• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    5-氨基雙四唑富氮配位化合物的合成、結(jié)構(gòu)及其對高氯酸銨的熱分解影響

    2012-12-11 11:37:08夏正強陳三平高勝利
    無機化學學報 2012年2期
    關(guān)鍵詞:高氯酸西北大學材料科學

    謝 鋼 夏正強 陳三平 高勝利

    (合成與天然功能分子教育部重點實驗室,西北大學化學與材料科學學院,西安 710069)

    5-氨基雙四唑富氮配位化合物的合成、結(jié)構(gòu)及其對高氯酸銨的熱分解影響

    謝 鋼 夏正強 陳三平*高勝利*

    (合成與天然功能分子教育部重點實驗室,西北大學化學與材料科學學院,西安 710069)

    水熱條件下合成了兩個5-氨基雙四唑配位化合物Cu(bta)(bpy)(H2O)(1)和Pb2(bta)2(en)2·4H2O(2)(H2bta=5-氨基雙四唑,bpy=2,2′-聯(lián)吡啶,en=乙二胺),并借助單晶X-射線衍射技術(shù)對其結(jié)構(gòu)進行了表征。在配合物1中,5-氨基雙四唑配體以雙齒螯合模式與銅離子配位形成離散的分子,并通過H鍵作用進一步形成了三維的超分子結(jié)構(gòu)。在配合物2中,強的R22(8)氫鍵環(huán)作用將雙核的Pb2(bta)2(en)2單元連接成一維的鏈,這些鏈通過與水分子氫鍵作用被進一步組裝成三維的超分子結(jié)構(gòu)。另外,通過DSC技術(shù)探究了它們作為添加劑對高氯酸銨的熱分解催化影響。研究發(fā)現(xiàn),鉛基化合物2的催化效果較銅基化合物1要好。

    5-氨基雙四唑;配位化合物;高氯酸銨;晶體結(jié)構(gòu)

    Energetic metal salts are employed as attractive alternatives in view that they ballistically modify the combustion pattern of propellants without much negative effect on energetics[1].Of those energetic metal salts,rich-nitrogen energetic compounds as environmentally benign explosives are employed as the ligands tosynthesize the energetic metal salts.As one of the energetic materials,tetrazoles with an outstanding property of high nitrogen content,high positive heat of formation and good thermal stability,owing to their aromatic ring system[2],have promised their complexes interesting for energetic materials.Furthermore,metal cations complexes are sought components for pyrotechnical mixtures,by the combination of the energetic nitrogen rich ligands and the colorant metal cations[3].Until now,many metal-tetrazole derivatives complexes have been synthesized and characterized to be the potential energetic materials,components for pyrotechnical mixtures,additives in pyrotechnics and AP based propellants for their characteristics of high energy and thermal stability[3-8].In addition,the application field of tetrazoles are involved of magnetic[9-11]and catalytic application[12],as well as adsorption[13-14],topology[15-17]and energetic materials[18-21].

    N,N-bis(1H-tetrazole-5-yl)-amine(H2bta)has been widely reported as energetic materials with high nitrogen and high thermal stability.As the derivative of tetrazole,H2bta possesses versatile coordination modes due to the nine electron-donating nitrogen atoms are the potential coordination sites,which promises the H2bta to be an intriguing ligand in coordination chemistry.Moreover,the nitrogen atoms are predicted to be involved in the hydrogen bonds motif to construct supramolecules and capture guest molecules[22].Above all,the H2bta complexes with the metal ions could not only give an interesting structure but also provide the active metals or metal oxides at the molecule level on the propellant surface to improve combustion reaction when the compounds are used as the additives in the propellant[1,23].Therefore,both in theoretical prospect and practical application,the syntheses and structures of H2bta complexes are of significance.

    In this paper,we report the syntheses and structures of two new energetic coordination compounds based on N,N-bis(1H-tetrazole-5-yl)-amine,Cu(bta)(bpy)(H2O)(1)and Pb2(bta)2(en)2·4H2O(2).Because the thermal decomposition of AP directly influences the combustion behavior of solid propellants[24-25],compounds 1 and 2 as the additives on the decomposition of AP were explored by the differential scanning calorimetry(DSC)techniques.

    1 Experimental

    1.1 Materials and instruments

    All reagents were purchased commercially and used without further purification.H2bta·H2O was synthesized according to the reference[4].Elemental analyses were carried out with an Elementar Vario EL Ⅲ analyzer.IR spectra were recorded with a Tensor 27 spectrometer(Bruker Optics,Ettlingen,Germany).Thermogravimetric measurements were performed with a Netzsch STA449C apparatus under a nitrogen atmosphere with a heating rate of 10℃·min-1from 30 to 900℃.DSC experiments were performed with a thermal analyzer of Perkin-Elmer Pyris 6 DSC with heating rates of 5,10,15 and 20℃·min-1from 30 to 500℃.

    1.2 Preparation

    Preparation of Cu(bta)(bpy)(H2O)(1):A mixture of Cu(NO3)2·3H2O(0.048 8 g,0.2 mmol),H2bta·H2O(0.034 3 g,0.2 mmol),2,2′-bipyridyl(0.031 2 g,0.2 mmol)and H2O(7 mL)was sealed in a 10 mL Teflonlined stainless autoclave and heated at 130℃under autogenous pressure for 3 d and then cooled at a rate of 5℃·min-1to room temperature;green block crystals were obtained.Yield:0.022 5 g(28.9%based on Cu).Anal.calcd.for C12H11ON11Cu(Mr=388.87)(%):C 37.03,H 2.83,N 39.60;found(%):C 36.68,H 2.76,N 39.04.IR(KBr,cm-1):3 527(s),3 458(s),3 394(m),3195(w),2819(m),2364(m),1 652(vs),1515(vs),1 456(s),1 338(m),1 247(m),1 145(m),1 147(m),1 097(w),1 051(s),1002(s),854(s),810(m),734(s),686(s).

    Preparation of Pb2(bta)2(en)2·4H2O(2):A mixture ofPb(NO3)2(0.066 2 g,0.200 mmol),H2bta·H2O(0.034 7 g,0.2 mmol),ethylenediamine(30 μL)and H2O(7 mL)was sealed in a 10 mL Teflon-lined stainless autoclave and heated at 120℃under autogenous pressure for 3 d and then cooled at a rate of 5℃·h-1to room temperature;colorless block crystals were obtained in the solution of the reactors after 1 week.Yield:0.0620 g(34.1%based on Pb).Anal.calcd.for C8H26O4N22Pb2(Mr=908.91)(%):C 10.57,H 2.88,N 33.91;found(%):C 10.34,H 2.67,N 33.68.IR(KBr,cm-1):3 357(w),3 284(w),3 143(w),2914(m),1 616(vs),1 525(s),1 496(s),1 419(s),1 398(s),1 313(s),1 236(s),1124(s),995(s),781(s),694(s),559(s).

    1.3 X-ray crystallography

    All single-crystal X-ray diffraction experiments were performed with a Bruker Smart Apex CCD diffractometer equipped with graphite monochromated Mo Kα radiation(λ=0.071 073 nm)using φ-ω scan mode.The single-crystal structures of compounds were solved by direct methods and refined with full-matrix least-squares techniques based on F2using SHELXS-97 and SHELXL-97[26-27].All non-hydrogen atoms were refined anisotropically.The H atoms attached C or N atoms were placed at calculated positions in the ridingmodelapproximation, with their displacement parameters set to 1.2 times Ueqof the parent atoms.The water H atoms were located in difference Fourier maps,and then refined with isotropic thermal parameters 1.5 times those of O atoms.Crystal data and structure refinements parameters for 1 and 2 are listed in Table 1.The selected bond distances and angles are shown in Table 2 and hydrogen bonding interactions for 1 and 2 are shown in Tables 3.

    CCDC:855627,1;774052,2.

    Table 1 Crystal data and structure parameters for 1 and 2

    Table 2 Selected bond lengths(nm)and angles(°)for 1 and 2

    Continued Table 1

    Table 3 Hydrogen bonding interactions in 1 and 2

    2 Results and discussion

    2.1 Description of crystal structures

    Single-crystal X-ray diffraction studies reveal that 1 and 2 both crystallize in the triclinic crystal system,space group P1.The molecular structure of 1 is shown in Fig.1.There are two crystallographically unique Cu(Ⅱ)ions,two bta2-ligands,two bpy co-ligands and two coordinated water molecules in the asymmetric unit.The Cu1(Ⅱ)ion is five-coordinated by four N atoms from one bta2-ligand(N1 and N2)and one bpy molecule(N3 and N8),and one coordinated water molecule(O1).The coordination environment of Cu2(Ⅱ)center is exactly similar with that of Cu1(Ⅱ)in 1,while there are some subtle differences in the bond lengths and angles.The Cu-N bond distances vary from 0.1960(3)to 0.205 6(4)nm with the mean of 0.199 7(8)nm,while the Cu-O bond distance is slightly longer,0.2234(3)nm.

    Fig.1 ORTEP drawing of asymmetric unit of compound 1 with 30%probability level

    It is worth noting that the tetrazole nitrogen atoms and coordinated water molecules are involved in the extensive strong,very directional hydrogen bonds(Fig.2 and Table 3),which connect the discrete Cu(Ⅱ)coordination units to generate a 3D supramolecular structure.

    Fig.2 Intermolecular hydrogen bonding interactions in compound 1

    As shown in Fig.3,2 is a binuclear molecule with two bta2-and ethylenediamine,which is just like the reported Pb2(bta)2(bpy)2(2′)and[Pb2(bta)2(phen)2]·2H2O(2″)[28].The similar structures are due to the same coordination modes of bta2-and the auxiliary ligands.However,the length of the bridge bonds N-Pb and Pb…Pb are different(0.289 2 nm for 2,0.279 1 nm for 2′,0.2848 nm for 2″).The strong hydrogen bond ring motif(N5…N6i0.29543 nm,i2-x,1-y,1-z)is identified as the very commonwhich bridges the binuclear units to the 1D chain(Fig.4 and Table 3),where the Pb2N4ring planes are parallel.The free water molecules construct the 1D chain to a 3D supramolecule through the hydrogen bonds.

    Fig.3 Coordination environment of Pb2+ion in 2 with 30%thermal ellipsoids probability level

    Fig.4 1D chain afforded by hydrogen bonds in 2

    2.2 Thermal gravimetric analyses

    Thermal gravimetric(TG)analyses were carried out between 30 and 800℃(Fig.5)under nitrogen atmosphere.In the TG curve,1 undergoes a dehydration process during the temperature range from 100 to 150℃with a weight loss of 4.81%corresponding to the loss of one water molecule(calcd.4.62%).Then the compound are stable until 200℃and loses 72.81%(calcd.74.81%),which is due to the decomposition of ligand ejecting nitrogen gas[30].For 2,it firstly loses the lattice water between 50 and 110℃,and then loses en molecules at around 220℃,after that a series of weight losses up to 700℃are found.

    Fig.5 TG curves of 1(left)and 2(right)

    2.3 Effects on thermal decomposition of ammonium perchlorate

    To check the effects of thermal decomposition of AP after adding the as-synthesized compounds,compounds 1 and 2 and AP were mixed at a mass ratio of 1∶3 to prepare the target samples for thermal decomposition analyses.A total sample mass used was less than 1.0 mg for all runs.The Kissiger′s method was used to investigate the apparent activate energy(Ea)and the pre-exponential factor(A)by four different heat rates of 5,10,15 and 20℃·min-1[28].DSC curve of AP has three peaks under our experiments condition.The first endothermic peak at 242℃is attributed to the crystallographic transition of AP from orthorhombic to cubic.The second peak at 288℃is exothermic,which is corresponding to the low-temperature decomposition(LTD).The third peak following the LTD instantly is an endothermic peak which is assigned to the hightemperature decomposition(HTD).The HTD process either exothermic or endothermic process,depending on the competition between sublimation and thermal decomposition[31-32].

    After adding the compounds 1 and 2 as the additives to the AP,the first endothermic peak of crystallographic transition was not affected.But the decomposition of AP has changed,the endothermic HTD process change to the exothermic or convert to one exothermic peak with the LTD.Compared to the HTD of the pure AP,the decomposition temperature is lower,as shown in Fig.6.For AP with complexes 1 and 2 as the additives respectively,the two decomposition process become to a broad exothermic band with one or several peaks,which is due the compounds decompose earlier than the pure AP.

    Fig.6 DSC curves for AP,AP after adding 1 and 2 respectively

    Comparing the DSC curves of 1 and 2 with the AP,the decomposition peaks temperature(Tp)of the mixture for adding 2 are lower than that for 1 as well as the activation energy of the mixture,as illustrated in Table 4.Therefore,2 shows better on the decomposition of AP than 1,which is consistent with the report that the lead energetic 4-(2,4.6-trinitroa-nilino)benzoic acid salts performs better than its cobalt or nickel salts for the propellants[23].In summary,the analyses results reveal that both the two metal compounds with H2bta ligand have significant impact on the thermal decomposition of AP,and are good candidates of the additives for the AP-based propellants.

    Table 4 Kinetic parameters of thermal decomposition for AP and AP with additives

    [1]Kulkarni P B,Reddy T S,Nair J K,et al.J.Hazard.Mater.,2005,123:54-60

    [2]Stierstorfer J,Tarantik K R,Klaptke T M.Chem.Eur.J.,2009,15:5775-5792

    [3]Hartdegen V,Klap?tke T M,Sproll S M.Inorg.Chem.,2009,48:9549-9556

    [4]Friedrich M,Galvez-Ruiz J C,Klaptke T M,et al.Inorg.Chem.,2005,44:8044-8052

    [5]Klap?tke T M,Sabate C M,Welch J M.Eur.J.Inorg.Chem.,2009:769-776

    [6]Klap?tke T M,Sabate C M,Rasp M.Dalton Trans.,2009:1825-1834

    [7]Karaghiosoff K,Klaptke T M,Sabate C M.Chem.-Eur.J.,2009,15:1164-1176

    [8]ZHAO Feng-Qi(趙鳳起),CHEN San-Ping(陳三平),FAN Guang(范廣),et al.Chem.J.Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao),2008,29:1519-1522

    [9]Gao E Q,Liu N,Cheng A L,et al.Chem.Commun.,2007:2470-2472

    [10]Lu Y B,Wang M S,Zhou W W,et al.Inorg.Chem.,2008,47:8935-8942

    [11]Janiak C,Scharmann T G,Brzezinka K W,et al.Chem.Ber.,1995,128:323-328

    [12]Horike S,Dinca M,Tamaki K,et al.J.Am.Chem.Soc.,2008,130:5854-5855

    [13]Li J R,Tao Y,Yu Q,et al.Chem.-Eur.J.,2008,14:2771-2776

    [14]DincǎM,Yu A F,Long J R.J.Am.Chem.Soc.,2006,128:8904-8913

    [15]Zhang X M,Jiang T,Wu H S,et al.Inorg.Chem.,2009,48:4536-4541

    [16]Chen Q Y,Li Y,Zheng F K,et al.Inorg.Chem.Commun.,2008,11:969-971

    [17]Janiak C,Scharmann T G.Polyhedron,2003,22:1123-1133

    [18]Klap?tke T M,Mayer P,MiróSabaté C,et al.Inorg.Chem.,2008,47:6014-6027

    [19]Steinhauser G,Klap?tke T K.Angew.Chem.,Int.Ed.,2008,47:3330-3338

    [20]Singh R P,Verma R D,Meshri D T,et al.Angew.,Chem.Int.Ed.,2006,45:3584-3601

    [21]Joo Y H,Twamley B,Garg S,et al.Angew.Chem.,Int.Ed.,2008,47:6236-6239

    [22]Zheng L L,Li H X,Leng J D,et al.Eur.J.Inorg.Chem.,2008:213-217

    [23]Pundlik S M,Palaiah R S,Nair J K,et al.J.Energ.Mater.,2001,19:339-347

    [24]Cui P,Li F S,Zhou J,et al.Propellants,Explos.Pyrotech.,2006,31:452-455

    [25]Chen L J,Li L P,Li G S.J.Alloys Compd.,2008,464:532-536

    [26]Sheldrick G M.SHELXS-97,Program for Solution of Crystal Structures,University of Gottingen,Germany,1997.

    [27]Sheldrick G M.SHELXL-97,Program for Refinement of Crystal Structures,University of Gottingen,Germany,1997.

    [28]Wang W T,Chen S P,Gao S L.Eur.J.Inorg.Chem.,2009:3475-3480

    [29]Etter M C.Acc.Chem.Res.,1990,23:120-126

    [30]Poturovic S,Lu D,Heeg M J,et al.Polyhedron.,2008,27:3280-3286

    [31]Lang A J,Vyazovkin S.Combust.Flame.,2006,145:779-790

    [32]Vyazovkin S,Wight C A.Chem.Mater.,1999,11:3386-3393

    Nitrogen-Rich Coordination Compounds with N,N-Bis(1H-tetrazole-5-yl)-amine:Synthesis,Structure and Effect on the Thermal Decomposition of Ammonium Perchlorate

    XIE GangXIA Zheng-QiangCHEN San-Ping*GAO Sheng-Li*
    (Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education,College of Chemistry and Materials Science,Northwest University,Xi′an 710069,China)

    Two coordination compounds with N,N-bis(1H-tetrazole-5-yl)-amine(H2bta),Cu(bta)(bpy)(H2O)(1)and Pb2(bta)2(en)2·4H2O(2)(bpy=2,2′-bipyridyl and en=ethylenediamine),have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction.In 1,the H2bta ligands coordinate with Cu2+ions in the bidentate chelate mode to form discrete molecular structures,which are assembled through extended hydrogen bonds to generate a 3D architecture.2 presents a 3D supramolecule stucture constructed from 1D chains,in which the binuclear Pb2(bta)2(en)2units are bridged by the strong hydrogen bond ring motif R22(8).Furthermore,compounds 1 and 2 were explored as additives to promote the thermal decomposition of ammonium perchlorate(AP)by the differential scanning calorimetry techniques(DSC).DSC curves reveal that lead-based compound 2 shows better performance than the copper-based compound 1.CCDC:855627,1;774052,2.

    N,N-bis(1H-tetrazole-5-yl)-amine;coordination compounds;ammonium perchlorate;crystal structure

    O614.43+3;O614.121

    A

    1001-4861(2012)02-0367-07

    2011-11-01。收修改稿日期:2011-12-05。

    國家自然科學基金(No.21073142,21173168,21127004),陜西省自然科學基金(No.09JS089)和陜西省教育廳科技專項基金(No.2010JK882,2010JQ2007)資助項目。

    *通訊聯(lián)系人。E-mail:gaoshli@nwu.edu.cn,sanpingchen@126.com

    猜你喜歡
    高氯酸西北大學材料科學
    中海油化工與新材料科學研究院
    西北大學木香文學社
    材料科學與工程學科
    《西北大學學報》(自然科學版)征稿簡則
    福建工程學院材料科學與工程學科
    《材料科學與工藝》2017年優(yōu)秀審稿專家
    《我們》、《疑惑》
    西北大學博物館
    石油知識(2017年4期)2017-08-31 16:54:22
    酸溶-高氯酸氧化光度法測定錳礦石中全錳的含量
    高氟高氯酸性廢水處理實驗研究
    男人爽女人下面视频在线观看| 精品酒店卫生间| 久久毛片免费看一区二区三区| 久久久精品免费免费高清| 99久久精品一区二区三区| 又黄又爽又刺激的免费视频.| 久久精品熟女亚洲av麻豆精品| 欧美高清性xxxxhd video| 国产精品久久久久久久久免| 国产视频首页在线观看| 中文字幕亚洲精品专区| 少妇猛男粗大的猛烈进出视频| 一本一本综合久久| 女性被躁到高潮视频| 男女边吃奶边做爰视频| 九九久久精品国产亚洲av麻豆| 欧美日韩精品成人综合77777| 亚洲精品色激情综合| 搡女人真爽免费视频火全软件| 久久久久人妻精品一区果冻| 一级毛片电影观看| 亚洲精品色激情综合| 国产黄片视频在线免费观看| 日韩欧美精品免费久久| 久久久成人免费电影| 国产精品一区二区在线不卡| 日本一二三区视频观看| 日本黄色片子视频| 成人一区二区视频在线观看| 在线观看免费视频网站a站| 最近中文字幕2019免费版| 日韩一本色道免费dvd| 久久久久视频综合| 日韩成人av中文字幕在线观看| 亚洲欧美一区二区三区国产| 国产精品蜜桃在线观看| 国产乱来视频区| 一个人免费看片子| 国产黄片美女视频| 国产黄频视频在线观看| 草草在线视频免费看| 美女国产视频在线观看| 国产精品三级大全| 久久韩国三级中文字幕| 国产无遮挡羞羞视频在线观看| 99热这里只有是精品50| 亚洲成人av在线免费| 亚洲成人中文字幕在线播放| 日韩强制内射视频| 女性被躁到高潮视频| 欧美3d第一页| 国产淫语在线视频| 网址你懂的国产日韩在线| 亚洲中文av在线| av网站免费在线观看视频| 久久热精品热| av网站免费在线观看视频| 亚洲av欧美aⅴ国产| 午夜日本视频在线| 免费播放大片免费观看视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 成人18禁高潮啪啪吃奶动态图 | a 毛片基地| 国产视频内射| 久久久久久人妻| 成人综合一区亚洲| 在线精品无人区一区二区三 | 日韩成人av中文字幕在线观看| a级毛色黄片| 尾随美女入室| 精华霜和精华液先用哪个| 午夜免费鲁丝| 国产久久久一区二区三区| 亚洲在久久综合| 成人黄色视频免费在线看| 国产高清有码在线观看视频| 亚洲国产精品国产精品| 美女脱内裤让男人舔精品视频| 亚洲av男天堂| 国产精品久久久久久精品电影小说 | 男女啪啪激烈高潮av片| 综合色丁香网| 亚洲av在线观看美女高潮| 人人妻人人澡人人爽人人夜夜| 国产精品av视频在线免费观看| 美女内射精品一级片tv| 精品一区二区三卡| 一区二区三区精品91| 免费大片18禁| 日日啪夜夜爽| 午夜福利高清视频| 国产精品爽爽va在线观看网站| 久久精品国产亚洲网站| 十八禁网站网址无遮挡 | 日日摸夜夜添夜夜爱| 成年av动漫网址| 国产男女超爽视频在线观看| 高清日韩中文字幕在线| 狂野欧美激情性bbbbbb| 成人高潮视频无遮挡免费网站| 久久精品久久久久久噜噜老黄| av卡一久久| 久久精品国产亚洲av天美| 一级黄片播放器| 自拍偷自拍亚洲精品老妇| 两个人的视频大全免费| 自拍偷自拍亚洲精品老妇| 亚洲一级一片aⅴ在线观看| 下体分泌物呈黄色| 国产亚洲一区二区精品| 欧美一级a爱片免费观看看| 免费大片黄手机在线观看| 国内少妇人妻偷人精品xxx网站| 婷婷色综合大香蕉| 国产亚洲午夜精品一区二区久久| 欧美xxxx黑人xx丫x性爽| 熟女人妻精品中文字幕| 亚洲不卡免费看| 国产成人精品一,二区| 人妻一区二区av| 三级国产精品欧美在线观看| 3wmmmm亚洲av在线观看| 伦理电影免费视频| 一区二区三区免费毛片| 欧美xxxx性猛交bbbb| 高清毛片免费看| 伦精品一区二区三区| 亚洲精品aⅴ在线观看| 草草在线视频免费看| 一级二级三级毛片免费看| 亚洲欧美清纯卡通| 91精品一卡2卡3卡4卡| 深夜a级毛片| 午夜福利视频精品| 少妇的逼水好多| 亚洲熟女精品中文字幕| 国产在视频线精品| 熟女av电影| 最新中文字幕久久久久| a 毛片基地| 91狼人影院| 看非洲黑人一级黄片| 97热精品久久久久久| 精品视频人人做人人爽| 久久精品国产自在天天线| 成人无遮挡网站| 青春草视频在线免费观看| 婷婷色麻豆天堂久久| 日本爱情动作片www.在线观看| 精品亚洲乱码少妇综合久久| 亚洲av国产av综合av卡| 国产黄片视频在线免费观看| 久久精品熟女亚洲av麻豆精品| 中文欧美无线码| 99久久综合免费| 精品视频人人做人人爽| 又大又黄又爽视频免费| 少妇人妻精品综合一区二区| av福利片在线观看| 久久综合国产亚洲精品| 久久久久久久亚洲中文字幕| 日产精品乱码卡一卡2卡三| 久久6这里有精品| 国产高清三级在线| 精华霜和精华液先用哪个| 中文字幕精品免费在线观看视频 | 一本—道久久a久久精品蜜桃钙片| 欧美xxxx性猛交bbbb| 免费大片黄手机在线观看| 日韩中文字幕视频在线看片 | 日本-黄色视频高清免费观看| 日本免费在线观看一区| 亚洲在久久综合| 伦理电影大哥的女人| 久久国产乱子免费精品| 午夜激情久久久久久久| 精品一区二区三区视频在线| 国产成人午夜福利电影在线观看| 日本与韩国留学比较| 91久久精品国产一区二区成人| 免费黄网站久久成人精品| 欧美日韩一区二区视频在线观看视频在线| 搡女人真爽免费视频火全软件| 校园人妻丝袜中文字幕| 狂野欧美白嫩少妇大欣赏| 精品久久久噜噜| 免费人妻精品一区二区三区视频| 日韩亚洲欧美综合| 黄色一级大片看看| 精品久久久久久久久av| 国产日韩欧美亚洲二区| 少妇人妻一区二区三区视频| 黄色视频在线播放观看不卡| 久久国产精品大桥未久av | 亚洲色图综合在线观看| 久热这里只有精品99| av免费观看日本| 春色校园在线视频观看| 国产一区二区三区综合在线观看 | 欧美+日韩+精品| 我的女老师完整版在线观看| 超碰97精品在线观看| 久久人妻熟女aⅴ| 国产综合精华液| 久久久a久久爽久久v久久| av在线观看视频网站免费| 久久韩国三级中文字幕| 人人妻人人爽人人添夜夜欢视频 | 美女xxoo啪啪120秒动态图| av黄色大香蕉| 只有这里有精品99| 黄色视频在线播放观看不卡| 国产精品久久久久久久电影| 在线观看免费高清a一片| 99久久精品一区二区三区| 日韩不卡一区二区三区视频在线| 建设人人有责人人尽责人人享有的 | 免费播放大片免费观看视频在线观看| 精品人妻熟女av久视频| 免费观看在线日韩| 嫩草影院新地址| 久久精品熟女亚洲av麻豆精品| 日韩伦理黄色片| 国产精品99久久99久久久不卡 | 十八禁网站网址无遮挡 | 国产黄色视频一区二区在线观看| 久久人妻熟女aⅴ| 最近中文字幕高清免费大全6| 黄色欧美视频在线观看| 美女国产视频在线观看| 欧美极品一区二区三区四区| 亚洲美女黄色视频免费看| 男人和女人高潮做爰伦理| 十八禁网站网址无遮挡 | 久久精品夜色国产| 久久人妻熟女aⅴ| av国产精品久久久久影院| 一级毛片aaaaaa免费看小| 搡女人真爽免费视频火全软件| 一级黄片播放器| 你懂的网址亚洲精品在线观看| 日韩三级伦理在线观看| 男人狂女人下面高潮的视频| 91久久精品电影网| 日韩免费高清中文字幕av| 亚洲国产精品999| 久久久成人免费电影| 性色av一级| 两个人的视频大全免费| 亚洲成人手机| 久久鲁丝午夜福利片| 一级a做视频免费观看| 高清毛片免费看| 只有这里有精品99| 精品一区二区三区视频在线| 在线天堂最新版资源| 久久青草综合色| 日本欧美视频一区| 久久久久久久久大av| 国产一级毛片在线| 日产精品乱码卡一卡2卡三| 久久午夜福利片| 亚洲无线观看免费| 黑人猛操日本美女一级片| 97在线人人人人妻| 久久久久精品久久久久真实原创| 最近2019中文字幕mv第一页| 亚洲欧美精品自产自拍| 能在线免费看毛片的网站| 日韩国内少妇激情av| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品国产精品| 观看av在线不卡| 亚洲精品成人av观看孕妇| 成年美女黄网站色视频大全免费 | 丰满迷人的少妇在线观看| 成人美女网站在线观看视频| 最新中文字幕久久久久| 成人二区视频| 免费人妻精品一区二区三区视频| 中文乱码字字幕精品一区二区三区| 亚洲色图av天堂| 在线观看美女被高潮喷水网站| 日韩一区二区视频免费看| 亚洲国产精品专区欧美| 亚洲不卡免费看| 亚洲欧美日韩无卡精品| 天堂俺去俺来也www色官网| 身体一侧抽搐| 一本一本综合久久| 制服丝袜香蕉在线| 亚洲精品国产av成人精品| 成人免费观看视频高清| 国产成人免费无遮挡视频| 亚洲性久久影院| 欧美国产精品一级二级三级 | 两个人的视频大全免费| 老司机影院成人| 美女脱内裤让男人舔精品视频| 亚洲aⅴ乱码一区二区在线播放| 91狼人影院| 久久久精品94久久精品| h视频一区二区三区| 一本色道久久久久久精品综合| 中文字幕亚洲精品专区| 日韩伦理黄色片| 成人二区视频| 国产 一区精品| 亚洲精品成人av观看孕妇| 国产女主播在线喷水免费视频网站| 欧美日韩国产mv在线观看视频 | 国产淫片久久久久久久久| 夫妻性生交免费视频一级片| 男男h啪啪无遮挡| 久久鲁丝午夜福利片| 18禁在线播放成人免费| 人人妻人人爽人人添夜夜欢视频 | 男男h啪啪无遮挡| 国产成人freesex在线| 国产精品精品国产色婷婷| 亚洲av中文字字幕乱码综合| 色哟哟·www| 欧美一级a爱片免费观看看| 高清日韩中文字幕在线| 一个人免费看片子| 亚洲自偷自拍三级| 新久久久久国产一级毛片| 日韩伦理黄色片| 美女视频免费永久观看网站| 精华霜和精华液先用哪个| 国产69精品久久久久777片| 亚洲精品日韩在线中文字幕| 人妻系列 视频| 在线观看av片永久免费下载| av女优亚洲男人天堂| 欧美xxⅹ黑人| 男人爽女人下面视频在线观看| 精品熟女少妇av免费看| 亚洲va在线va天堂va国产| 国产精品一区二区在线观看99| 91精品国产国语对白视频| 免费大片黄手机在线观看| 嫩草影院新地址| 内射极品少妇av片p| 搡老乐熟女国产| 久热这里只有精品99| 精品久久久久久久久av| 少妇的逼水好多| 欧美国产精品一级二级三级 | 亚洲精品乱码久久久久久按摩| 国产精品嫩草影院av在线观看| 亚洲第一区二区三区不卡| 亚洲欧美清纯卡通| 国产av精品麻豆| 国模一区二区三区四区视频| av福利片在线观看| 最近手机中文字幕大全| 日本-黄色视频高清免费观看| 夜夜骑夜夜射夜夜干| 亚洲成人av在线免费| videossex国产| 一个人看的www免费观看视频| 亚洲欧美日韩卡通动漫| 国产精品一区二区在线观看99| 午夜福利视频精品| 精品国产一区二区三区久久久樱花 | 内地一区二区视频在线| 少妇人妻 视频| 狠狠精品人妻久久久久久综合| 日韩伦理黄色片| 亚洲人成网站在线播| 视频区图区小说| 欧美高清性xxxxhd video| 少妇人妻 视频| 亚洲图色成人| 免费不卡的大黄色大毛片视频在线观看| 老女人水多毛片| 国产成人免费观看mmmm| 亚洲人成网站高清观看| 国产精品免费大片| 在线播放无遮挡| 深爱激情五月婷婷| 成人高潮视频无遮挡免费网站| 一区二区三区四区激情视频| 女人久久www免费人成看片| 男男h啪啪无遮挡| av福利片在线观看| 国内精品宾馆在线| 中文字幕av成人在线电影| 少妇 在线观看| 国产亚洲5aaaaa淫片| 国产69精品久久久久777片| 久久国产乱子免费精品| 国产久久久一区二区三区| www.色视频.com| 精品亚洲成a人片在线观看 | 久久精品国产亚洲av涩爱| 色视频在线一区二区三区| 久久久久国产网址| 97热精品久久久久久| 夜夜看夜夜爽夜夜摸| 色婷婷久久久亚洲欧美| 亚洲av中文av极速乱| 国产亚洲一区二区精品| 久久久久精品久久久久真实原创| videos熟女内射| 五月玫瑰六月丁香| 亚洲人成网站在线观看播放| 在线观看美女被高潮喷水网站| 国产成人freesex在线| 卡戴珊不雅视频在线播放| 国产白丝娇喘喷水9色精品| videossex国产| 亚洲电影在线观看av| 成年人午夜在线观看视频| 久久久久久九九精品二区国产| 在线免费观看不下载黄p国产| 国产极品天堂在线| 蜜桃亚洲精品一区二区三区| 国产精品av视频在线免费观看| 精品亚洲成国产av| 日韩av免费高清视频| 另类亚洲欧美激情| 嫩草影院新地址| h日本视频在线播放| 国内少妇人妻偷人精品xxx网站| 成年人午夜在线观看视频| 日韩av在线免费看完整版不卡| 高清欧美精品videossex| 色综合色国产| 亚洲性久久影院| 黑人高潮一二区| 妹子高潮喷水视频| 国产熟女欧美一区二区| 激情五月婷婷亚洲| 99久国产av精品国产电影| av线在线观看网站| 成人国产麻豆网| 99久久人妻综合| 日本与韩国留学比较| 亚洲欧美日韩另类电影网站 | 日韩制服骚丝袜av| 亚洲人成网站在线播| 成人国产麻豆网| 国产91av在线免费观看| 观看av在线不卡| 成年免费大片在线观看| 男人舔奶头视频| 亚洲欧美中文字幕日韩二区| 精品国产一区二区三区久久久樱花 | 欧美一区二区亚洲| 国产精品不卡视频一区二区| 九色成人免费人妻av| 精品亚洲成国产av| 国产一区二区在线观看日韩| 啦啦啦啦在线视频资源| 久久久午夜欧美精品| 视频区图区小说| 免费看日本二区| av播播在线观看一区| 亚洲欧美日韩另类电影网站 | 天堂8中文在线网| 亚洲精华国产精华液的使用体验| 国产国拍精品亚洲av在线观看| tube8黄色片| 中国三级夫妇交换| 国产日韩欧美亚洲二区| 亚洲国产av新网站| 内地一区二区视频在线| 久久精品国产自在天天线| 国产精品伦人一区二区| 美女主播在线视频| 亚洲国产成人一精品久久久| 免费人妻精品一区二区三区视频| 麻豆乱淫一区二区| 亚洲精品亚洲一区二区| 最近的中文字幕免费完整| 精品人妻偷拍中文字幕| 亚洲欧美一区二区三区国产| 亚洲一区二区三区欧美精品| 亚洲高清免费不卡视频| 99国产精品免费福利视频| 国产精品三级大全| 亚洲av成人精品一区久久| 日韩精品有码人妻一区| 纯流量卡能插随身wifi吗| 精品人妻视频免费看| 建设人人有责人人尽责人人享有的 | 我的老师免费观看完整版| 亚洲va在线va天堂va国产| 国产黄片美女视频| 免费观看无遮挡的男女| 欧美人与善性xxx| 久久人人爽av亚洲精品天堂 | 国产亚洲最大av| 男人添女人高潮全过程视频| 看十八女毛片水多多多| 丰满乱子伦码专区| 久久国产精品男人的天堂亚洲 | 亚洲,一卡二卡三卡| 国产在线视频一区二区| 久久久久久久精品精品| 欧美老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 亚洲人成网站高清观看| 亚洲欧洲日产国产| 色综合色国产| 水蜜桃什么品种好| 国产一区二区在线观看日韩| 日韩电影二区| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区性色av| 成人二区视频| 自拍欧美九色日韩亚洲蝌蚪91 | 日本av免费视频播放| 涩涩av久久男人的天堂| 日韩强制内射视频| 欧美日韩综合久久久久久| 狂野欧美激情性bbbbbb| 九九久久精品国产亚洲av麻豆| 久久久精品免费免费高清| 国产免费视频播放在线视频| 午夜福利高清视频| 欧美高清性xxxxhd video| 一级a做视频免费观看| 大香蕉久久网| 欧美精品亚洲一区二区| 男女下面进入的视频免费午夜| 成人美女网站在线观看视频| 亚洲精品久久午夜乱码| 永久网站在线| 如何舔出高潮| 国产精品免费大片| 久久久久久久久久久免费av| 久久久久国产精品人妻一区二区| 久久久成人免费电影| 蜜桃在线观看..| 亚洲高清免费不卡视频| 汤姆久久久久久久影院中文字幕| 精品亚洲成a人片在线观看 | 国产有黄有色有爽视频| 欧美3d第一页| 自拍欧美九色日韩亚洲蝌蚪91 | 最新中文字幕久久久久| 午夜视频国产福利| 一区二区三区免费毛片| 久久99精品国语久久久| 老师上课跳d突然被开到最大视频| 狂野欧美激情性xxxx在线观看| 色网站视频免费| 韩国高清视频一区二区三区| 中国三级夫妇交换| 国产探花极品一区二区| 五月天丁香电影| 99热国产这里只有精品6| 国产av一区二区精品久久 | 久久鲁丝午夜福利片| 下体分泌物呈黄色| 一区二区av电影网| 人人妻人人看人人澡| 国语对白做爰xxxⅹ性视频网站| 街头女战士在线观看网站| av在线老鸭窝| av在线播放精品| 国产女主播在线喷水免费视频网站| 午夜精品国产一区二区电影| 男女国产视频网站| 高清午夜精品一区二区三区| 久热久热在线精品观看| 日韩av免费高清视频| h日本视频在线播放| 久久久久性生活片| 亚洲自偷自拍三级| 五月开心婷婷网| 免费黄色在线免费观看| 久久久久久久久大av| 久久久久久久久久成人| av女优亚洲男人天堂| 国产伦精品一区二区三区视频9| 久久久欧美国产精品| 亚洲欧美清纯卡通| 日韩中字成人| 久久毛片免费看一区二区三区| 一本久久精品| 美女主播在线视频| 另类亚洲欧美激情| 大香蕉97超碰在线| 国内揄拍国产精品人妻在线| 久久毛片免费看一区二区三区| 亚洲精品国产av成人精品| 婷婷色综合大香蕉| 国产精品国产av在线观看| 日本一二三区视频观看| 精品国产乱码久久久久久小说| 国产精品国产av在线观看| 高清欧美精品videossex| 精品国产乱码久久久久久小说| 欧美高清成人免费视频www| 亚洲综合精品二区| 国产 一区精品| 亚洲av中文字字幕乱码综合| 亚洲综合精品二区| 精品国产乱码久久久久久小说| kizo精华| 亚洲精品日本国产第一区| 九九久久精品国产亚洲av麻豆| 在线精品无人区一区二区三 | 久久久久精品久久久久真实原创| 在线播放无遮挡| 精品一区二区三区视频在线| 国产成人91sexporn| 亚洲最大成人中文| 在线免费观看不下载黄p国产| 五月玫瑰六月丁香| 亚洲经典国产精华液单|