• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高度分散二氧化錳納米纖維的水熱合成和對雙氧水電流檢測

    2012-11-30 10:33:46何賽男胡彩園鄭華均
    物理化學學報 2012年3期
    關(guān)鍵詞:鉀礦二氧化錳雙氧水

    何賽男 胡彩園 肖 鴿 鄭華均,*

    (1浙江大學醫(yī)學院附屬婦產(chǎn)科醫(yī)院,杭州310006;2浙江工業(yè)大學化學工程與材料學院,杭州310014)

    高度分散二氧化錳納米纖維的水熱合成和對雙氧水電流檢測

    何賽男1胡彩園2肖 鴿2鄭華均2,*

    (1浙江大學醫(yī)學院附屬婦產(chǎn)科醫(yī)院,杭州310006;2浙江工業(yè)大學化學工程與材料學院,杭州310014)

    采用水熱還原氧化法合成了高度分散的具有納米纖維結(jié)構(gòu)的鉀礦型二氧化錳,并將其用來制作檢測雙氧水濃度的傳感器.運用X射線衍射(XRD)儀、電子掃描顯微鏡(SEM)、透射電子顯微鏡(TEM)和比表面積(BET)及孔隙度分析儀觀察和表征二氧化錳納米纖維的結(jié)構(gòu)和表面形貌;用電化學工作站(EW)檢測其傳感性能.結(jié)果表明:在pH為7.4的磷酸緩沖溶液中,開路電壓為0.2 V的條件下對0.1%(w,質(zhì)量分數(shù))的二氧化錳納米纖維修飾的玻碳電極(GCE)進行測試,測試結(jié)果為隨著雙氧水的濃度每增加0.1 mmol·L-1,響應(yīng)電流的峰值就增加約1.3 μA,在雙氧水的濃度在0.1-1.5 mmol·L-1范圍內(nèi)得到的線性相關(guān)系數(shù)為0.996,這種電極的高靈敏度和優(yōu)異的電化學活性可能歸因于鉀礦型二氧化錳納米纖維的特殊納米結(jié)構(gòu).這種傳感器有很高的靈敏度和很好的重現(xiàn)性.綜上說明這種廉價并且有很好的電化學活性的材料為設(shè)計新型電極生物傳感器提供了更大可能.

    雙氧水;鉀礦型二氧化錳;玻碳電極;磷酸緩沖溶液;生物傳感器

    1 Introduction

    Recently,considerable attention has been put on the design and development of new biosensor devices as a response to the increasing demand for monitoring systems for life quality improvement.In particular,owing to the important progress in fields of material science and electrochemical engineering, electrochemical sensors appeared very appealing because of their simplicity and interesting performances among the different transduction possibilities.1-3Although great achievements and various electrodes developed for sensing ions in solution,a great amount of research work is still needed to particularly improve their electrochemical activity,and to better understand the equilibrium phenomena leading to the responses.4,5

    Manganese dioxide(MnO2)is very attractive due to its distinctive structures and wide applications in catalysts,ionsieves,and rechargeable batteries,as well as environmental compatibility and cost effectiveness.Recently,research efforts have been made to prepare nanocrystalline MnO2because of its intriguing properties and promising applications.6-11Nanocrystalline MnO2exhibits high electrochemical catalytic activity because of its small size effect and surface effect better than commercial MnO2.Nanostructured MnO2exhibits outstanding catalytic abilities in various oxidation and reduction reactions, and its activity for the oxidation of H2O2was found to have several applications as sensors.In such cases,H2O2is oxidized catalytically on an electrode,leading to the formation of current flow depending on the concentration of H2O2.12-14H2O2is one of the products in a variety of biochemical reactions catalyzed by oxidases such as glucose,choline,and lactic acid.And the detection of H2O2is of interest to many fields,such as clinic, food,pharmaceutical,environmental analyses,and biosensing. Glucose and choline biosensors based on MnO2having activity for the oxidation of H2O2were reported.15-18However,some of the sensors have displayed the drawbacks of low sensitivity, poor selectivity,high cost,and complex procedure.

    Hollandite is microporous and mixed-valence manganese oxides with tunnel structures,and their basic unit structure is made of sheets of MnO6edge-sharing octahedron,so-called octahedral molecular sieve(OMS)materials.Suib and colleagues19-22did excellent and extensive research on these materials.The K+form of hollandite is known as cryptomelane,and it is also a mixed valence.Scientists are particularly interested in the application of OMS materials in electrocatalysis because of the unique tunnel structure and mixed-valence manganese, which results in outstanding catalytic properties for H2O2oxidation if employed as a mediator.

    In this paper,we report a facile hydrothermal method for synthesizing cryptomelane-type α-MnO2nanofibers.We compare the electrocatalytic activity towards the oxidation of H2O2of the cryptomelane-type α-MnO2modified electrodes with the commercial MnO2modified electrodes.The linear range,response time,detection limit,and effect of the content of cryptomelane-type α-MnO2were studied.

    2 Experimental

    2.1 Reagents and apparatus

    KMnO4,MnSO4·H2O,H2O2,MnO2powder,and gelatin were purchased from Sigma-Aldrich.All chemicals and reagents were of analytical grade and used without further purification. Double-distilled water was used for preparation of buffer and standard solutions.H2O2was freshly prepared daily.

    Crystallographic information of the as-prepared sample was investigated with X-ray diffraction(XRD)(X?Pert Pro,Holland)with Cu Kαradiation.The structural morphology of the synthesized materials was observed by scanning electron microscopy(SEM,JEOL JSM-6700,Japan)and transmission electron microscopy(TEM,Tecnai G2 F30,Holland).The presence and the contents of potassium ion were confirmed by energy dispersive spectrometer(EDS)(Noran VANTAGE-ES, USA).A Micromeritics ASAP 2010 analyzer was used to measure the N2adsorption isotherms of the samples at liquid N2temperature(-196°C).Prior to the measurement of the surface area,the sample was degassed in vacuum at 250°C for at least 4 h.The BET surface area was determined by the multipoint BET method with the adsorption data in the relative pressure(p/p0)range of 0.0-1.0.Electrochemical measurements were performed with CHI 620B electrochemical workstation (Shanghai Chenhua Instrumental Co.Ltd.).Experiments were carried out at room temperature((25±2)°C).

    2.2 Synthesis of MnO2nanofiber

    KMnO4(1.58 g)and MnSO4·H2O(0.676 g)powders(the mole ratio is 2.5:1)were dissolved in 80 mL distilled water for 8 h with strongly stirring at room temperature.Then,the reaction mixture was loaded into a 100 mL Teflon-lined stainless steel autoclave.The autoclave was sealed and heated in an oven at 150°C for 2 h.When cooled to room temperature,a resulting brown-black precipitate was filtered and rinsed with distilled water,and dried at 100°C overnight.

    2.3 Electrode modification

    Before modification,the bare GCE was polished to mirror smooth with 0.05μm Al2O3slurry,rinsed with water,and then ultrasonicated in water bath.Gelatin was used as a binder and dissolved in 50°C water,mixed with the as-prepared MnO2, which was dispersed in water with the aid of ultrasonic agitation.The contents of MnO2and gelatin in the trim were 0.1% (w)and 1%(w),respectively.After 2 μL of the trim was pipetted to the surface of GCE with microliter syringe,the solvent was evaporated at room temperature.The obtained electrode is denoted as MnO2nanofiber-gelatin/GCE,which was kept in buffer solution for 1 h before use.For comparison,the commercial MnO2powder modified electrodes were also prepared under the same conditions.

    2.4 Amperometric measurement of H2O2

    A conventional three-electrode setup was used.The working electrode was a bare GCE or modified GCE,the auxiliary electrode was a platinum sheet,and the reference electrode was a saturated calomel electrode(SCE).Amperometric experiment was carried out in a H2O2solution holding 50 mL of 0.1 mol· L-1phosphate buffer(pH=7.4,in accordance with acidity versus alkalinity in the physiological environment)with stirring for providing the convective transport.Freshly prepared H2O2was injected by micro-syringe according to test demand.The background current was allowed to decay to a constant value before H2O2solution was added to the cell.The calibration curve was obtained by amperometric responses when adding the same amount of H2O2standard solution into cell.

    3 Results and discussion

    3.1 Characterization of the as-prepared manganese dioxide

    Fig.1 shows SEM and TEM images of the cryptomelanetype manganese dioxide.From Fig.1,a nanosized fibrous morphology can be observed.Fig.1b shows that the as-prepared manganese dioxide is nanofiber with diameters of 30-50 nm and lengths in the range of 2-5 μm.The product has favorable dispersibility,which may be due to stirring for 8 h before loading into autoclave.It can be seen from Fig.1a that some of the nanofibers have shown the tendency to curl,and some of them have grown into a clubbed structure.Fig.2 shows XRD pattern of the as-prepared manganese oxide,and the diffractions of very strong peaks at 2θ of 12.6°,17.9°,28.7°,37.5°,41.9°, 49.9°,60.1°.All the reflection peaks of the products can be indexed as a cryptomelane-type α-MnO2,which is in good agreement with the literature values(JCPDS No.42-1348).The final product is α-MnO2corresponding to the studies reported by Li et al.,23in which they proposed that the proportion of KMnO4to MnSO4influenced the structure and morphology of final product,and concluded that the final product was α-MnO2when the mole ratio of KMnO4to MnSO4was 2.5:1.

    Elemental analysis reveals that the molar compositions for K and Mn cations are 7.18%and 92.82%,respectively,and it is a typical characterization of cryptomelane-type manganese oxide.The specific surface area of the material was determined to be 106 m2·g-1by the BET technique,making it possible that the α-MnO2will have remarkable catalytic performance.

    3.2 Electrochemical characteristics of the modified electrode

    Fig.2 X-ray powder diffraction pattern of cryptomelane-type manganese dioxide

    Fig.3 shows the cyclic voltammograms for hydrogen peroxide with the MnO2nanofiber-gelatin/GCE and MnO2-gelatin/ GCE in different solutions.With bare GCE,no oxidation peak was observed within the applied potential range for 0.1 mmol· L-1H2O2in phosphate buffer solution(curve a).While for MnO2nanofiber-gelatin/GCE and commercial MnO2-gelatin/ GCE in phosphate buffer solution,there is a pair of broad but weak peaks between 0.2 and 0.8 V(curves b and d).It may be assigned to the reduction of MnO2to Mn(II,III)and the reoxidation of Mn(II,III)back to MnO2.24,25It is can be observed that as for the MnO2nanofiber-gelatin/GCE in the presence of 0.1 mmol·L-1H2O2in phosphate buffer solution,the cyclic voltammogram displays a sensitive and high oxidative peak at around 0.7 V(curve c),while the commercial MnO2-gelatin/ GCE displays a low oxidative peak(curve e).The characteristic shape of the cyclic voltammogram within this potential region indicates that the signal is probably due to a parallel catalytic reaction.As soon as MnO2is reduced to lower states by H2O2,it is electro-oxidized back to MnO2at the electrode surface.24Fig.4 shows the cyclic voltammograms of the MnO2nanofiber-gelatin/GCE in phosphate buffer solution(0.1 mol· L-1,pH=7.4)containing different concentrations of H2O2(0.1-0.4 mmol·L-1).It can be seen clearly that with addition of H2O2,the oxidation peak currents gradually increase with 1.3 μA,which implies that cryptomelane-type manganese dioxide would be an excellent material to fabricate sensitive H2O2sensor.

    3.3 Detection of hydrogen peroxide

    Fig.1 SEM(a,b)and TEM(c)images of cryptomelane-type manganese dioxide

    Fig.3 Cyclic voltammograms of different electrodes in different solutions(a)bare GCE with 0.1 mmol·L-1H2O2in phosphate buffer solution;(b)the MnO2nanofiber-gelatin/GCE electrode in phosphate buffer solution(pH 7.4); (c)the MnO2nanofiber-gelatin/GCE electrode with 0.1 mmol·L-1H2O2in phosphate buffer solution;(d)the commercial MnO2-gelatin/GCE electrode in phosphate buffer solution(pH 7.4);(e)the commercial MnO2-gelatin/GCE electrode with 0.1 mmol·L-1H2O2in phosphate buffer solution. The scan rate is 20 mV·s-1.

    Fig.4 Cyclic voltammograms of MnO2nanofiber-gelatin/GCE in phosphate buffer solution(0.1 mol·L-1,pH 7.4)containing different concentrations of H2O2scan rate:20 mV·s-1;c(H2O2)/(mmol·L-1):(a)0,(b)0.1,(c)0.2,(d)0.3,(e)0.4

    The relationship between the oxidation current and the concentration of H2O2was examined in a phosphate buffer solution(pH=7.4).The solution was stirred to ensure uniform distribution of H2O2in the cell.Fig.5(a,b)displays the amperometric response of MnO2nanofiber-gelatin/GCE and MnO2powder-gelatin/GCE to successive 0.1 mmol·L-1of H2O2at the open circuit potential of 0.2 V.When the same amount of H2O2was injected into the cell,the current was recorded instantly.It can be clearly seen that the MnO2nanofiber electrode exhibited a fast and well-defined current response over a broad concentration range,while the MnO2powder electrode exhibited a low and instable current response.It can be seen that the rising of response current is decreasing when the concentration of H2O2is in the range of 1.7-2.0 mmol·L-1in Fig.5(b),which can be attributed to reaction consumption of H2O2in the cell. Fig.5(c)represents the calibration curve for the determination of H2O2at the MnO2nanofiber-gelatin/GCE.The measured peak current was found to be linearly proportional to the concentration of H2O2in the range of 0.1-1.5 mmol·L-1in the solution with a correlation coefficient of 0.996.Fig.5(b)shows the comparison of current-time recordings of MnO2nanofibergelatin/GCE and MnO2powder-gelatin/GCE.We can conclude that the cryptomelane-type manganese dioxide nanofiber displays high electrocatalytic activity towards the oxidation of H2O2.While the content of cryptomelane-type manganese dioxide also has a very profound effect upon its amperometric response behavior.Fig.6 shows the amperometric response for H2O2with different percentages of cryptomelane-type manganese dioxide in modified GCEs(0.01%,0.05%,0.10%(mass fraction)).The amperometric response of electrode gradually increases with addition of the nanostructured cryptomelanetype manganese dioxide in mixture of MnO2and gelatin and also displays excellent electrocatalytic oxidative activity of the as-prepared cryptomelane-type manganese dioxide compared with some other research.12

    Fig.6 Current-time recording obtained on increasing the H2O2 concentration in 0.1 mmol·L-1step at different percentages of cryptomelane-type manganese oxides modified GCEs at an operating potential of 0.2 VThe scan rate is 20 mV·s-1.The stirring rate is 500 r·min-1.

    3.4 Detection limit,sensibility,reproducibility and stability

    The sensitivity of the sensor to H2O2was calculated to be 39.4 μA·cm-2·mmol-1·L by the slope of Fig.5(c),which is higher than the results in other papers.13,15The detection limit of the sensor was estimated to be 5×10-6mol·L-1by DL=3.3s/k(s is standard deviation,k is the sensitivity,signal to noise ratio (S/N)=3).The response time was 10 s.The reproducibility of the sensor was measured in 0.1 mol·L-1phosphate buffer(pH 7.4)and the relative standard deviation(RSD)of the sensor response to 0.1 mmol·L-1H2O2was 2.5%for seven successive measurements.The sensor was stored dry at 4°C and measured at intervals of one week,it remained about 95%of its original response after one month,which shows a high stability.

    4 Conclusions

    In this paper,we obtained a nanostructured cryptomelanetype manganese dioxide with diameters of 30-50 nm and lengths in the range 2-5 μm through a hydrothermal reduction route and had super dispersibility.We demonstrated that the GCE modified with the nanostructured cryptomelane-type manganese dioxide can offer low-potential amperometric detection for H2O2.The oxidation peak current increases 1.3 μA with addition of 0.1 mmol·L-1H2O2based on the MnO2-gelatin/GCE electrode,in which the percentage of cryptomelane-type manganese dioxide is 0.1%,which is attributed to well-structured of cryptomelane-type manganese oxide.Its low-potential detection and applicability in neutral solution indicate great promise for the design of amperometric biosensors.In view of its sensitivity,low detection limit,simplicity,and low cost of construction,theGCE modified with thenanostructured cryptomelane-type manganese dioxide exhibits great prospects for future biosensor work.

    (1) Eftekhari,A.Microchim.Acta 2003,141,15.

    (2) Huo,H.Y.;Luo,H.Q.;Li,N.B.Microchim.Acta 2009,167, 195.

    (3) Zhang,Y.;Kang,T.F.;Wan,Y.W.;Chen,S.Y.Microchim.Acta 2009,165,307.

    (4) Martinez,M.T.;Lima,A.S.;Bocchi,N.;Teixeira,M.F.S. Talanta 2009,80,519.

    (5) Teixeira,M.F.D.S.;Fatibello-Filho,O.;Ferracin,L.C.; Rocha-Filho,R.C.;Bocchib,N.Sensors and Actuators B 2000, 67,96.

    (6) Xiao,T.D.;Strutt,P.R.;Benaissa,M.;Chen,H.;Kear,B.H. Nanostruct.Mater.1998,10,1051.

    (7)Wang,X.;Li,Y.D.J.Am.Chem.Soc.2001,124,2880.

    (8)Wang,X.;Li,Y.D.Chem.Commun.2002,764.

    (9) Xiong,Y.J.;Xie,Y.;Li,Z.Q.;Wu,C.Z.Chem.Eur.J.2003,9, 1645.

    (10) Han,L.;Ni,J.P.;Zhang,L.M.;Yue,B.H.;Shen,S.S.;Zhang, H.;Lu,W.C.Acta Phys.-Chim.Sin.2011,27,743.[韓 玲,倪紀朋,張良苗,岳寶華,申杉杉,張 浩,陸文聰.物理化學學報,2011,27,743.]

    (11) Sun,Z.;Liu,K.Y.;Zhang,H.F.;Li,A.S.;Xu,X.C.Acta Phys.-Chim.Sin.2009,25,1991.[孫 哲,劉開宇,張海峰,李傲生,徐小存.物理化學學報,2009,25,1991.]

    (12) Lin,Y.H.;Cui,X.L.;Li,L.Y.Electrochem.Commun.2004,7, 166.

    (13) Yao,S.J.;Yuan,S.;Xu,J.H.;Wang,Y.;Luo,J.L.;Hu,S.S. Appl.Clay Sci.2006,33,35.

    (14) ?ljuki?,B.;Compton,R.G.Electroanalysis 2007,19,1275.

    (15) Cui,X.L.;Liu,G.D.;Lin,Y.H.Nanomedicine 2005,1,130.

    (16) Hocevar,S.B.;Ogorevc,B.;Schachl,K.;Kalcher,K. Electroanalysis 2004,16,20.

    (17) Chen,J.;Zhang,W.D.;Ye,J.S.Electrochem.Commun.2008, 10,1268.

    (18) Bai,Y.H.;Du,Y.;Xu,J.J.;Chen,H.Y.Electrochem.Commun. 2007,9,2611.

    (19) Tian,Z.;Tong,W.;Wang,J.;Duan,N.;Krishnan,V.V.;Suib,S. L.Science 1999,276,926.

    (20) Xia,G.G.;Yin,Y.G.;Willis,W.S.;Wang,J.Y.;Suib,S.L. J.Catal.1999,185,91.

    (21) Son,Y.C.;Makwana,V.D.;Howell,A.R.;Suib,S.L.Angew. Chem.Int.Edit.2001,40,4280.

    (22) Liu,J.;Makwana,V.;Cai,J.;Suib,S.L.;Aindow,M.J.Phys. Chem.B 2003,107,9185.

    (23)Wang,X.;Li,Y.D.Chem.Eur.J.2003,9,306.

    (24) Emir,T.;Kalcher,K.;Schachl,K.;Komersova,A.;Bartos,M.; Moderegg,H.;Svancara,I.;Vytras,K.Anal.Lett.2001,34, 2633.

    (25) Yin,L.;Chou,J.;Chung,W.;Sun,T.;Hsiung,K.;Hsiung,S. Sensors and Actuators B 2001,76,187.

    October 14,2011;Revised:December 6,2011;Published on Web:December 21,2011.?

    .Email:zhenghj@zjut.edu.cn;Tel:+86-13957175665.

    Hydrothermal Synthesis and Amperometric Determination of Hydrogen Peroxide of Highly-Dispersed MnO2Nanofibers

    HE Sai-Nan1HU Cai-Yuan2XIAO Ge2ZHENG Hua-Jun2,*
    (1Women?s Hospital,School of Medicine,Zhejiang University,Hangzhou 310006,P.R.China;2College of Chemical Engineering and Materials Science,Zhejiang University of Technology,Hangzhou 310014,P.R.China)

    A high dispersed nanofiber cryptomelane-type manganese dioxide was synthesized by a facile hydrothermal reduction route.The morphological characterization was examined by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The structure and electrochemical properties of the synthesized manganese dioxide were characterized by X-ray diffraction(XRD),Brunauer-Emmett-Teller(BET)surface area analyses,and an electrochemical workstation(EW).A glassy carbon electrode(GCE)modified with the nanostructured cryptomelane-type manganese dioxide was investigated for amperometric detection of hydrogen peroxide(H2O2)in phosphate buffer solution with a pH 7.4 at an open circuit potential of 0.2 V.The oxidation peak current was found to increase by 1.3 μA with the addition of 0.1 mmol·L-1H2O2based on a MnO2nanofiber-gelatin/GCE electrode.The amperometric signals are linearly proportional to the H2O2concentration in the range 0.1-1.5 mmol·L-1with a correlation coefficient of 0.996 using the GCE modified with 0.1%(w,mass fraction)cryptomelane-type manganese oxides.The sensor is sensitive and its significant electrocatalytic activity results from the nanostructure of the cryptomelane-type manganese oxides.In addition,the sensor has a good reproducibility,a low detection limit,simplicity,and a low cost of construction.These results demonstrate that this material with high electrocatalytic activity offers great promise as a new class ofnanostructured electrodes forbiosensors.

    Hydrogen peroxide;Cryptomelane-type manganese dioxide;Glassy carbon electrode; Phosphate buffer solution;Biosensor

    10.3866/PKU.WHXB201112214

    O646

    The project was supported by the National Natural Science Foundation of China(20973156).

    國家自然科學基金(20973156)資助項目

    猜你喜歡
    鉀礦二氧化錳雙氧水
    探究催化劑的作用創(chuàng)新實驗設(shè)計
    柴達木盆地南里灘地區(qū)鹵水鉀礦水文地質(zhì)與水化學特征及其開采前景分析
    錳礦石中二氧化錳的快速測定
    二氧化錳超薄納米片在活性炭表面的負載及其超電容性能研究
    我國發(fā)現(xiàn)首個深層鹵水鉀礦
    新西部(2016年7期)2016-09-07 17:33:54
    活化鉀礦的鉀釋放動力學研究
    富錸渣雙氧水浸出液錸鉬分離工藝研究
    雙氧水裝置氧化殘液精制的研究及應(yīng)用
    電解二氧化錳表面包覆鉍鎳和鉍鎳錳復合物
    鐵(Ⅲ)配合物催化雙氧水氧化降解聚丙烯酰胺
    免费少妇av软件| 日韩人妻精品一区2区三区| 99精国产麻豆久久婷婷| 深夜精品福利| 欧美激情 高清一区二区三区| 久久精品aⅴ一区二区三区四区| 少妇精品久久久久久久| 久久久久精品人妻al黑| 亚洲人成电影免费在线| 国产成人啪精品午夜网站| 咕卡用的链子| 日本欧美视频一区| 大型av网站在线播放| 亚洲av男天堂| 搡老熟女国产l中国老女人| 狠狠精品人妻久久久久久综合| 亚洲男人天堂网一区| 国产在线免费精品| 国产一区二区在线观看av| 国精品久久久久久国模美| 国产亚洲一区二区精品| 18禁国产床啪视频网站| 一区二区日韩欧美中文字幕| 1024视频免费在线观看| 欧美精品av麻豆av| 激情视频va一区二区三区| 久久久欧美国产精品| 亚洲av欧美aⅴ国产| 久久久久国产一级毛片高清牌| 国产免费一区二区三区四区乱码| 国产亚洲av片在线观看秒播厂| 欧美av亚洲av综合av国产av| 男女下面插进去视频免费观看| 国产精品亚洲av一区麻豆| 亚洲成人手机| videos熟女内射| 久久久国产精品麻豆| 亚洲人成电影免费在线| 午夜91福利影院| 黑人巨大精品欧美一区二区蜜桃| 俄罗斯特黄特色一大片| 久久久久视频综合| 下体分泌物呈黄色| 欧美午夜高清在线| 成人手机av| 久久国产精品人妻蜜桃| 动漫黄色视频在线观看| 在线精品无人区一区二区三| 久久九九热精品免费| 精品第一国产精品| 久久久久久人人人人人| 国产一区二区三区综合在线观看| 人人妻人人澡人人看| 日日夜夜操网爽| 日韩中文字幕欧美一区二区| 人人妻人人爽人人添夜夜欢视频| 免费高清在线观看视频在线观看| 黄色怎么调成土黄色| 不卡一级毛片| 成人亚洲精品一区在线观看| 国产成人免费观看mmmm| 女性被躁到高潮视频| 亚洲第一av免费看| 国产精品久久久久久人妻精品电影 | 久久久久久久国产电影| 美女高潮到喷水免费观看| 亚洲人成电影免费在线| 国产成人免费无遮挡视频| 亚洲国产成人一精品久久久| 精品国产一区二区三区久久久樱花| 99热网站在线观看| 亚洲自偷自拍图片 自拍| 久久久国产欧美日韩av| 男女免费视频国产| 91麻豆av在线| 亚洲欧美日韩另类电影网站| 人人妻人人爽人人添夜夜欢视频| 日本wwww免费看| netflix在线观看网站| videos熟女内射| 亚洲欧美一区二区三区黑人| 久久久精品94久久精品| 美女视频免费永久观看网站| 亚洲av电影在线进入| 老司机午夜十八禁免费视频| a级毛片黄视频| 午夜福利乱码中文字幕| 两性夫妻黄色片| 亚洲 欧美一区二区三区| 欧美日韩亚洲高清精品| 国产亚洲欧美在线一区二区| 各种免费的搞黄视频| 久久精品亚洲熟妇少妇任你| 午夜免费观看性视频| 超碰成人久久| 日日摸夜夜添夜夜添小说| www日本在线高清视频| 老司机靠b影院| 精品国产一区二区三区四区第35| 国产在线视频一区二区| 亚洲av欧美aⅴ国产| 精品国产一区二区久久| 欧美精品av麻豆av| 美国免费a级毛片| 久久久精品区二区三区| 亚洲第一av免费看| 国产精品一区二区在线观看99| 十八禁人妻一区二区| 熟女少妇亚洲综合色aaa.| 丰满少妇做爰视频| 国产成人欧美| 日韩电影二区| 黄色视频,在线免费观看| 最黄视频免费看| 亚洲欧洲精品一区二区精品久久久| 超碰成人久久| 老熟女久久久| 国产在线视频一区二区| 久久九九热精品免费| 国产av国产精品国产| 好男人电影高清在线观看| 日韩视频一区二区在线观看| 成人三级做爰电影| 老司机靠b影院| 老司机影院毛片| 一本—道久久a久久精品蜜桃钙片| 免费日韩欧美在线观看| 国产不卡av网站在线观看| 香蕉国产在线看| 热re99久久国产66热| 一个人免费看片子| 91国产中文字幕| 国产av国产精品国产| 国产亚洲精品第一综合不卡| 纵有疾风起免费观看全集完整版| 日本av手机在线免费观看| 自线自在国产av| 精品国产乱码久久久久久男人| 成人三级做爰电影| 秋霞在线观看毛片| 天天添夜夜摸| 国产片内射在线| 999精品在线视频| videosex国产| 欧美少妇被猛烈插入视频| 久久久精品区二区三区| 成年美女黄网站色视频大全免费| 亚洲精品国产色婷婷电影| 欧美日韩黄片免| 久久精品人人爽人人爽视色| svipshipincom国产片| 老汉色∧v一级毛片| 亚洲性夜色夜夜综合| 免费久久久久久久精品成人欧美视频| 老熟妇仑乱视频hdxx| 日韩视频一区二区在线观看| 亚洲国产精品一区三区| 无遮挡黄片免费观看| 中亚洲国语对白在线视频| 午夜免费鲁丝| 日韩电影二区| 国产熟女午夜一区二区三区| 丰满少妇做爰视频| 深夜精品福利| 日韩大片免费观看网站| 久久人人爽人人片av| 久久久水蜜桃国产精品网| 首页视频小说图片口味搜索| 久久人人爽人人片av| 视频区欧美日本亚洲| 久久久久国产一级毛片高清牌| 亚洲中文字幕日韩| 国内毛片毛片毛片毛片毛片| 色视频在线一区二区三区| 精品人妻1区二区| 老鸭窝网址在线观看| 亚洲精品久久午夜乱码| 国产淫语在线视频| 国产一区二区在线观看av| 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜一区二区| 亚洲综合色网址| 国产精品一二三区在线看| 久久久水蜜桃国产精品网| 亚洲精品乱久久久久久| 丝袜在线中文字幕| 啪啪无遮挡十八禁网站| 亚洲欧美一区二区三区久久| 国产伦理片在线播放av一区| 亚洲国产欧美在线一区| 18禁观看日本| 亚洲一码二码三码区别大吗| 91精品伊人久久大香线蕉| 国产真人三级小视频在线观看| 91国产中文字幕| 一区二区三区乱码不卡18| av视频免费观看在线观看| 99热国产这里只有精品6| 亚洲午夜精品一区,二区,三区| 日本黄色日本黄色录像| 一级毛片电影观看| videos熟女内射| a在线观看视频网站| 9191精品国产免费久久| 高清视频免费观看一区二区| 高清av免费在线| 亚洲国产成人一精品久久久| 一级,二级,三级黄色视频| 国产成人a∨麻豆精品| 午夜福利乱码中文字幕| 日韩大片免费观看网站| 精品国产超薄肉色丝袜足j| 大陆偷拍与自拍| 国产人伦9x9x在线观看| 99国产极品粉嫩在线观看| 亚洲av欧美aⅴ国产| 午夜福利视频精品| 欧美黄色片欧美黄色片| 久久久国产一区二区| 欧美日韩亚洲高清精品| 嫁个100分男人电影在线观看| netflix在线观看网站| 久久天堂一区二区三区四区| 成人国产av品久久久| 99久久人妻综合| 午夜福利在线观看吧| 男男h啪啪无遮挡| av视频免费观看在线观看| 性少妇av在线| 欧美日韩亚洲高清精品| av网站免费在线观看视频| 免费一级毛片在线播放高清视频 | 欧美在线一区亚洲| 国产亚洲精品一区二区www | 久久中文看片网| 国产成人免费观看mmmm| 亚洲全国av大片| 美女大奶头黄色视频| 色播在线永久视频| 肉色欧美久久久久久久蜜桃| 18禁黄网站禁片午夜丰满| 亚洲精品av麻豆狂野| 久久久久久久大尺度免费视频| 欧美日韩中文字幕国产精品一区二区三区 | av电影中文网址| 午夜影院在线不卡| 久久99一区二区三区| 夫妻午夜视频| 秋霞在线观看毛片| 亚洲精品美女久久久久99蜜臀| 国产精品秋霞免费鲁丝片| 亚洲专区字幕在线| 久久精品国产亚洲av香蕉五月 | kizo精华| 欧美日韩福利视频一区二区| 咕卡用的链子| 国产主播在线观看一区二区| 国产精品偷伦视频观看了| 日日夜夜操网爽| 久久精品aⅴ一区二区三区四区| 极品人妻少妇av视频| 一区二区三区激情视频| 亚洲黑人精品在线| www日本在线高清视频| videosex国产| 一级毛片精品| 国产一区二区三区综合在线观看| 中国国产av一级| 美女午夜性视频免费| 精品熟女少妇八av免费久了| 在线观看www视频免费| 69av精品久久久久久 | 精品亚洲乱码少妇综合久久| 99香蕉大伊视频| 黑人巨大精品欧美一区二区mp4| 91av网站免费观看| 精品卡一卡二卡四卡免费| 日本精品一区二区三区蜜桃| 91大片在线观看| 免费少妇av软件| 久久久精品国产亚洲av高清涩受| 久久久久久久国产电影| 中文字幕人妻熟女乱码| 老司机靠b影院| 亚洲一区二区三区欧美精品| 丝袜脚勾引网站| 国产精品自产拍在线观看55亚洲 | 一级毛片电影观看| 久久亚洲精品不卡| 自拍欧美九色日韩亚洲蝌蚪91| 韩国精品一区二区三区| 欧美日韩福利视频一区二区| 欧美 日韩 精品 国产| 久久天躁狠狠躁夜夜2o2o| 欧美性长视频在线观看| 国产有黄有色有爽视频| netflix在线观看网站| 久久久久精品人妻al黑| 亚洲欧美日韩高清在线视频 | 又大又爽又粗| 亚洲专区国产一区二区| 亚洲精品中文字幕一二三四区 | 国产亚洲精品第一综合不卡| 亚洲av男天堂| 男女午夜视频在线观看| 日本wwww免费看| 成人av一区二区三区在线看 | 精品亚洲乱码少妇综合久久| 日本wwww免费看| 悠悠久久av| 国产黄色免费在线视频| 手机成人av网站| 免费观看av网站的网址| 亚洲专区字幕在线| 欧美激情高清一区二区三区| 咕卡用的链子| 午夜福利在线免费观看网站| 亚洲av片天天在线观看| 国产一区二区三区在线臀色熟女 | 免费女性裸体啪啪无遮挡网站| 亚洲中文日韩欧美视频| 日本黄色日本黄色录像| 久久热在线av| 亚洲av美国av| 欧美久久黑人一区二区| 午夜福利,免费看| 欧美少妇被猛烈插入视频| 精品一区二区三卡| 久久久久视频综合| 国产又爽黄色视频| 大片电影免费在线观看免费| 国产淫语在线视频| 夫妻午夜视频| 另类亚洲欧美激情| 亚洲欧洲精品一区二区精品久久久| 在线观看免费视频网站a站| 精品欧美一区二区三区在线| 欧美97在线视频| 可以免费在线观看a视频的电影网站| 十八禁高潮呻吟视频| 日韩有码中文字幕| 亚洲精品国产av蜜桃| 久久久国产成人免费| 999久久久精品免费观看国产| 久久天躁狠狠躁夜夜2o2o| 9热在线视频观看99| 天堂中文最新版在线下载| 9191精品国产免费久久| 久久中文字幕一级| 亚洲欧美清纯卡通| 亚洲精品中文字幕一二三四区 | 国产真人三级小视频在线观看| 一本色道久久久久久精品综合| 嫩草影视91久久| 18禁黄网站禁片午夜丰满| 三上悠亚av全集在线观看| 麻豆国产av国片精品| 精品国产超薄肉色丝袜足j| 欧美亚洲 丝袜 人妻 在线| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲精品国产av成人精品| 99精国产麻豆久久婷婷| 国产精品久久久久成人av| 丝袜美腿诱惑在线| 免费在线观看视频国产中文字幕亚洲 | 久久久久精品国产欧美久久久 | 国产成人欧美在线观看 | 久久久久久久大尺度免费视频| 免费观看a级毛片全部| 久久久久久免费高清国产稀缺| 十八禁人妻一区二区| 午夜两性在线视频| 男人操女人黄网站| 亚洲国产成人一精品久久久| 久久这里只有精品19| 黑人巨大精品欧美一区二区蜜桃| 两人在一起打扑克的视频| 国产亚洲精品第一综合不卡| 777米奇影视久久| 国产精品麻豆人妻色哟哟久久| 国产精品亚洲av一区麻豆| av在线老鸭窝| 久久久国产一区二区| 一区福利在线观看| 国产精品一区二区在线不卡| www.999成人在线观看| 精品国产乱子伦一区二区三区 | 国产成+人综合+亚洲专区| 国产精品av久久久久免费| 亚洲av成人一区二区三| 狠狠婷婷综合久久久久久88av| 精品久久久精品久久久| 51午夜福利影视在线观看| www日本在线高清视频| 永久免费av网站大全| 亚洲一区中文字幕在线| 这个男人来自地球电影免费观看| 韩国高清视频一区二区三区| 中文字幕人妻熟女乱码| 精品人妻一区二区三区麻豆| 色综合欧美亚洲国产小说| 在线观看免费视频网站a站| 久久中文字幕一级| 久久青草综合色| 欧美变态另类bdsm刘玥| 777米奇影视久久| 男女午夜视频在线观看| 亚洲人成电影免费在线| 日韩中文字幕欧美一区二区| 亚洲黑人精品在线| 免费在线观看视频国产中文字幕亚洲 | 精品一区二区三区四区五区乱码| 在线观看www视频免费| 色精品久久人妻99蜜桃| 欧美性长视频在线观看| 午夜福利在线免费观看网站| 日日夜夜操网爽| 亚洲男人天堂网一区| 免费av中文字幕在线| 亚洲国产毛片av蜜桃av| 日本wwww免费看| 少妇粗大呻吟视频| a级毛片在线看网站| 老司机亚洲免费影院| 黑丝袜美女国产一区| 亚洲精品av麻豆狂野| 高清视频免费观看一区二区| 男女高潮啪啪啪动态图| 在线观看一区二区三区激情| 精品一区二区三区四区五区乱码| 悠悠久久av| 欧美日韩成人在线一区二区| 纯流量卡能插随身wifi吗| 精品一区二区三区四区五区乱码| 欧美在线黄色| 欧美大码av| 亚洲久久久国产精品| 国产免费视频播放在线视频| 肉色欧美久久久久久久蜜桃| 一级黄色大片毛片| 99精品久久久久人妻精品| 丝瓜视频免费看黄片| 亚洲精品乱久久久久久| 国产欧美日韩一区二区三 | 在线永久观看黄色视频| 精品国内亚洲2022精品成人 | 日本五十路高清| 91麻豆av在线| 亚洲精品一二三| 国产av国产精品国产| 黑丝袜美女国产一区| 岛国在线观看网站| 欧美亚洲 丝袜 人妻 在线| 国产高清视频在线播放一区 | 蜜桃在线观看..| 脱女人内裤的视频| 精品国产一区二区三区久久久樱花| 亚洲精品中文字幕一二三四区 | 欧美97在线视频| 搡老乐熟女国产| 老汉色av国产亚洲站长工具| 午夜福利影视在线免费观看| 1024视频免费在线观看| 国产欧美日韩一区二区三区在线| 少妇的丰满在线观看| 日韩欧美一区二区三区在线观看 | 波多野结衣一区麻豆| 午夜精品国产一区二区电影| 可以免费在线观看a视频的电影网站| 午夜福利一区二区在线看| 精品少妇久久久久久888优播| 大陆偷拍与自拍| 下体分泌物呈黄色| 69精品国产乱码久久久| 一个人免费看片子| 制服人妻中文乱码| 欧美日韩中文字幕国产精品一区二区三区 | 日日夜夜操网爽| 久久中文字幕一级| 久久人人爽人人片av| 免费在线观看黄色视频的| 国产在线观看jvid| 国产高清国产精品国产三级| 国产亚洲欧美在线一区二区| 色老头精品视频在线观看| 汤姆久久久久久久影院中文字幕| 成人国产一区最新在线观看| 午夜久久久在线观看| 十八禁网站网址无遮挡| 无限看片的www在线观看| av超薄肉色丝袜交足视频| 婷婷色av中文字幕| 一本色道久久久久久精品综合| 热99久久久久精品小说推荐| 一级毛片精品| 永久免费av网站大全| 999精品在线视频| 欧美黄色淫秽网站| 久久久欧美国产精品| 99国产精品99久久久久| 国产精品久久久久久人妻精品电影 | 午夜精品国产一区二区电影| 老司机福利观看| 国产精品二区激情视频| 中文字幕精品免费在线观看视频| 大香蕉久久成人网| 精品人妻1区二区| 免费av中文字幕在线| 国产三级黄色录像| 欧美日韩精品网址| 日本一区二区免费在线视频| 精品一区二区三卡| 亚洲 欧美一区二区三区| 免费观看人在逋| 黑人巨大精品欧美一区二区mp4| 女警被强在线播放| 日韩电影二区| 中文字幕av电影在线播放| 满18在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 午夜激情久久久久久久| 国产欧美亚洲国产| 国产精品久久久久久精品电影小说| 后天国语完整版免费观看| 亚洲国产毛片av蜜桃av| 50天的宝宝边吃奶边哭怎么回事| 天堂中文最新版在线下载| 在线观看www视频免费| 欧美黄色淫秽网站| 一本一本久久a久久精品综合妖精| 99久久99久久久精品蜜桃| av超薄肉色丝袜交足视频| 成年av动漫网址| 2018国产大陆天天弄谢| 国产三级黄色录像| 水蜜桃什么品种好| 国产精品秋霞免费鲁丝片| 少妇被粗大的猛进出69影院| 国产免费一区二区三区四区乱码| 亚洲精品久久久久久婷婷小说| 亚洲少妇的诱惑av| 国产精品一区二区在线不卡| 久久人妻福利社区极品人妻图片| 亚洲熟女毛片儿| 成人国产av品久久久| 69av精品久久久久久 | 久久精品人人爽人人爽视色| 久久久久国产精品人妻一区二区| 性少妇av在线| 欧美黄色片欧美黄色片| 欧美 亚洲 国产 日韩一| 亚洲美女黄色视频免费看| 亚洲第一av免费看| 亚洲色图综合在线观看| 纵有疾风起免费观看全集完整版| 亚洲 国产 在线| 丰满人妻熟妇乱又伦精品不卡| 午夜福利在线免费观看网站| 亚洲欧美激情在线| 成人国产av品久久久| 日韩人妻精品一区2区三区| www.自偷自拍.com| 高清在线国产一区| 欧美日韩亚洲综合一区二区三区_| 在线观看www视频免费| av又黄又爽大尺度在线免费看| 久久久水蜜桃国产精品网| a 毛片基地| 精品久久久久久电影网| 亚洲国产精品999| 不卡av一区二区三区| 午夜精品久久久久久毛片777| 国产淫语在线视频| 99久久综合免费| 嫁个100分男人电影在线观看| 亚洲国产毛片av蜜桃av| 窝窝影院91人妻| 天天操日日干夜夜撸| 自线自在国产av| 欧美大码av| 51午夜福利影视在线观看| 老熟妇仑乱视频hdxx| 久久久精品94久久精品| 黄色视频,在线免费观看| 国产无遮挡羞羞视频在线观看| av网站在线播放免费| 久久精品人人爽人人爽视色| 国产精品国产三级国产专区5o| 成人国产av品久久久| 最新的欧美精品一区二区| av在线老鸭窝| 啦啦啦在线免费观看视频4| 久久天躁狠狠躁夜夜2o2o| 亚洲成人免费av在线播放| 50天的宝宝边吃奶边哭怎么回事| 人成视频在线观看免费观看| 黑人巨大精品欧美一区二区蜜桃| 两个人看的免费小视频| 国产福利在线免费观看视频| 日韩欧美国产一区二区入口| 黄片播放在线免费| 国产免费福利视频在线观看| 欧美+亚洲+日韩+国产| 两个人看的免费小视频| cao死你这个sao货| 国产深夜福利视频在线观看| 黄片播放在线免费| 亚洲av欧美aⅴ国产| 国产亚洲精品第一综合不卡| 免费在线观看视频国产中文字幕亚洲 | 国产一区二区 视频在线| 午夜福利免费观看在线| 老司机在亚洲福利影院| 免费观看a级毛片全部| 国产成人系列免费观看|