• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron Momentum Spectroscopy for Saturated Alkanes CnH2n+2(n=4-6)

    2012-11-06 07:01:07YANGZeJinGUOYunDongZHUZhengHeYANGXiangDong
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:烷烴動(dòng)量譜線

    YANG Ze-Jin GUO Yun-Dong ZHU Zheng-He YANG Xiang-Dong

    (1School of Physics and Electronic Information Engineering,Neijiang Normal University,Neijiang 641112,Sichuan Province,P.R.China; 2Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,P.R.China)

    Electron Momentum Spectroscopy for Saturated Alkanes CnH2n+2(n=4-6)

    YANG Ze-Jin2GUO Yun-Dong1,*ZHU Zheng-He2YANG Xiang-Dong2

    (1School of Physics and Electronic Information Engineering,Neijiang Normal University,Neijiang 641112,Sichuan Province,P.R.China;2Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,P.R.China)

    Orbital electron momentum spectroscopies for saturated alkanes CnH2n+2(n=4-6)were systematically studiedusing the B3LYP/TZVP//B3LYP/aug-cc-pVTZ model.The effect of saturated alkanes CnH2n+2(n=4-6)isomers on orbital momentum distributions was analyzed.Electronic density distributions of coordinate space were systematically investigated by dual space analysis.The results indicate that the innermost valence orbitals are s-dominated whereas the next innermost valence orbitals exhibit p-dominant orbital profiles.The other valence orbitals are sp-mixed because of strong chemical bonding.The relative intensity of innermost valence orbitals is far larger than that of other orbitals.Furthermore,the relative intensity of n-alkane is larger than that of iso-alkane,which indicates that there is an obvious correlationbetweentherelativeintensityandthenumberofmigratedmethyls.

    Electron momentum spectroscopy;Dual space analysis; Saturated alkane

    The advantage of electron momentum spectroscopy(EMS)is that it can measure the orbital binding energy and momentum distributions for electrons located on individual orbitals of the molecule target,which provides more comprehensive information on electronic structures of molecules than conventional position space information only.With the development of experimental technique,valence orbitals rather than frontier orbitals for sizable molecules can be resolved[1].As a result,the great potential of EMS for exploring the electron structures of atoms and molecules can be extended[2].

    Small saturated hydrocarbon molecules using EMS can be used as prototypes to study larger alkanes and provide necessary information as a probe for the growth of the linear chain structures or turning into branched species.According to the author′s knowledge,only some small saturated hydrocarbons CnH2n+2(n=1-5)have been investigated extensively both theoretically andexperimentally by EMS[3-22],whereas there is very little research on systematical studies to reveal valence orbital responses to the chain growth.For exemple,addition of a methyl shift is still rare.In the present study,individual orbital responses to the isomerization of the saturated alkanes are carried out.It focuses on orbital responses to energy shift caused by the addition of methyl functional group in the molecule using dual space analysis(DSA)[20].

    1 Computational methods and details

    The B3LYP/TZVP method[20,23-24]has been used to calculate wave functions in coordinate space based on the stable geometry structures for the alkanes obtained using the B3LYP/aug-ccpVTZ model.The Gaussian 03 computational chemistry package is employed for related quantum mechanical calculations[25]. The orbitals obtained in position space are then Fourier transformed into momentum space using the HEMS code[26],under a number of approximations,such as Born-Oppenheimer approximation,independent particle approximation,and the plane wave impulse approximation(PWIA)[26].The overlap between the targetion is the one electron Dyson orbital[27],

    σ∝∫dΩ|φj(p)|2(1) where Ω is solid angle and p is the momentum of the target electron at the instant of ionization.The Dyson orbital φj(p)in momentum space is approximated by the Kohn-Sham(KS)orbitals in ground electronic states[28].

    2 Results and discussion

    According to the responses of the valence orbital to the methyl moiety,one could sort out the molecular orbitals as:(a) methyl affected orbitals,which engage with significant changes in intensity and shape,and(b)methyl disturbed orbitals,which experience minor changes in the orbitals.From a comprehensive analysis of the valence orbitals one could know that methyl site changes only cause the changes in certain valence orbitals not all the valence orbitals,indicating a molecular structural dependence.As a result,the nearly unchanged orbitals can be viewed as signature orbitals.The detailed highest occupied molecular orbitals(HOMOs)and total collision reaction cross section of the CnH2n+2(n=4-6)were published elsewhere[23],this article reveals the re sponses of the inner valence molecular orbitals to the branched carbon chains.

    2.1 Isomer independence of the relative intensity of the inner most valence orbitals

    Fig.1(a,b)reports the simulated inner most valence molecular orbitals(MOs)of the alkanes in momentum and coordinate spaces.Strong s-dominated orbital profiles in momentum space are also seen in the orbital electron density distributions in coordinate space.The very similar s-electron dominant shape of the orbital momentum profile suggests that the momentum space information is not sensitive to reflect small orbital electron density changes in the alkanes.The normal linear alkanes exhibit slightly stronger intensities than their isomers but in the order of n-bu-tane>iso-butane,n-pentane>iso-pentane>neo-pentane,hexane>iso-hexane>3-methylhexane≈2,3-dimethylbutane>2,2-dimethylbutane.

    Fig.1 Electron momentum spectroscopies(EMS)and electron density distributions(EDD)of the innermost molecular orbitals of butane,pentane(a),and hexane(b)

    Compared to n-alkanes,the iso-alkanes have smaller intensities and the neo-alkanes have the smallest intensities,suggesting that linear species corresponds to the more intensive electron distributions in momentum space.Therefore,the general variation tendencies of the relative intensity in the innermost valence orbitals are correlated with the carbons saturated by the number of the other carbon atoms.Moreover,the relative intensity of the innermost valence orbital quickly reaches zero at about 1 a.u., which is slightly smaller than the other valence orbitals,indicating that the electrons in the innermost valence orbitals spread over the molecular backbone into long range.From analyses of the orbital electron density distributions in coordinate space,it is clearly seen that all of the electrons contribute to this orbital.

    2.2 Isomer dependence of the relative intensity of other valence orbitals

    Other valence orbitals,such as the second innermost valence orbitals,however,reveal bell-shaped orbital profiles.The orbital cross sections exhibit a bell-shaped distributions,as shown in Fig.2(a,b).The similarities in the shape of the orbital momentum distributions indicate that the related orbitals contain a nodal plane in the orbitals,that is,the orbital electron density distributions contain positive and negative contributions,separated by a zero charge plane.

    The second innermost valence orbital of pentane exhibits a similar trend that has been seen in the innermost s-dominated profiles.That is the maximum momentum intensity order of n-pentane>iso-pentane>neo-pentane with values of 0.50,0.40, and 0.30,respectively,is observed.Similarly,this order of relative intensity variation for hexane is clearly observed.For example,n-hexane has the largest intensity with a value of 0.60,the relative intensity reduces to about 0.50 for iso-hexane and 3-methylpentane,whereas the maximum relative intensity decreases to about 0.40 for 2,2-dimethylbutane and 2,3-dimethylbutane.

    Comparison of the three n-alkanes,it is found that the intensity increases with the increase of the number of the carbons,and the order of the maximum peak value of butane,pentane,and hexane is given by n-butane<n-pentane<n-hexane as more electrons are bound with hexane.The fact that the bell-shaped orbital momentum profiles of these second innermost valence orbitals of the alkanes distribute into larger momentum region of up to 1.5 a.u.,whereas the innermost valence orbitals spread to smaller momentum region of<1.0 a.u.,indicated the latter(innermost valence orbitals)spread into larger space in position space. The nodal plane in the former(the second innermost valence orbitals)contributes to the shrinkage of the electron density in this orbital.

    2.3 Isomer dependence of the relative intensity of valence orbitals of alkane

    Fig.2 EMS and EDD of the next innermost valence orbitals of butane,pentane(a)and hexane(b)

    Fig.3 EMS and EDD of the selected valence orbitals of n-buane and iso-butane

    Selected electron orbital momentum distributions for n-butane and iso-butane are shown in Fig.3 to understand the carbon chain branching in butane.The selected representative orbitals reveal that the methyl moiety indeed causes significant changes to electron distributions.For example,MO7 of n-butane is formed by mixed sp-electrons,whereas a bell-shaped profile is observed in iso-butane.However,opposite contributions are found in orbital MO9.The orbital profiles vary from a half bell shaped orbital profiles in iso-butane to a bell shaped orbital profiles in butane.Moreover,in orbital MO15,the half bell-shaped orbital profiles in n-butane are distorted to reflect the methyl addition,as given in Fig.3.This figure indicates strong distortion of the orbital momentum distributions as the addition of the methyl moiety,depending on the number of electron density nodal planes and the degree of the electron density overlap.Fig. 4 and Fig.5 present orbital distributions of pentane and hexane, respectively.In Fig.4,momentum distributions of MO10 of pentane gradually vary from bell-shaped to half bell shaped orbital distributions,which are the opposite trend found in Fig.4 for MO14 and MO19,respectively.In Fig.5,it is found that the more complicated momentum distributions among five hexane isomers have been occurred.The orbital momentum distributions show three clusters of orbital profile behaviors,consisting of bell-shaped,half bell-shaped,and sp-hybridized shaped orbitals.Further analysis finds that certain pzelectrons have contributed to the distributions of MO15 in 3-methylpentane and 2,3-dimethylbutane,together with MO24 in n-hexane.The sphybrided two peaks in MO15 of n-hexane and in MO24 of 2,2-dimethylbutane revealed the strong interactions between different electrons.

    Fig.4 EMS and EDD of the selected valence orbitals of n-pentane and iso-pentane presented

    Fig.5 EMS and EDD of the selected valence orbitals of n-hexane,iso-hexane

    3 Conclusions

    Valence orbitals for three saturated alkanes(butane,pentane, and hexane)and their isomers have been studied on their valence orbitals using dual space analysis.The innermost valence orbitals of the alkanes show certain similarities,differing only in their relative intensities.The second innermost valence orbitals of the alkanes reveal bell shaped orbital distributions,indicating the existence of a nodal plane in their orbital electron density distrubitions.The selected valence orbitals further reveal the structural dependence of the orbitals.The n-alkanes show stronger intensities than their isomers and the intensities increase with the number of the carbon atoms.

    Acknowledgments: One of the authors,YANG Ze-Jin(ZY),thanks Swinburne University of Technology (SUT,Australia)for hospitality. ZY completed doctoral thesis research at SUT supervised by Professor WANG Feng.

    1 Ning,C.G.;Liu,K.;Luo,Z.H.;Zhang,S.F.;Deng,J.K.Chem. Phys.Lett.,2009,476:157

    2 Takahashi,M.Bull.Chem.Soc.Jpn.,2009,82:751

    3 Dey,S.;Dixon,A.J.;McCarthy,I.E.;Weigold,E.J.Electron Spectrosc.Relat.Phenom.,1976,9:397

    4 Weigold,E.;Dey,S.;Dixon,A.J.;McCarthy,I.E.Chem.Phys. Lett.,1976,41:21

    5 Clark,S.A.C.;Reddish,T.J.;Brion,C.E.;Davidson,E.R.;Frey, R.F.Chem.Phys.,1990,143:1

    6 Chen,X.J.;Tian,S.X.;Jia,C.C.;Yu,X.Q.;Yang,B.Y.;Xu,K. Z.Acta Phys.-Chim.Sin.,1998,14:490 [陳向軍,田善喜,賈昌春,虞孝麒,楊炳忻,徐克尊.物理化學(xué)學(xué)報(bào),1998,14:490]

    7 Fan,X.W.;Zhou,S.J.;Zhang,Q.X.;Deng,J.K.;Zheng,Y.Y.; Gao,N.F.;Chen,X.J.Acta Phys.-Chim.Sin.,1998,14:573 [樊曉偉,周少杰,張慶祥,鄧景康,鄭延友,高乃飛,陳學(xué)俊.物理化學(xué)學(xué)報(bào),1998,14:573]

    8 Pang,W.;Shang,R.;Gao,N.;Zhang,W.;Gao,J.;Deng,J.;Chen, X.;Zheng,Y.Phys.Lett.A,1998,248:230

    9 Pang,W.N.;Zhang,W.X.;Gao,N.F.;Shang,R.C.;Deng,J.K.; Chen,X.J.Chin.Phys.Lett.,1998,15:648 [龐文寧,張文新,高乃飛,尚仁成,鄧景康,陳學(xué)俊.中國(guó)物理快報(bào),1998,15:648]

    10 Tian,S.X.;Chen,X.J.;Jia,C.C.;Xu,C.K.;Yang,B.X.;Xu,K. Z.;Shuang,F.;Yang,J.L.J.Phys.B-At.Mol.Opt.Phys.,1998, 31:2055

    11 Deng,J.K.;Li,G.Q.;Huang,J.D.;Deng,H.;Wang,X.D.;Wang, F.;He,Y.;Zhang,Y.A.;Ning,C.G.;Gao,N.F.;Wang,Y.;Chen, X.J.;Zheng,Y.;Brion,C.E.Chem.Phys.Lett.,1999,313:134

    12 Jia,C.C.;Chen,X.J.;Tian,S.X.;Oy,G.;Peng,L.L.;Yang,B. X.;Xu,K.Z.;Yuan,L.F.;Yang,J.L.J.Phys.B-At.Mol.Opt. Phys.,1999,32:1515

    13 Pang,W.N.;Shang,R.C.;Gao,N.F.;Zhang,W.X.;Chen,X.J.; Zheng,Y.;Brion,C.E.Chem.Phys.Lett.,1999,299:207

    14 Zheng,Y.;Pang,W.N.;Shang,R.C.;Chen,X.J.;Brion,C.E.; Ghanty,T.K.;Davidson,E.R.J.Chem.Phys.,1999,111:9526

    15 Deng,J.K.;Li,G.Q.;He,Y.;Huang,J.D.;Deng,H.;Wang,X. D.;Wang,F.;Zhang,Y.A.;Ning,C.G.;Gao,N.F.;Wang,Y.; Chen,X.J.;Zheng,Y.Y.Chin.Phys.Lett.,2000,17:795 [鄧景康,李桂琴,何 垚,黃建東,鄧 慧,王曉東,王 芳,張亦安,寧傳剛,高乃飛,王 巖,陳學(xué)俊,鄭延友.中國(guó)物理快報(bào),2000,17: 795]

    16 Pang,W.N.;Gao,J.F.;Ruan,C.J.;Shang,R.C.;Trofimov,A.B.; Deleuze,M.S.J.Chem.Phys.,2000,112:8043

    17 Brion,C.E.;Cooper,G.;Zheng,Y.;Litvinyuk,I.V.;McCarthy,I. E.Chem.Phys.,2001,270:13

    18 Deleuze,M.S.;Pang,W.N.;Salam,A.;Shang,R.C.J.Am.Chem. Soc.,2001,123:4049

    19 Deng,J.K.;Li,G.Q.;He,Y.;Huang,J.D.;Deng,H.;Wang,X. D.;Wang,F.;Zhang,Y.A.;Ning,C.G.;Gao,N.F.;Wang,Y.; Chen,X.J.;Zheng,Y.J.Chem.Phys.,2001,114:882

    20 Wang,F.J.Phys.Chem.A,2003,107:10199

    21 Knippenberg,S.;Huang,Y.R.;Hajgato,B.;Francois,J.P.;Deng, J.K.;Deleuze,M.S.J.Chem.Phys.,2007,127:174306

    22 Wang,F.;Pang,W.Mol.Simul.,2007,33:1173

    23 Saha,S.;Wang,F.;Falzon,C.T.J.Chem.Phys.,2005,123: 124315

    24 Tian,S.X.;Chen,X.J.;Xu,C.K.;Xu,K.Z.;Yuan,L.F.;Yang,J. L.J.Electron Spectrosc.Relat.Phenom.,1999,105:99

    25 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03. Revision C.02.Wallingford,CT:Gaussian Inc.,2004

    26 Duffy,P.;Casida,M.E.;Brion,C.E.;Chong,D.P.Chem.Phys., 1992,165:183

    27 Coulson,C.A.Rev.Mod.Phys.,1960,32:170

    28 Duffy,P.;Chong,D.P.;Casida,M.E.;Salahub,D.R.Phys.Rev. A,1994,50:4707

    飽和烷烴分子CnH2n+2(n=4-6)的電子動(dòng)量光譜

    楊則金2郭云東1,*朱正和2楊向東2

    (1內(nèi)江師范學(xué)院物理與電子信息工程學(xué)院,四川內(nèi)江 641112;2四川大學(xué)原子與分子物理研究所,成都 610065)

    使用B3LYP/TZVP//B3LYP/aug-cc-pVTZ方法系統(tǒng)研究了飽和烷烴分子CnH2n+2(n=4-6)的軌道電子動(dòng)量光譜,比較了同分異構(gòu)體CnH2n+2(n=4-6)對(duì)軌道動(dòng)量分布的影響.結(jié)合二維空間分析方法對(duì)電子在坐標(biāo)空間中的密度分布進(jìn)行了系統(tǒng)的研究.計(jì)算結(jié)果表明,最內(nèi)價(jià)殼層電荷分布主要由s電子貢獻(xiàn),第二近鄰芯價(jià)殼層則主要由p電子貢獻(xiàn),而其余的價(jià)殼層則為sp雜化.最內(nèi)價(jià)軌道表現(xiàn)出最大的譜線強(qiáng)度并且遠(yuǎn)大于其它軌道的譜線強(qiáng)度,而且正烷烴的譜線強(qiáng)度要大于異烷烴等同分異構(gòu)體的譜線強(qiáng)度,表現(xiàn)出了明顯的與甲基移動(dòng)的個(gè)數(shù)有關(guān)的性質(zhì).

    電子動(dòng)量光譜; 二維空間分析; 飽和烷烴

    O644

    Received:April 10,2010;Revised:July 16,2010;Published on Web:July 19,2010.

    *Corresponding author.Email:g308yd@126.com;Tel:+86-832-2341982;Fax:+86-832-2341679.

    The project was supported by the National Natural Science Foundation of China(10676025,10574096),China Scholarship Council(CSC),and Science-Technology Foundation for Young Scientist of Sichuan Province,China(09ZQ026-049).

    國(guó)家自然科學(xué)基金(10676025,10574096),國(guó)家留學(xué)基金委員會(huì)(CSC)和四川省青年科技基金(09ZQ026-049)資助項(xiàng)目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    烷烴動(dòng)量譜線
    動(dòng)量守恒定律在三個(gè)物體系中的應(yīng)用
    氣相色譜六通閥在正構(gòu)烷烴及碳數(shù)分布測(cè)定中的應(yīng)用
    云南化工(2021年11期)2022-01-12 06:06:30
    基于HITRAN光譜數(shù)據(jù)庫(kù)的合并譜線測(cè)溫仿真研究
    應(yīng)用動(dòng)量守恒定律解題之秘訣
    動(dòng)量相關(guān)知識(shí)的理解和應(yīng)用
    高苯原料油烷烴異構(gòu)化的MAX-ISOM技術(shù)
    鐵合金光譜譜線分離實(shí)驗(yàn)研究
    鍶原子光鐘鐘躍遷譜線探測(cè)中的程序控制
    烷烴油滴在超臨界二氧化碳中溶解的分子動(dòng)力學(xué)模擬
    藥芯焊絲GMAW電弧光譜的研究
    午夜福利视频精品| 亚洲欧美日韩东京热| 国产成人aa在线观看| 亚洲精品国产av成人精品| 久久6这里有精品| 激情 狠狠 欧美| 777米奇影视久久| 久久人人爽人人爽人人片va| 亚州av有码| 中国三级夫妇交换| 美女主播在线视频| 亚洲精品亚洲一区二区| 国产极品天堂在线| 久久精品人妻少妇| 你懂的网址亚洲精品在线观看| 夫妻性生交免费视频一级片| 国产一区二区三区综合在线观看 | 深夜a级毛片| 汤姆久久久久久久影院中文字幕| 久久热精品热| 纵有疾风起免费观看全集完整版| 亚洲第一区二区三区不卡| 国产有黄有色有爽视频| 插逼视频在线观看| 一级毛片黄色毛片免费观看视频| 三级男女做爰猛烈吃奶摸视频| 亚洲色图av天堂| 亚洲av二区三区四区| av福利片在线观看| 国内精品美女久久久久久| 精品熟女少妇av免费看| 国产熟女欧美一区二区| 国产精品一区二区三区四区免费观看| 亚洲,欧美,日韩| 国产伦在线观看视频一区| 精品少妇黑人巨大在线播放| 少妇熟女欧美另类| 亚洲四区av| 亚洲四区av| 最近2019中文字幕mv第一页| 日本欧美国产在线视频| 在线观看国产h片| av又黄又爽大尺度在线免费看| 2018国产大陆天天弄谢| 亚洲自偷自拍三级| 狂野欧美激情性xxxx在线观看| 久久久精品欧美日韩精品| 精品少妇久久久久久888优播| 欧美另类一区| 国产av国产精品国产| av卡一久久| 18禁裸乳无遮挡免费网站照片| 婷婷色综合www| 狂野欧美激情性bbbbbb| 欧美成人精品欧美一级黄| 国产大屁股一区二区在线视频| 国产日韩欧美亚洲二区| 别揉我奶头 嗯啊视频| 中文在线观看免费www的网站| 国产精品人妻久久久久久| 欧美+日韩+精品| 国产精品一区二区在线观看99| 成人毛片60女人毛片免费| 亚洲精品日韩在线中文字幕| 日韩精品有码人妻一区| 在线观看三级黄色| 亚洲av一区综合| 亚洲国产精品成人综合色| 午夜老司机福利剧场| 下体分泌物呈黄色| 国产精品久久久久久精品古装| 亚洲美女搞黄在线观看| 欧美高清性xxxxhd video| 亚洲在线观看片| 中国美白少妇内射xxxbb| 国产白丝娇喘喷水9色精品| 你懂的网址亚洲精品在线观看| 婷婷色麻豆天堂久久| 精品久久久久久久久亚洲| 又大又黄又爽视频免费| 亚洲自偷自拍三级| 久久人人爽av亚洲精品天堂 | 深爱激情五月婷婷| 亚洲精品久久午夜乱码| 亚洲精品国产av成人精品| 中文字幕免费在线视频6| 午夜福利视频精品| 久久精品夜色国产| 欧美日韩亚洲高清精品| 国产高清三级在线| 日韩成人伦理影院| 三级男女做爰猛烈吃奶摸视频| 日日啪夜夜撸| 国内揄拍国产精品人妻在线| 菩萨蛮人人尽说江南好唐韦庄| a级毛片免费高清观看在线播放| 久久6这里有精品| 日本欧美国产在线视频| 亚洲精品中文字幕在线视频 | 日韩av不卡免费在线播放| eeuss影院久久| 亚洲av男天堂| 国产精品爽爽va在线观看网站| 欧美日韩国产mv在线观看视频 | 欧美3d第一页| 精品一区二区三卡| 亚洲av二区三区四区| 欧美精品人与动牲交sv欧美| 日本色播在线视频| 亚洲内射少妇av| 六月丁香七月| 久久久久网色| 18禁动态无遮挡网站| 男女那种视频在线观看| 另类亚洲欧美激情| 久久久久久久久久人人人人人人| 日韩欧美 国产精品| 亚洲欧美日韩无卡精品| 九九久久精品国产亚洲av麻豆| 成人特级av手机在线观看| 欧美精品国产亚洲| 黑人高潮一二区| 亚洲欧美日韩卡通动漫| 在现免费观看毛片| 成人亚洲精品av一区二区| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有是精品50| 精品少妇黑人巨大在线播放| 亚洲在线观看片| 久久热精品热| 国产高潮美女av| 久久99精品国语久久久| 亚洲自偷自拍三级| 91精品伊人久久大香线蕉| 日本黄色片子视频| 亚州av有码| 久久久久久久精品精品| 亚洲欧美一区二区三区国产| 国产综合懂色| 日本熟妇午夜| 亚洲一区二区三区欧美精品 | 精品99又大又爽又粗少妇毛片| 在线播放无遮挡| 寂寞人妻少妇视频99o| 少妇被粗大猛烈的视频| 国产一区二区亚洲精品在线观看| 亚洲欧美清纯卡通| 国产视频内射| 男女无遮挡免费网站观看| 岛国毛片在线播放| 在线观看av片永久免费下载| 久久久久久久久大av| 日本爱情动作片www.在线观看| 97精品久久久久久久久久精品| 欧美97在线视频| 亚洲av二区三区四区| 婷婷色麻豆天堂久久| 国产亚洲91精品色在线| 啦啦啦中文免费视频观看日本| 国产美女午夜福利| 新久久久久国产一级毛片| 日韩国内少妇激情av| 国内少妇人妻偷人精品xxx网站| 国产伦精品一区二区三区视频9| 18禁在线播放成人免费| 熟女人妻精品中文字幕| 国产精品麻豆人妻色哟哟久久| 岛国毛片在线播放| 一区二区三区精品91| 一级a做视频免费观看| 国产成人免费无遮挡视频| 亚洲欧美日韩另类电影网站 | 热re99久久精品国产66热6| 男人添女人高潮全过程视频| 岛国毛片在线播放| 国产精品成人在线| 少妇的逼好多水| 午夜福利视频1000在线观看| 免费看日本二区| 内射极品少妇av片p| 国产免费一级a男人的天堂| 国产精品人妻久久久影院| 日韩亚洲欧美综合| 亚洲天堂国产精品一区在线| 大香蕉久久网| 国产精品成人在线| 亚洲精品国产成人久久av| 热99国产精品久久久久久7| 久久精品久久久久久久性| 日韩视频在线欧美| 全区人妻精品视频| 午夜福利网站1000一区二区三区| 国产av码专区亚洲av| 精华霜和精华液先用哪个| 欧美日韩视频高清一区二区三区二| 国产乱来视频区| 国产 一区 欧美 日韩| 国产午夜精品一二区理论片| 久久精品人妻少妇| 国产爱豆传媒在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 边亲边吃奶的免费视频| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲真实伦在线观看| 偷拍熟女少妇极品色| 婷婷色综合www| 国产大屁股一区二区在线视频| 大香蕉久久网| 最新中文字幕久久久久| 成人亚洲精品av一区二区| 天天一区二区日本电影三级| 26uuu在线亚洲综合色| 亚洲精品久久午夜乱码| 热99国产精品久久久久久7| av女优亚洲男人天堂| 国产成人精品一,二区| 亚洲成色77777| 国产精品一及| 大片免费播放器 马上看| 99热全是精品| 日本-黄色视频高清免费观看| 国国产精品蜜臀av免费| 国产精品久久久久久精品古装| 国产欧美亚洲国产| 精品酒店卫生间| 亚洲激情五月婷婷啪啪| 亚洲综合色惰| 男女下面进入的视频免费午夜| 精品久久久久久电影网| 国产淫片久久久久久久久| 亚洲欧美成人精品一区二区| 日日啪夜夜撸| 久久ye,这里只有精品| 韩国av在线不卡| 91狼人影院| 国产精品成人在线| 国产精品久久久久久av不卡| 日韩视频在线欧美| 国产免费福利视频在线观看| 日韩大片免费观看网站| 国产精品熟女久久久久浪| 青春草视频在线免费观看| 在线看a的网站| 国国产精品蜜臀av免费| 2021少妇久久久久久久久久久| 偷拍熟女少妇极品色| 舔av片在线| 国产精品久久久久久精品电影小说 | 国产一区二区亚洲精品在线观看| 精品久久久久久久久av| 国产成人a∨麻豆精品| 亚洲精品国产av成人精品| 亚洲av成人精品一区久久| 在线天堂最新版资源| 18禁裸乳无遮挡动漫免费视频 | 国产精品人妻久久久久久| 国产精品国产三级专区第一集| 国产亚洲最大av| 韩国高清视频一区二区三区| 国产精品一区二区三区四区免费观看| 精品久久久久久久久亚洲| 一二三四中文在线观看免费高清| 欧美高清性xxxxhd video| 白带黄色成豆腐渣| 久久精品久久久久久噜噜老黄| 亚洲国产精品成人综合色| 国产视频内射| 久久亚洲国产成人精品v| 亚洲精品久久久久久婷婷小说| 国产亚洲最大av| 建设人人有责人人尽责人人享有的 | 日韩大片免费观看网站| 高清欧美精品videossex| 欧美一级a爱片免费观看看| 肉色欧美久久久久久久蜜桃 | 老师上课跳d突然被开到最大视频| 国产午夜福利久久久久久| 中文精品一卡2卡3卡4更新| 国产亚洲av嫩草精品影院| 天堂网av新在线| 亚洲精品视频女| 综合色丁香网| 又爽又黄无遮挡网站| 日韩国内少妇激情av| 99热国产这里只有精品6| 少妇裸体淫交视频免费看高清| 国产中年淑女户外野战色| 热re99久久精品国产66热6| 熟女av电影| 亚洲av二区三区四区| 精华霜和精华液先用哪个| 在线观看免费高清a一片| 欧美成人午夜免费资源| 免费av不卡在线播放| 国产精品人妻久久久影院| 男人和女人高潮做爰伦理| 亚洲丝袜综合中文字幕| 亚洲精品视频女| 免费大片18禁| 内地一区二区视频在线| av天堂中文字幕网| 欧美精品国产亚洲| av女优亚洲男人天堂| 久久精品熟女亚洲av麻豆精品| 亚洲欧美精品自产自拍| 有码 亚洲区| a级毛色黄片| 国产欧美亚洲国产| 成人国产麻豆网| videossex国产| 国产大屁股一区二区在线视频| 亚洲欧美精品自产自拍| 欧美性感艳星| 日本爱情动作片www.在线观看| 狠狠精品人妻久久久久久综合| 久久久久久久久久久免费av| 亚洲av男天堂| 在线 av 中文字幕| 国产精品人妻久久久久久| eeuss影院久久| 性色avwww在线观看| videos熟女内射| 边亲边吃奶的免费视频| 激情五月婷婷亚洲| a级毛色黄片| 久久久久久久久久久免费av| 亚州av有码| 下体分泌物呈黄色| 国产午夜精品一二区理论片| 久久精品国产自在天天线| av国产久精品久网站免费入址| av在线老鸭窝| 在线观看av片永久免费下载| 搡老乐熟女国产| 晚上一个人看的免费电影| 插逼视频在线观看| 亚洲国产欧美人成| 99热这里只有是精品在线观看| 成人高潮视频无遮挡免费网站| 亚洲国产av新网站| 国产片特级美女逼逼视频| 亚洲无线观看免费| 五月伊人婷婷丁香| 插阴视频在线观看视频| 国产在线男女| 婷婷色综合大香蕉| 亚洲综合精品二区| 一级毛片aaaaaa免费看小| 黄片无遮挡物在线观看| 性插视频无遮挡在线免费观看| av在线老鸭窝| 男人舔奶头视频| 一二三四中文在线观看免费高清| 99热这里只有是精品50| 国产精品偷伦视频观看了| 午夜福利视频精品| 日韩欧美一区视频在线观看 | 91精品国产九色| 肉色欧美久久久久久久蜜桃 | 日韩欧美一区视频在线观看 | 亚洲av不卡在线观看| 成年女人看的毛片在线观看| 精品久久久久久久久av| 国产精品久久久久久精品古装| 国产老妇女一区| 亚洲欧洲日产国产| 免费看日本二区| 免费av不卡在线播放| 精品久久久久久久久av| 欧美 日韩 精品 国产| 亚洲电影在线观看av| 欧美另类一区| 日本黄色片子视频| 精品酒店卫生间| 久久久久久久午夜电影| 特大巨黑吊av在线直播| 午夜福利在线观看免费完整高清在| 青春草亚洲视频在线观看| 免费黄网站久久成人精品| 久久热精品热| 91精品国产九色| 日本免费在线观看一区| 亚洲精品色激情综合| 在线免费观看不下载黄p国产| 看十八女毛片水多多多| 中文精品一卡2卡3卡4更新| 天堂俺去俺来也www色官网| 精品熟女少妇av免费看| 国产黄片视频在线免费观看| 欧美97在线视频| av国产免费在线观看| 亚洲精品国产av成人精品| 国产成人一区二区在线| 免费不卡的大黄色大毛片视频在线观看| a级毛色黄片| 亚洲色图av天堂| 舔av片在线| 国产成人精品一,二区| 神马国产精品三级电影在线观看| 少妇裸体淫交视频免费看高清| 老师上课跳d突然被开到最大视频| 永久网站在线| 97在线视频观看| 国产爽快片一区二区三区| 日韩av不卡免费在线播放| 亚洲精品影视一区二区三区av| 成人欧美大片| 免费高清在线观看视频在线观看| 亚洲av一区综合| 国产色爽女视频免费观看| 午夜福利高清视频| 毛片一级片免费看久久久久| 亚洲在线观看片| 亚洲自拍偷在线| 老司机影院成人| 一个人看视频在线观看www免费| 亚洲伊人久久精品综合| 韩国高清视频一区二区三区| 高清午夜精品一区二区三区| 嫩草影院精品99| 最近最新中文字幕大全电影3| 看非洲黑人一级黄片| 国产成人aa在线观看| 国产成人freesex在线| 国产av不卡久久| 欧美高清性xxxxhd video| 亚洲激情五月婷婷啪啪| 国产免费视频播放在线视频| 国产午夜精品一二区理论片| 国产黄频视频在线观看| 国产精品三级大全| 高清在线视频一区二区三区| 伦精品一区二区三区| 成人国产麻豆网| 欧美xxxx性猛交bbbb| 黄色日韩在线| 日韩强制内射视频| 久久精品国产a三级三级三级| 神马国产精品三级电影在线观看| 丰满少妇做爰视频| 在线精品无人区一区二区三 | 亚洲精品国产成人久久av| 男人添女人高潮全过程视频| 国产永久视频网站| 一本久久精品| 久久鲁丝午夜福利片| 久久综合国产亚洲精品| 欧美潮喷喷水| 草草在线视频免费看| 男人狂女人下面高潮的视频| 天天躁夜夜躁狠狠久久av| 欧美日韩国产mv在线观看视频 | 日本熟妇午夜| 精品久久国产蜜桃| 中文字幕人妻熟人妻熟丝袜美| 国产午夜精品久久久久久一区二区三区| 狂野欧美激情性bbbbbb| 插逼视频在线观看| 国产成人免费观看mmmm| 91精品国产九色| 日本与韩国留学比较| 简卡轻食公司| 日本免费在线观看一区| 亚洲aⅴ乱码一区二区在线播放| 欧美老熟妇乱子伦牲交| 少妇的逼好多水| 精品酒店卫生间| 最新中文字幕久久久久| 最近2019中文字幕mv第一页| 一级毛片黄色毛片免费观看视频| 啦啦啦中文免费视频观看日本| 亚洲欧美成人精品一区二区| 国产国拍精品亚洲av在线观看| 直男gayav资源| 久久国产乱子免费精品| 建设人人有责人人尽责人人享有的 | 久久久久网色| 精品熟女少妇av免费看| av国产久精品久网站免费入址| 99久久九九国产精品国产免费| 一级毛片久久久久久久久女| 亚洲三级黄色毛片| 中国三级夫妇交换| 国产乱人偷精品视频| 国产一区二区在线观看日韩| 免费看av在线观看网站| 在线观看av片永久免费下载| 男人爽女人下面视频在线观看| 国产av码专区亚洲av| 丰满少妇做爰视频| 久久女婷五月综合色啪小说 | 欧美高清性xxxxhd video| 精品国产乱码久久久久久小说| 91精品国产九色| 黄片无遮挡物在线观看| 久久精品国产亚洲网站| 精品人妻偷拍中文字幕| 国产人妻一区二区三区在| 三级国产精品欧美在线观看| 久久久久九九精品影院| 欧美日韩综合久久久久久| 亚洲高清免费不卡视频| 色综合色国产| 欧美激情在线99| 日韩国内少妇激情av| 少妇裸体淫交视频免费看高清| 欧美日本视频| a级毛片免费高清观看在线播放| 国产欧美日韩精品一区二区| 国产一区亚洲一区在线观看| 日本一本二区三区精品| 国产成年人精品一区二区| 一级爰片在线观看| 五月玫瑰六月丁香| tube8黄色片| 爱豆传媒免费全集在线观看| 极品少妇高潮喷水抽搐| 18禁裸乳无遮挡动漫免费视频 | 精品久久久久久电影网| 美女视频免费永久观看网站| 成人黄色视频免费在线看| 国产v大片淫在线免费观看| 少妇人妻一区二区三区视频| 蜜桃亚洲精品一区二区三区| 免费观看a级毛片全部| 91精品国产九色| 男女下面进入的视频免费午夜| 女的被弄到高潮叫床怎么办| 亚洲成人中文字幕在线播放| 女的被弄到高潮叫床怎么办| 国产一区二区在线观看日韩| 午夜精品国产一区二区电影 | 六月丁香七月| 夫妻性生交免费视频一级片| videossex国产| 在线天堂最新版资源| 久久国内精品自在自线图片| 国产成人精品久久久久久| 亚洲四区av| 国产高潮美女av| 亚洲人与动物交配视频| 日韩av在线免费看完整版不卡| 亚洲人与动物交配视频| 亚洲精品日韩在线中文字幕| 国产精品一二三区在线看| 国产 一区精品| 特大巨黑吊av在线直播| 精品国产三级普通话版| 亚洲美女搞黄在线观看| 国产精品久久久久久精品电影| 国产亚洲av片在线观看秒播厂| 国产精品久久久久久精品电影| 成人美女网站在线观看视频| 有码 亚洲区| 成人午夜精彩视频在线观看| 激情 狠狠 欧美| 内射极品少妇av片p| av卡一久久| 国产午夜福利久久久久久| 中文乱码字字幕精品一区二区三区| 在线观看av片永久免费下载| 久久久久性生活片| 亚洲熟女精品中文字幕| 久久久久久久大尺度免费视频| 久久精品久久久久久噜噜老黄| 久久久久久久久久久丰满| 久久久久久伊人网av| 国产淫语在线视频| 青春草亚洲视频在线观看| 国产精品99久久久久久久久| 久久97久久精品| 人人妻人人澡人人爽人人夜夜| 最近手机中文字幕大全| 国产女主播在线喷水免费视频网站| 狂野欧美激情性bbbbbb| 少妇人妻一区二区三区视频| 狠狠精品人妻久久久久久综合| 精品久久久久久电影网| 夜夜爽夜夜爽视频| 大片电影免费在线观看免费| 亚洲精华国产精华液的使用体验| 日本av手机在线免费观看| 久久精品国产亚洲av涩爱| a级毛片免费高清观看在线播放| 国产日韩欧美在线精品| 色哟哟·www| 男女无遮挡免费网站观看| 中国三级夫妇交换| 国产色爽女视频免费观看| 九色成人免费人妻av| 欧美变态另类bdsm刘玥| 深爱激情五月婷婷| 国产一区二区三区综合在线观看 | 欧美日韩视频精品一区| 亚洲av在线观看美女高潮| 成人国产av品久久久| 91久久精品电影网| 97精品久久久久久久久久精品| 欧美日韩在线观看h| 蜜桃久久精品国产亚洲av| 一本色道久久久久久精品综合| 大又大粗又爽又黄少妇毛片口| 狂野欧美激情性xxxx在线观看| 特级一级黄色大片| av国产久精品久网站免费入址| 我的老师免费观看完整版| 建设人人有责人人尽责人人享有的 | 欧美性感艳星| 国产精品.久久久| 大香蕉97超碰在线| 我的老师免费观看完整版| 建设人人有责人人尽责人人享有的 | 老女人水多毛片| 夫妻午夜视频| 免费看光身美女|