啪动态图| 久久99蜜桃精品久久| 亚洲高清免费不卡视频| 亚洲人成网站在线观看播放| 久久99热这里只有精品18| 中文乱码字字幕精品一区二区三区 | 真实男女啪啪啪动态图| 亚洲精品乱码久久久久久按摩| 亚洲精品久久午夜乱码| 日韩视频在线欧美| 免费播放大片免费观看视频在线观看| 亚洲精品第二区| 日本熟妇午夜| 国产av不卡久久| 超碰97精品在线观看| 人人妻人人澡人人爽人人夜夜 | 别揉我奶头 嗯啊视频| 日韩欧美 国产精品| 天美传媒精品一区二区| 夜夜爽夜夜爽视频| 黄片wwwwww| 欧美一区二区亚洲| 晚上一个人看的免费电影| 大话2 男鬼变身卡| 一个人观看的视频www高清免费观看| 精品久久久噜噜| 2022亚洲国产成人精品| 亚洲精品国产av成人精品| 人人妻人人看人人澡| 精品久久久久久久久亚洲| 最近手机中文字幕大全| 日韩国内少妇激情av| 精品一区二区免费观看| 美女高潮的动态| 全区人妻精品视频| 日日干狠狠操夜夜爽| 十八禁国产超污无遮挡网站| av在线观看视频网站免费| 毛片一级片免费看久久久久| 中国美白少妇内射xxxbb| 亚洲综合色惰| 建设人人有责人人尽责人人享有的 | 一级毛片 在线播放| 国产亚洲av嫩草精品影院| 成人性生交大片免费视频hd| 亚洲高清免费不卡视频| 狠狠精品人妻久久久久久综合| 久久久久免费精品人妻一区二区| 永久免费av网站大全| 亚洲av电影在线观看一区二区三区 | 国产精品女同一区二区软件| 久热久热在线精品观看| 精品人妻一区二区三区麻豆| 国产综合精华液| 人妻少妇偷人精品九色| videos熟女内射| 精品不卡国产一区二区三区| 久久这里只有精品中国| 美女黄网站色视频| 亚洲国产最新在线播放| 午夜久久久久精精品| 国产又色又爽无遮挡免| 天美传媒精品一区二区| 欧美性感艳星| 欧美成人一区二区免费高清观看| 国产亚洲av嫩草精品影院| 久热久热在线精品观看| 精品久久久久久成人av| 免费看不卡的av| 在线a可以看的网站| 国产不卡一卡二| 男女边吃奶边做爰视频| 久久久久久久久久黄片| 在现免费观看毛片| 99久久精品一区二区三区| 亚洲精品视频女| 国产高清国产精品国产三级 | 国产精品国产三级专区第一集| 亚洲精品国产成人久久av| 少妇人妻精品综合一区二区| 伊人久久国产一区二区| 中国美白少妇内射xxxbb| 国产精品福利在线免费观看| 高清av免费在线| 毛片女人毛片| 又爽又黄a免费视频| 亚洲欧美日韩东京热| 亚洲怡红院男人天堂| 97热精品久久久久久| 精品人妻一区二区三区麻豆| 国产熟女欧美一区二区| 亚洲内射少妇av| 狂野欧美白嫩少妇大欣赏| 一级片'在线观看视频| 热99在线观看视频| 日韩欧美精品免费久久| 国产一级毛片在线| 三级经典国产精品| 看非洲黑人一级黄片| 搡老妇女老女人老熟妇| 国产精品熟女久久久久浪| 日韩在线高清观看一区二区三区| 中文天堂在线官网| 日韩伦理黄色片| 高清欧美精品videossex| 人妻一区二区av| 亚洲成人中文字幕在线播放| 五月天丁香电影| av专区在线播放| 黄片无遮挡物在线观看| 国产精品熟女久久久久浪| 熟妇人妻久久中文字幕3abv| 一级毛片 在线播放| 国产成人aa在线观看| 波多野结衣巨乳人妻| eeuss影院久久| 精品欧美国产一区二区三| 成人亚洲精品av一区二区| 国产高清不卡午夜福利| 亚洲经典国产精华液单| 精品久久国产蜜桃| 女的被弄到高潮叫床怎么办| 色5月婷婷丁香| 两个人的视频大全免费| 国产一区二区亚洲精品在线观看| 又爽又黄无遮挡网站| av天堂中文字幕网| av免费在线看不卡| 久久6这里有精品| 亚洲国产成人一精品久久久| 欧美最新免费一区二区三区| 亚洲最大成人av| 伊人久久国产一区二区| 国产乱人视频| av一本久久久久| 日日啪夜夜爽| 亚洲精品日韩av片在线观看| 精品一区二区三区视频在线| 免费无遮挡裸体视频| 男女国产视频网站| 精品亚洲乱码少妇综合久久| 一区二区三区高清视频在线| 国产av国产精品国产| 精品一区二区三卡| 欧美日韩在线观看h| 午夜老司机福利剧场| 国产免费视频播放在线视频 | 亚洲第一区二区三区不卡| av一本久久久久| 国产v大片淫在线免费观看| 欧美潮喷喷水| 久久久午夜欧美精品| 亚洲精品久久午夜乱码| 成年女人在线观看亚洲视频 | 国产熟女欧美一区二区| 成人特级av手机在线观看| 一级av片app| av福利片在线观看| 中文精品一卡2卡3卡4更新| 欧美xxxx黑人xx丫x性爽| av天堂中文字幕网| av女优亚洲男人天堂| 搡老乐熟女国产| xxx大片免费视频| 久久久久久伊人网av| 搡老乐熟女国产| 日日干狠狠操夜夜爽| 国产精品爽爽va在线观看网站| 国产亚洲91精品色在线| 九九久久精品国产亚洲av麻豆| a级毛片免费高清观看在线播放| 国产国拍精品亚洲av在线观看| 综合色丁香网| 国产综合精华液| 51国产日韩欧美| 成年免费大片在线观看| 一级毛片aaaaaa免费看小| 赤兔流量卡办理| 麻豆久久精品国产亚洲av| 国内少妇人妻偷人精品xxx网站| 黄片无遮挡物在线观看| 精品一区二区免费观看| 国产成人福利小说| 国产黄片视频在线免费观看| 国内精品宾馆在线| 韩国高清视频一区二区三区| 国产91av在线免费观看| 国产高清三级在线| 国内少妇人妻偷人精品xxx网站| 少妇裸体淫交视频免费看高清| 亚洲精品中文字幕在线视频 | 亚洲精品自拍成人| 蜜臀久久99精品久久宅男| 亚洲国产av新网站| 国产黄a三级三级三级人| 国产黄片视频在线免费观看| 最近2019中文字幕mv第一页| 国产单亲对白刺激| 国产伦在线观看视频一区| 人人妻人人澡人人爽人人夜夜 | 亚洲怡红院男人天堂| 日韩欧美精品免费久久| 亚洲自拍偷在线| 五月玫瑰六月丁香| 美女内射精品一级片tv| 亚洲欧美一区二区三区国产| 成人一区二区视频在线观看| 特级一级黄色大片| 日韩制服骚丝袜av| 一级片'在线观看视频| 精品久久久久久久末码| 99热6这里只有精品| 国产色婷婷99| 日韩国内少妇激情av| 亚洲欧美精品自产自拍| 日韩中字成人| 床上黄色一级片| 禁无遮挡网站| 嘟嘟电影网在线观看| 免费大片黄手机在线观看| 在线天堂最新版资源| 777米奇影视久久| 日本免费a在线| 麻豆精品久久久久久蜜桃| 国产综合懂色| 人人妻人人澡人人爽人人夜夜 | 亚洲av免费在线观看| 国产av国产精品国产| 亚洲成人久久爱视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品不卡视频一区二区| 两个人的视频大全免费| 日韩中字成人| av国产久精品久网站免费入址| 在线免费观看不下载黄p国产| 一级毛片aaaaaa免费看小| 成人亚洲精品一区在线观看 | 免费观看无遮挡的男女| 亚洲va在线va天堂va国产| 中文在线观看免费www的网站| 亚洲国产日韩欧美精品在线观看| 国产精品一区二区性色av| 热99在线观看视频| 欧美性感艳星| 成人av在线播放网站| 精品久久久久久久久久久久久| 人人妻人人澡人人爽人人夜夜 | 国产成人a∨麻豆精品| 51国产日韩欧美| 日日摸夜夜添夜夜添av毛片| 国产精品一区二区性色av| 美女黄网站色视频| 卡戴珊不雅视频在线播放| 国产亚洲一区二区精品| 午夜精品一区二区三区免费看| 大香蕉久久网| 婷婷色综合大香蕉| 日韩强制内射视频| 国产精品蜜桃在线观看| 尾随美女入室| 亚洲av成人精品一二三区| 国产av国产精品国产| 99热这里只有是精品在线观看| 亚洲国产日韩欧美精品在线观看| 欧美精品一区二区大全| 欧美性猛交╳xxx乱大交人| 美女cb高潮喷水在线观看| 丝瓜视频免费看黄片| 亚洲av在线观看美女高潮| 色5月婷婷丁香| 色5月婷婷丁香| 国产黄色免费在线视频| 好男人视频免费观看在线| 亚洲国产成人一精品久久久| 国产午夜精品论理片| 国产真实伦视频高清在线观看| 国产视频首页在线观看| 高清毛片免费看| 国内精品一区二区在线观看| 国产精品av视频在线免费观看| 国产免费视频播放在线视频 | 亚洲国产精品专区欧美| av卡一久久| 日本一本二区三区精品| 午夜福利在线观看免费完整高清在| 免费av毛片视频| 麻豆精品久久久久久蜜桃| 欧美高清成人免费视频www| 亚洲欧美精品专区久久| 又粗又硬又长又爽又黄的视频| 免费看美女性在线毛片视频| 成人鲁丝片一二三区免费| 日韩成人伦理影院| 草草在线视频免费看| videossex国产| 久久久精品免费免费高清| 国内精品美女久久久久久| 色哟哟·www| 超碰97精品在线观看| 久久久久久久久中文| 国产成人免费观看mmmm| 欧美xxxx黑人xx丫x性爽| 亚洲欧美成人精品一区二区| 亚洲内射少妇av| 老女人水多毛片| 亚洲精品亚洲一区二区| 在线观看免费高清a一片| 成人亚洲精品av一区二区| 午夜福利高清视频| 精品一区在线观看国产| 久久人人爽人人片av| 亚洲av国产av综合av卡| 亚洲av一区综合| 亚洲av不卡在线观看| 天堂√8在线中文| 又黄又爽又刺激的免费视频.| 赤兔流量卡办理| 久久国产乱子免费精品| 能在线免费看毛片的网站| av线在线观看网站| 深夜a级毛片| 欧美成人一区二区免费高清观看| 尤物成人国产欧美一区二区三区| 街头女战士在线观看网站| 日本免费a在线| 国产一级毛片在线| av福利片在线观看| 一级片'在线观看视频| av在线老鸭窝| 国产永久视频网站| 国产视频首页在线观看| 看黄色毛片网站| 22中文网久久字幕| av在线天堂中文字幕| 亚洲精品一区蜜桃| 人妻夜夜爽99麻豆av| 精品久久久精品久久久| 精品一区二区三卡| 91午夜精品亚洲一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲天堂国产精品一区在线| 亚洲欧美日韩无卡精品| 最后的刺客免费高清国语| 成人午夜精彩视频在线观看| 中文精品一卡2卡3卡4更新| 少妇熟女欧美另类| 波野结衣二区三区在线| 亚洲aⅴ乱码一区二区在线播放| 成人美女网站在线观看视频| 汤姆久久久久久久影院中文字幕 | 丰满少妇做爰视频| 成年版毛片免费区| 高清av免费在线| 久久草成人影院| 只有这里有精品99| 18禁在线无遮挡免费观看视频| 99热这里只有是精品50| 国产真实伦视频高清在线观看| 国产黄片视频在线免费观看| 午夜免费观看性视频| 亚洲国产精品专区欧美| 久久精品夜色国产| 永久网站在线| 日本免费a在线| 久久久久久久亚洲中文字幕| 草草在线视频免费看| 99热6这里只有精品| 亚洲成人av在线免费| 国产黄片视频在线免费观看| 青春草视频在线免费观看| 国产真实伦视频高清在线观看| 国产精品国产三级国产专区5o| 高清午夜精品一区二区三区| 18禁在线播放成人免费| 小蜜桃在线观看免费完整版高清| 爱豆传媒免费全集在线观看| 男人狂女人下面高潮的视频| 我的老师免费观看完整版| 亚洲av一区综合| 精品一区二区三卡| 国产成人精品婷婷| 亚洲av在线观看美女高潮| 日产精品乱码卡一卡2卡三| av女优亚洲男人天堂| 少妇高潮的动态图| 亚洲精品国产成人久久av| 久久精品熟女亚洲av麻豆精品 | 狂野欧美激情性xxxx在线观看| 久久久精品免费免费高清| 99久久精品热视频| 国产69精品久久久久777片| 亚洲精品自拍成人| 亚洲av免费高清在线观看| www.av在线官网国产| 超碰av人人做人人爽久久| 99热这里只有是精品50| 少妇丰满av| 三级毛片av免费| 一级毛片黄色毛片免费观看视频| 成人漫画全彩无遮挡| 中国美白少妇内射xxxbb| 国产亚洲午夜精品一区二区久久 | 最近最新中文字幕大全电影3| 哪个播放器可以免费观看大片| 成人av在线播放网站| 亚洲精品亚洲一区二区| 亚洲最大成人手机在线| 插逼视频在线观看| 日韩亚洲欧美综合| 国内精品美女久久久久久| 久久久久精品性色| 日韩人妻高清精品专区| 好男人在线观看高清免费视频| 久久久久免费精品人妻一区二区| a级毛片免费高清观看在线播放| 国产高清三级在线| 草草在线视频免费看| 精品久久久久久久久久久久久| 在线观看一区二区三区| 午夜激情福利司机影院| 1000部很黄的大片| 国产精品国产三级国产专区5o| 日韩一本色道免费dvd| 禁无遮挡网站| 一级毛片黄色毛片免费观看视频| 亚洲成人久久爱视频| 大话2 男鬼变身卡| 亚洲精品国产av成人精品| 欧美区成人在线视频| 丰满少妇做爰视频| 亚洲经典国产精华液单| 欧美激情在线99| h日本视频在线播放| 青青草视频在线视频观看| 天堂av国产一区二区熟女人妻| 国产一区二区亚洲精品在线观看| 色尼玛亚洲综合影院| 国内揄拍国产精品人妻在线| 日本三级黄在线观看| 亚洲av.av天堂| 精品99又大又爽又粗少妇毛片| 国产 一区精品| av线在线观看网站| 国内揄拍国产精品人妻在线| 国产精品蜜桃在线观看| 少妇丰满av| 精品久久久噜噜| 一级毛片久久久久久久久女| av福利片在线观看| 亚洲国产色片| 国产 一区精品| 久久久久久久大尺度免费视频| 成人一区二区视频在线观看| 国产亚洲最大av| 亚洲丝袜综合中文字幕| 国产黄片视频在线免费观看| 大话2 男鬼变身卡| 国产单亲对白刺激| 国产一区亚洲一区在线观看| 精品少妇黑人巨大在线播放| 禁无遮挡网站| 黄片无遮挡物在线观看| 国产成人a区在线观看| 深爱激情五月婷婷| 在线a可以看的网站| 亚洲精品成人av观看孕妇|