• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Compound Poisson Risk Model Perturbed by Diffusion with Double-Threshold Dividend Barriers to Shareholders and Policyholders

    2012-11-22 01:18:42ZHOUJiemingOUHuiMOXiaoyunYANGXiangqun

    ZHOU Jie-ming, OU Hui, MO Xiao-yun,2, YANG Xiang-qun

    (1.Key Laboratory of High Performance Computing and Stochastic Information Processing (Education Ministry of China), College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China;2.Department of Basic Course, Hunan University of Finance and Economics, Changsha 410205, China)

    1 Introduction

    The classical risk model perturbed by a diffusion was first introduced by Gerber[1]and has been further studied by many authors during the last few years (see [2~5] and the references therein).

    Dividend strategy for insurance risk models first proposed by De Finetti[6], various barrier strategies have studied by many authors, including [7~12]. Among them Albrecher and Kainhofer[7], Albrecher et al[8]discussed the non-linear dividend barrier, Gerber and Shiu[9], Lin and Pavlova[10]studied the threshold dividend strategy in the classical risk model. He and Yang[11]investigated the compound binomial model with randomly paying dividends to shareholders and policyholders. Wan[12]considered the classical risk model perturbed by a diffusion with a threshold dividend strategy.

    In this paper, we extend the model [12], and consider a joint stock insurance company which pays dividends to shareholders and policyholders on the compound Poisson risk model perturbed by diffusion: given two thresholds, the company decides to pay dividends to sharcholders and policyholders according to the current surplus level. In Section 2, the model assumptions are formulated; In Section 3, integro-differential equations for the expected discounted dividend payments prior to ruin are derived and closed-form solutions are given; The explicit formulas for the Gerber-Shiu expected discount penalty function are obtained in Section 4.

    2 The model

    Let (Ω,F,Ft,P) be a field probability space satisfying the usual conditions, containing all objects defined in the following. In the perturbed compound Poisson risk model, the surplus of an insurer has the form

    (1)

    We consider the following extension of model (1). We assume that the company pays dividends according to the following strategy governed by parametersb2>b1>0 andα1>0,α2>0. When the modied surplus is below the levelb1, no dividends are paid; when the modied surplus is between the levelb1andb2, dividends are paid continuously for its policyholders at a constant rateα1; when the modied surplus is above the levelb2, the company will pay dividends to its shareholders at rateα2(of course, must pay dividends to its policyholders at rateα1). Thus, the dynamics of surplus processX(t) are given by

    (2)

    The time of ruin for risk process (2) is defined asTb1,b2=inf{t≥0:X(t)≤0} with inf{?}=∞. Fort≥0, letδ>0 be the force of interest, whereD(t) denotes the aggregate dividends paid by timet, and letDx,b1,b2denotes the present value of all dividends until time of ruinTb1,b2,

    Forx≥0, we use the symbolV(x;b1;b2) to denote the expectation ofDx,b1,b2,

    V(x;b1;b2)=E[Dx,b1,b2|X(0)=x].

    Define the Gerber-Shiu expected discounted penalty functionφ(x;b1;b2) by

    φ(x;b1;b2) =E[e-δTb1,b2w(X(Tb1,b2-),|X(Tb1,b2)|)I(Tb1,b2<∞)|X(0)=x],

    (3)

    whereX(Tb1,b2-) is the surplus immediately before ruin, |X(Tb1,b2)| is the deficit at ruin andw(x1,x2) is an arbitrary non-negative function on [0,∞)×[0,∞).δ≥0 may be interpreted as the force of interest.

    3 The expected discounted dividend payments

    In this section, we will give the integro-differential equations and the renewal equations satisfied by the expected discounted dividend paymentsV(x;b1;b2), then its closed-form solutions.

    Clearly,V(x;b1;b2) behaves differently with different initial surplus. For notational convenience, we set

    Then we have

    Theorem1For 0

    (4)

    forb1≤x

    (5)

    forb2≤x< ∞,V(x;b1;b2) satisfies the following nonhomogeneous integro-differential equation

    (6)

    ProofLetT1denote the time of first claim andZ1be the amount of the first claim. Consider the infinitesimal interval from 0 to dt. Conditioning, one obtains that when 0

    V1(x;b1;b2)=e-δdtP(T1>dt)E[V1(x+cdt+σW(dt);b1;b2)]+

    e-δtP(T1≤dt)E[V1(x+cdt+σW(dt)-Z1;b1;b2)];

    (7)

    whenb1≤x

    V2(x;b1;b2)=e-δdt{α1dt+P(T1>dt)E[V2(x+(c-α1)dt+σW(dt);b1;b2)]+

    P(T1≤dt)E[E[V2(x+(c-α1)dt+σW(dt)-Z1;b1;b2)|Z1∈(0,x+(c-α1)dt+

    σW(dt)-b1)]+E[V1(x+(c-α1)dt+σW(dt)-Z1;b1;b2)|Z1∈(x+(c-α1)dt+

    σW(dt)-b1,∞)]]};

    whenb2≤x<∞,

    V3(x;b1;b2)=e-δdt{(α1+α2)dt+P(T1≥dt)E[V3(x+(c-α1-α2)dt+σW(dt);b1;b2)]+

    P(T1≤dt)E[E[V3(x+(c-α1-α2)dt+σW(dt)-Z1;b1;b2)|Z1∈(0,x+(c-α1-α2)dt+

    σW(dt)-b2)]+E[V2(x+(c-α1-α2)dt+σW(dt)-Z1;b1;b2)|Z1∈(x+(c-α1-α2)dt+

    σW(dt)-b2,x+(c-α1-α2)dt+σW(dt)-b1)]+E[V1(x+(c-α1-α2)dt+σW(dt)-

    Z1;b1;b2)|Z1∈(x+(c-α1-α2)dt+σW(dt)-b1,∞)]]}.

    Since e-δdt=1-δdt+o(dt),P(T1>dt)=1-λdt+o(dt) andP(T1≤dt)=λdt+o(dt). Then by Taylor’s expansion, we have

    wherex*∈(x,x+cdt+W(dt)).

    By the assumption thatW(t) is a standard Brownian motion in model (1), we haveE[W(dt)]=E[W3(dt)]=0 andE[W2(dt)]=Var[W(dt)]=dt. Then, we can obtain

    Submit the above equation into (7), and letting dt→0, we get the integro-differential equation (4). Now, one can obtain equations (5) and (6) by some simple calculations.

    V1(b1-;b1;b2)=V2(b1+;b1;b2)=V(b1;b1;b2),

    (8)

    V2(b2-;b1;b2)=V3(b2+;b1;b2)=V(b2;b1;b2),

    (9)

    (10)

    (11)

    By the similar approach to (2.5) and (2.6) in [12] we can prove that (8)~(11) hold.

    For 0

    (12)

    From (85) in the Appendix, we have

    (13)

    where

    The above expression (13) can be rewritten as

    V1(x;b1;b2)=V1(b1-;b1;b2)m1(x)=V(b1;b1;b2)m1(x),

    (14)

    Forb1≤x

    (15)

    From (86) in the Appendix, we have

    (16)

    where

    andg1(x),g2(x) are defined as (69) and (70)in the Appendix, respectively. Then, the above expression (16) can be rewritten as

    V2(x;b1;b2)=V(b1;b1;b2)m2(x)+V(b2;b1;b2)n2(x)+l2(x),

    (17)

    where

    Then, we have

    (18)

    (19)

    (20)

    (21)

    where

    Submitting (20) into (21), we can obtain

    (22)

    So by iteration, we have

    (23)

    where

    The above expression (23) can be rewritten as

    V3(x;b1;b2)=V(b1;b1;b2)m3(x)+V(b2;b1;b2)n3(x)+l3(x),

    (24)

    where

    Then, we have

    (25)

    In view of the continuity condition (10) and (11), by (14), (18), (19) and (25), we have

    (26)

    (27)

    Thus according to (12)~(27), we obtain the following theorem.

    Theorem2The expected discounted dividend paymentsV(x;b1;b2) can be written as the following closed-form:

    whereV(bi;b1;b2);i=1,2,mj(x),j=1,2,3,nk(x),lk(x),k=2,3 are defined as above, respectively.

    4 The Gerber-Shiu expected discounted penalty function

    In the following we will discuss the famous Gerber-Shiu expected discounted penalty function under the risk model (2). The expected discounted penalty functionφ(x;b1;b2) is defined as (3) in Section 2.

    Clearly, the expected discounted penalty functionφ(x;b1;b2) behaves differently with different initial surplusx. Here for notational convenience, we write

    By similar derivation to (4)~(6), we can get the following theorem.

    Theorem3For 0

    forb1≤x

    forb2≤x<∞,φ(x;b1;b2) satisfies the following integro-differential equation:

    with the boundary conditions

    φ1(0;b1;b2)=w(0,0),

    (28)

    (29)

    φ1(b1-;b1;b2)=φ2(b1+;b1;b2)=φ(b1;b1;b2),

    (30)

    φ2(b2-;b1;b2)=φ3(b2+;b1;b2)=φ(b2;b1;b2),

    (31)

    (32)

    (33)

    If the initial surplusx=0, then ruin is immediate, i.e.,Tb1,b2=0, soX(Tb1,b2-)=0 and |X(Tb1,b2)|=0, thus (28) holds; ifX(0)→∞, ruin does not happen all the time, henceTb1,b2=∞ and (29) holds. Similar approach to (3.6) and (3.7) in [12], we can prove that (30)~(33) hold.

    For 0

    (34)

    (35)

    whereF(x) is defined as (51) in the Appendix. Submitting (34) into (35), we can obtain

    By iteration, we have

    φ1(x;b1;b2)=φ(b1;b1;b2)m4(x)+n4(x),

    (36)

    (37)

    (38)

    whereG1(x,u),G2(x,u) andFα1(x) are defined as (62), (63) and (66) in the Appendix, respectively.

    Submitting (36) into (38), we can obtain

    (39)

    φ2(x;b1;b2)=φ(b1;b1;b2)m5(x)+φ(b2;b1;b2)n5(x)+l5(x),

    (40)

    (41)

    (42)

    (43)

    whereG3(x,u),G4(x,u) andFα1,a2(x) are defined as (77),(78) and (79) in the Appendix, respectively.

    Submitting (36), (40) into (43), we can obtain

    (44)

    where

    By iteration, we have

    φ3(x;b1;b2)=φ(b1;b1;b2)m6(x)+φ(b2;b1;b2)n6(x)+l6(x),

    (45)

    where

    Then, we have

    (46)

    In view of the continuity condition (32) and (33), by (37), (41), (42) and(46), we have

    (47)

    (48)

    According to (36)~(48), we can obtain the following theorem.

    Theorem4The expected discounted penalty functionφ(x;b1;b2) can be written as the following explicit formulas

    whereφ(bi;b1;b2),i=1,2,mj(x),nj(x),j=4,5,6,lk(x),k=5,6, are defined as above, respectively.

    Appendix

    In this section, we will show that three kinds of integro-differential equations such as (4), (5) and (6) are identical to the following three renewal equations in details and show that the solutions of integro-differential equations are unique. Based on these, their closed-form solutions are obtained.

    Theorem5The integro-differential equation

    (49)

    is identical to the renewal equation

    (50)

    (51)

    (52)

    (53)

    andK(x,y) is defined by (55) and (56).

    ProofLetK(x,y) be the solution of the following equation,

    (54)

    Then we can solve (54) explicitly,

    (55)

    where

    (56)

    C2(x)=-C1(x)e(β1-β2)b1,

    Let

    (57)

    ThenW(x) satisfies the equation

    (58)

    wheref1(x) is defined as (53). Multiplying both sides of the Eq.(58) byK(x,y) and integrating from 0 tob, integration by part and in view of (54), we get

    (59)

    and substituting (57) into (59), we get

    whereF(x) is defined in (51). Thus the theorem holds.

    Theorem6The integro-differential equations

    (60)

    is identical to the renewal equation

    (61)

    (62)

    (63)

    (64)

    (65)

    (66)

    (67)

    (68)

    (69)

    (70)

    (71)

    Then we can solve (71) explicitly,

    where

    Let

    W(x)=v2(x)-a1(b1)θ1(x)-a2(b2)θ2(x),

    (72)

    whereθ1(x) andθ2(x) are defined in (64) and (65). ThenW(x) satisfies the equations

    (73)

    whereg01(x),g02(x) are defined as (67) and (68).

    (74)

    Substituting (72) into (74), we get

    whereFα1(x) is defined in (66). Thus the theorem holds.

    Theorem7The integro-differential equation

    (75)

    is identical to the renewal equation

    (76)

    (77)

    (78)

    (79)

    (80)

    (81)

    Then we can solve (81) explicitly,

    Let

    W(x)=v3(x)-a3(b2)eb2-x,

    (82)

    thenW(x) satisfies the equations

    (83)

    whereh1(x) is defined as (80).

    (84)

    Substituting (82) into (84), we get

    whereFα1,α2(x) is defined in (79). Thus we show that the theorem holds.

    Next we will show that the solutions of equations (49), (60) and (75) are unique using the similar method as in [12] and [13]. The same results can be obtained for other integro-differential equations. Hence, by iteration, we can get the closed-form solutions of (49), (60) and (75) from (50), (61) and (76),

    (85)

    (86)

    (87)

    :

    [1] GERBER H U. An extension of the renewal equation and its application in the collective theory of risk[J]. Skandinavisk Aktuarietidskrift, 1970,1970(3-4):205-210.

    [2] CHIU S N, YIN C C. The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion[J].Insurance:Math Eco, 2003,33(1):59-66.

    [3] DUFRESNE F, GERBER H U. Risk theory for the compound Poisson process that is perturbed by diffusion[J].Insurance:Math Eco, 1991,10(1):51-59.

    [4] TSAI C C L, WILLMOT G E. On the moments of the surplus process perturbed by diffusion[J].Insurance:Math Eco, 2002,31(3):327-350.

    [5] WANG G, WU R. Some distributions for classical risk processes that is perturbed by diffusion[J].Insurance:Math Eco, 2000,26(1):15-24.

    [6] DE FINETTI B. Su un’impostazione alternativa dell teoria colletiva del rischio[J]. TransaXVInt Congress Actuaries, 1957,2:433-443.

    [7] ALBRECHER H, KAINHOFER R. Risk theory with a non-linear dividend barrier[J].Computing, 2002,68:289-311.

    [8] ALBRECHER H, KAINHOFER R, TICHY R F. Simulation methods in ruin models with non-linear dividend barriers[J].Math Comput Simul, 2003,62(3-6):277-287.

    [9] GERBER H U, SHIU E S W. On optimal dividend strategy in the compound Poisson model[J].North Americal Actuarial, 2006,10(2):76-93.

    [10] LIN X S, PAVLOVA K P. The compound Poisson risk model with a threshold dividend strategy[J].Insurance: Math Eco, 2006,38(1):57-80.

    [11] HE L, YANG X Q. The compound binomial model with randomly paying dividends to shareholders and policyholders[J]. Insurance: Math Eco, 2010,46(3):443-449.

    [12] WAN N. Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diusion[J]. Insurance: Math Eco, 2007,40(3):509-523.

    [13] LUO J. The pricing theory and the application of the American options and the numerical algorithm of the implied volatility[D]. Shanghai: Fudan University, 2005.

    波野结衣二区三区在线| videos熟女内射| 国产 精品1| 国产黄片视频在线免费观看| 国国产精品蜜臀av免费| 精品久久蜜臀av无| 日韩大片免费观看网站| 免费观看a级毛片全部| 一级毛片黄色毛片免费观看视频| 色网站视频免费| 国产成人一区二区在线| 午夜视频国产福利| 亚洲第一av免费看| 国产日韩欧美在线精品| 欧美97在线视频| 亚洲中文av在线| 成人毛片a级毛片在线播放| 这个男人来自地球电影免费观看 | 精品酒店卫生间| av在线播放精品| 国精品久久久久久国模美| 日韩免费高清中文字幕av| 欧美3d第一页| 午夜影院在线不卡| 乱码一卡2卡4卡精品| 人妻一区二区av| 久久人妻熟女aⅴ| 蜜臀久久99精品久久宅男| 久久人妻熟女aⅴ| 母亲3免费完整高清在线观看 | 中文字幕精品免费在线观看视频 | 欧美一级a爱片免费观看看| 人人妻人人爽人人添夜夜欢视频| 99国产综合亚洲精品| 国产深夜福利视频在线观看| 日日啪夜夜爽| 尾随美女入室| 国产成人精品福利久久| 91aial.com中文字幕在线观看| 美女国产视频在线观看| 久久久久人妻精品一区果冻| videossex国产| 狂野欧美白嫩少妇大欣赏| 人妻系列 视频| 精品人妻一区二区三区麻豆| 国产午夜精品一二区理论片| 久久国产精品大桥未久av| 这个男人来自地球电影免费观看 | videossex国产| 国产片特级美女逼逼视频| 性色av一级| 日本爱情动作片www.在线观看| 亚洲四区av| 少妇人妻精品综合一区二区| 亚洲精品乱码久久久v下载方式| 秋霞伦理黄片| 精品人妻在线不人妻| 国产在线一区二区三区精| 亚洲美女搞黄在线观看| 精品亚洲成a人片在线观看| 亚洲国产精品999| 高清黄色对白视频在线免费看| 久久99蜜桃精品久久| 免费播放大片免费观看视频在线观看| 国产精品人妻久久久影院| www.色视频.com| 久久午夜综合久久蜜桃| 国产精品熟女久久久久浪| 亚洲图色成人| 国产又色又爽无遮挡免| 国产精品99久久久久久久久| 99国产精品免费福利视频| 夫妻性生交免费视频一级片| 满18在线观看网站| 成人国产麻豆网| 夫妻午夜视频| 免费观看的影片在线观看| 国产在线一区二区三区精| 性高湖久久久久久久久免费观看| 国产精品一国产av| 免费av中文字幕在线| 99久国产av精品国产电影| 亚洲图色成人| 免费看光身美女| 亚洲成人av在线免费| 老司机影院毛片| 日韩,欧美,国产一区二区三区| 永久免费av网站大全| 成人黄色视频免费在线看| 亚洲伊人久久精品综合| 久久久久视频综合| 色视频在线一区二区三区| 麻豆精品久久久久久蜜桃| 涩涩av久久男人的天堂| 久久狼人影院| 亚洲人成网站在线观看播放| 亚洲国产精品一区二区三区在线| 22中文网久久字幕| 日韩精品有码人妻一区| 观看美女的网站| 在线免费观看不下载黄p国产| 午夜激情av网站| 国产无遮挡羞羞视频在线观看| av在线老鸭窝| 亚洲成色77777| 一区二区三区精品91| 亚洲av男天堂| 久久午夜综合久久蜜桃| 啦啦啦中文免费视频观看日本| 性色avwww在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线播| 国产色婷婷99| 日韩,欧美,国产一区二区三区| 欧美精品一区二区大全| 视频区图区小说| 自拍欧美九色日韩亚洲蝌蚪91| 国产片内射在线| 亚洲精品国产av成人精品| 青春草国产在线视频| 少妇精品久久久久久久| 少妇的逼水好多| 日韩熟女老妇一区二区性免费视频| 天天躁夜夜躁狠狠久久av| 日韩精品有码人妻一区| 18禁在线播放成人免费| 性色avwww在线观看| 午夜激情福利司机影院| 亚洲不卡免费看| 国产精品人妻久久久久久| 国产av码专区亚洲av| 日本av免费视频播放| 亚洲天堂av无毛| 黑人猛操日本美女一级片| 超碰97精品在线观看| 日韩,欧美,国产一区二区三区| 国产一区二区在线观看av| 国语对白做爰xxxⅹ性视频网站| 丁香六月天网| 街头女战士在线观看网站| 久久久久人妻精品一区果冻| 丁香六月天网| 超色免费av| 天美传媒精品一区二区| 一个人免费看片子| 亚洲精品乱码久久久久久按摩| 精品视频人人做人人爽| 日产精品乱码卡一卡2卡三| 天美传媒精品一区二区| 亚洲第一av免费看| 五月伊人婷婷丁香| 国产老妇伦熟女老妇高清| 精品人妻在线不人妻| 亚洲精品日韩av片在线观看| 91精品国产国语对白视频| 亚洲不卡免费看| 两个人的视频大全免费| 视频中文字幕在线观看| 黄色欧美视频在线观看| 3wmmmm亚洲av在线观看| 男人爽女人下面视频在线观看| 蜜桃在线观看..| 91aial.com中文字幕在线观看| 美女内射精品一级片tv| 亚洲精品久久成人aⅴ小说 | 最近中文字幕高清免费大全6| 丝瓜视频免费看黄片| 夜夜看夜夜爽夜夜摸| 多毛熟女@视频| 亚洲精品中文字幕在线视频| 国产成人精品福利久久| a级毛片免费高清观看在线播放| 热re99久久精品国产66热6| 日韩熟女老妇一区二区性免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 韩国高清视频一区二区三区| 插逼视频在线观看| 免费大片18禁| 久久国产精品男人的天堂亚洲 | 日本av手机在线免费观看| 黑人巨大精品欧美一区二区蜜桃 | 少妇的逼好多水| a级毛色黄片| 色网站视频免费| 丰满乱子伦码专区| 丁香六月天网| 蜜臀久久99精品久久宅男| 精品卡一卡二卡四卡免费| 国产日韩欧美在线精品| 精品久久久久久久久亚洲| 久久国内精品自在自线图片| 久久毛片免费看一区二区三区| 国产 一区精品| 国模一区二区三区四区视频| 久久婷婷青草| 五月伊人婷婷丁香| 亚洲五月色婷婷综合| 国产精品99久久久久久久久| 国产成人精品婷婷| 久久精品国产鲁丝片午夜精品| 久久99一区二区三区| 黄片播放在线免费| 亚洲av在线观看美女高潮| 大话2 男鬼变身卡| 久久 成人 亚洲| tube8黄色片| 亚洲精品乱码久久久久久按摩| 精品少妇内射三级| 国产av一区二区精品久久| 亚洲天堂av无毛| 老司机影院成人| 熟女av电影| 少妇人妻久久综合中文| 特大巨黑吊av在线直播| 亚洲av国产av综合av卡| 国产精品熟女久久久久浪| a级片在线免费高清观看视频| 婷婷色综合大香蕉| 亚洲精品第二区| .国产精品久久| 一边亲一边摸免费视频| 免费黄网站久久成人精品| 成人毛片60女人毛片免费| 天美传媒精品一区二区| 一区二区日韩欧美中文字幕 | 亚洲国产欧美在线一区| 晚上一个人看的免费电影| av.在线天堂| 9色porny在线观看| 国产色婷婷99| 又大又黄又爽视频免费| 99热这里只有是精品在线观看| 人人妻人人澡人人爽人人夜夜| 日韩av免费高清视频| 晚上一个人看的免费电影| 午夜福利网站1000一区二区三区| 亚洲成人手机| a级片在线免费高清观看视频| 亚洲av.av天堂| 韩国高清视频一区二区三区| 天天操日日干夜夜撸| 99久久综合免费| h视频一区二区三区| 日韩精品有码人妻一区| 婷婷成人精品国产| 婷婷色麻豆天堂久久| 插阴视频在线观看视频| 日本黄色日本黄色录像| 国国产精品蜜臀av免费| 中文字幕久久专区| 欧美亚洲 丝袜 人妻 在线| 在线观看国产h片| 亚洲图色成人| 国产 一区精品| 水蜜桃什么品种好| 亚洲中文av在线| av天堂久久9| 亚洲av成人精品一区久久| 午夜av观看不卡| 熟女人妻精品中文字幕| 中文字幕人妻丝袜制服| 欧美日韩国产mv在线观看视频| 日日摸夜夜添夜夜添av毛片| 2018国产大陆天天弄谢| 99热这里只有精品一区| 亚洲精品久久久久久婷婷小说| √禁漫天堂资源中文www| 亚洲国产精品国产精品| 婷婷色综合大香蕉| 一边摸一边做爽爽视频免费| 国产精品久久久久久久电影| 久久国产亚洲av麻豆专区| 久久毛片免费看一区二区三区| 一级毛片 在线播放| 婷婷成人精品国产| 国产免费一级a男人的天堂| 日韩三级伦理在线观看| 久久精品国产鲁丝片午夜精品| 国产免费一级a男人的天堂| 有码 亚洲区| 久久久久久久国产电影| 日韩中字成人| 热re99久久精品国产66热6| av网站免费在线观看视频| 国产成人a∨麻豆精品| 另类亚洲欧美激情| a级毛片免费高清观看在线播放| 国产日韩欧美亚洲二区| 人人妻人人澡人人看| 天堂俺去俺来也www色官网| 中文天堂在线官网| 亚洲欧美清纯卡通| 国产在线免费精品| 校园人妻丝袜中文字幕| 日韩在线高清观看一区二区三区| 欧美国产精品一级二级三级| 大又大粗又爽又黄少妇毛片口| 日本vs欧美在线观看视频| 久久人人爽人人片av| 全区人妻精品视频| videossex国产| 精品人妻熟女毛片av久久网站| 国产亚洲最大av| 午夜福利视频在线观看免费| 日韩一本色道免费dvd| 久久国内精品自在自线图片| 中文字幕人妻丝袜制服| 我要看黄色一级片免费的| 亚洲国产日韩一区二区| 亚洲色图综合在线观看| 国产午夜精品一二区理论片| av一本久久久久| 天天影视国产精品| 桃花免费在线播放| av黄色大香蕉| 日本wwww免费看| 蜜桃国产av成人99| 国产精品一国产av| 飞空精品影院首页| 免费观看a级毛片全部| 麻豆精品久久久久久蜜桃| 成人毛片a级毛片在线播放| 日韩免费高清中文字幕av| 免费av不卡在线播放| 在线观看美女被高潮喷水网站| 国产又色又爽无遮挡免| 99久久中文字幕三级久久日本| 如何舔出高潮| 日本色播在线视频| 久热久热在线精品观看| 亚洲精品日韩av片在线观看| 亚洲成人一二三区av| 蜜臀久久99精品久久宅男| 国产精品99久久99久久久不卡 | 日本黄色片子视频| av在线观看视频网站免费| 51国产日韩欧美| 欧美日韩一区二区视频在线观看视频在线| 我要看黄色一级片免费的| 夫妻性生交免费视频一级片| 能在线免费看毛片的网站| 精品酒店卫生间| 国产高清有码在线观看视频| 看免费成人av毛片| 免费观看无遮挡的男女| 国产精品一区二区在线观看99| 美女xxoo啪啪120秒动态图| 赤兔流量卡办理| 少妇的逼好多水| 男女无遮挡免费网站观看| 最近最新中文字幕免费大全7| 成年av动漫网址| 日本色播在线视频| 女的被弄到高潮叫床怎么办| 最黄视频免费看| 999精品在线视频| 国产精品国产三级专区第一集| 欧美精品亚洲一区二区| 人妻夜夜爽99麻豆av| 中文字幕精品免费在线观看视频 | 爱豆传媒免费全集在线观看| 亚洲欧美色中文字幕在线| 亚洲av男天堂| 免费少妇av软件| 久久久久视频综合| 欧美97在线视频| 五月玫瑰六月丁香| 秋霞伦理黄片| 亚洲欧洲精品一区二区精品久久久 | 午夜精品国产一区二区电影| 又大又黄又爽视频免费| 高清毛片免费看| 精品久久久久久电影网| 精品亚洲成a人片在线观看| 精品一区二区免费观看| 久久久久久久亚洲中文字幕| 日韩三级伦理在线观看| 成年女人在线观看亚洲视频| 国产男女内射视频| av视频免费观看在线观看| 爱豆传媒免费全集在线观看| 亚洲丝袜综合中文字幕| 男女国产视频网站| 国产毛片在线视频| 色视频在线一区二区三区| 免费看光身美女| 免费观看无遮挡的男女| 最近中文字幕2019免费版| 国产免费一区二区三区四区乱码| 国产熟女欧美一区二区| 久久国内精品自在自线图片| 久久久久久久久久久久大奶| 午夜激情福利司机影院| 国产 一区精品| 在线亚洲精品国产二区图片欧美 | 国产高清三级在线| 大码成人一级视频| 少妇的逼水好多| 久久影院123| 亚洲久久久国产精品| 久久99热这里只频精品6学生| 欧美+日韩+精品| 午夜免费鲁丝| 久久国产精品大桥未久av| 日韩免费高清中文字幕av| 国产精品久久久久久久电影| a 毛片基地| 亚洲激情五月婷婷啪啪| 婷婷色av中文字幕| 一级,二级,三级黄色视频| a级毛色黄片| 国产黄频视频在线观看| 建设人人有责人人尽责人人享有的| 国产精品偷伦视频观看了| 在线观看www视频免费| 制服诱惑二区| 内地一区二区视频在线| 成人国产av品久久久| 少妇丰满av| 熟妇人妻不卡中文字幕| 亚洲怡红院男人天堂| av线在线观看网站| 一本色道久久久久久精品综合| 亚洲av成人精品一区久久| 国产精品免费大片| 熟女av电影| 久久97久久精品| 亚洲经典国产精华液单| 色婷婷久久久亚洲欧美| 亚洲av欧美aⅴ国产| 简卡轻食公司| 国产黄频视频在线观看| 亚洲精品国产av蜜桃| 99热国产这里只有精品6| 涩涩av久久男人的天堂| 高清av免费在线| 亚洲精华国产精华液的使用体验| 免费大片18禁| 夫妻性生交免费视频一级片| 在现免费观看毛片| 免费人妻精品一区二区三区视频| 另类精品久久| 少妇人妻久久综合中文| 男人添女人高潮全过程视频| 青春草亚洲视频在线观看| 国产毛片在线视频| 国产免费一区二区三区四区乱码| 在线看a的网站| 韩国av在线不卡| 国产精品成人在线| 国产精品蜜桃在线观看| 桃花免费在线播放| av视频免费观看在线观看| 国产精品女同一区二区软件| 女人久久www免费人成看片| 丰满少妇做爰视频| 美女大奶头黄色视频| 亚洲欧美日韩另类电影网站| 精品国产乱码久久久久久小说| 亚洲图色成人| 一级a做视频免费观看| 热99久久久久精品小说推荐| 日本爱情动作片www.在线观看| 亚洲经典国产精华液单| 下体分泌物呈黄色| 亚洲美女黄色视频免费看| 18禁观看日本| 五月玫瑰六月丁香| 国产毛片在线视频| 18禁在线无遮挡免费观看视频| 午夜福利在线观看免费完整高清在| 亚洲欧美中文字幕日韩二区| a级毛片在线看网站| 免费黄色在线免费观看| 中文欧美无线码| 91精品国产九色| 视频区图区小说| 久久国产精品男人的天堂亚洲 | 天堂俺去俺来也www色官网| 最黄视频免费看| 国产亚洲精品第一综合不卡 | 插阴视频在线观看视频| 亚洲第一区二区三区不卡| 狂野欧美激情性bbbbbb| 久久久久精品久久久久真实原创| 男人添女人高潮全过程视频| 黄色怎么调成土黄色| 色94色欧美一区二区| 成年人午夜在线观看视频| 只有这里有精品99| 极品少妇高潮喷水抽搐| 啦啦啦在线观看免费高清www| 亚洲人成网站在线观看播放| 亚洲精品av麻豆狂野| 久久人妻熟女aⅴ| 最近的中文字幕免费完整| 看非洲黑人一级黄片| tube8黄色片| 丰满迷人的少妇在线观看| 成年人免费黄色播放视频| 国产精品久久久久成人av| 亚洲av国产av综合av卡| 国产在线一区二区三区精| 国产国拍精品亚洲av在线观看| 国产精品99久久久久久久久| 精品久久久精品久久久| freevideosex欧美| 丝瓜视频免费看黄片| 午夜久久久在线观看| 亚洲国产精品999| 午夜老司机福利剧场| 久久久亚洲精品成人影院| 丝袜在线中文字幕| 亚洲av男天堂| 国产伦理片在线播放av一区| 亚洲高清免费不卡视频| 亚洲一区二区三区欧美精品| 九九爱精品视频在线观看| 一级片'在线观看视频| 欧美变态另类bdsm刘玥| 美女内射精品一级片tv| 人妻夜夜爽99麻豆av| 91精品国产九色| 97超视频在线观看视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 九草在线视频观看| 色婷婷久久久亚洲欧美| 欧美日韩视频精品一区| 夜夜爽夜夜爽视频| 国产精品女同一区二区软件| 国产白丝娇喘喷水9色精品| 国产精品嫩草影院av在线观看| 午夜日本视频在线| 18禁观看日本| a级毛片免费高清观看在线播放| 大香蕉久久网| 简卡轻食公司| 99热国产这里只有精品6| 在线观看免费视频网站a站| av国产精品久久久久影院| 两个人的视频大全免费| 欧美 日韩 精品 国产| 亚洲av.av天堂| kizo精华| 亚洲欧美清纯卡通| 国产精品成人在线| 国产日韩欧美在线精品| 一区二区三区四区激情视频| 99精国产麻豆久久婷婷| 99热6这里只有精品| 国产伦精品一区二区三区视频9| 另类亚洲欧美激情| 王馨瑶露胸无遮挡在线观看| 久久99精品国语久久久| 国产在线一区二区三区精| 国产精品一区二区在线不卡| 亚洲成人av在线免费| 天堂俺去俺来也www色官网| 精品一区二区免费观看| 色5月婷婷丁香| 久久国内精品自在自线图片| 观看av在线不卡| 99久久精品一区二区三区| 黄色毛片三级朝国网站| 亚洲精品亚洲一区二区| 丁香六月天网| 青青草视频在线视频观看| 国产成人精品久久久久久| 欧美成人精品欧美一级黄| 一本色道久久久久久精品综合| 十八禁网站网址无遮挡| 国产片特级美女逼逼视频| 成人国产麻豆网| 少妇的逼水好多| 免费观看性生交大片5| 国产欧美亚洲国产| 欧美日韩av久久| 极品人妻少妇av视频| 少妇被粗大的猛进出69影院 | 久久国内精品自在自线图片| 亚洲色图 男人天堂 中文字幕 | 日韩,欧美,国产一区二区三区| 久久久久网色| 欧美bdsm另类| 两个人免费观看高清视频| 亚洲国产最新在线播放| 久久99精品国语久久久| 黄色欧美视频在线观看| av在线播放精品| 男女啪啪激烈高潮av片| 老女人水多毛片| 午夜免费鲁丝| a级毛片在线看网站| 高清在线视频一区二区三区| 日本猛色少妇xxxxx猛交久久| 久久久久国产网址| 五月天丁香电影| 精品久久久久久久久亚洲| 国产精品国产av在线观看| 精品久久久精品久久久| av免费观看日本| 一区二区日韩欧美中文字幕 | 日韩一区二区三区影片| 免费不卡的大黄色大毛片视频在线观看| 伊人久久精品亚洲午夜| av女优亚洲男人天堂| 国产伦精品一区二区三区视频9| 国产毛片在线视频| 在线 av 中文字幕| 日韩精品有码人妻一区| 97超碰精品成人国产| 国产老妇伦熟女老妇高清| 成人国产麻豆网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲综合色惰|