• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coexistence of Oligonucleotide/Single-Chained Cationic Surfactant Vesicles with Precipitates

    2012-11-06 07:01:06GUOXiaLIHuaGUORong
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:囊泡電子顯微鏡單鏈

    GUO Xia LI Hua GUO Rong

    (School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225002,Jiangsu Province,P.R.China)

    Coexistence of Oligonucleotide/Single-Chained Cationic Surfactant Vesicles with Precipitates

    GUO Xia*LI Hua GUO Rong

    (School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225002,Jiangsu Province,P.R.China)

    It is well known that DNA(including oligonucleotide)and cationic surfactant can form insoluble complex.In this study,by turbidity measurement and TEM image,we found that the single-chained cationic surfactant could transform the oligonucleotide/single-chained cationic surfactant precipitates into vesicles and the vesicles coexist with the insoluble complex.The hydrophobic interaction between the cationic surfactant and the precipitates plays a key role in vesicle formation.Moreover,when the temperature reaches a specific value where the oligonucleotide begins to melt,the oligonucleotide/single-chained cationic surfactant vesicles form far easier.Thus,the more extended the oligonucleotide,the much easier for vesicle formation.As far as we know,the study about the oligonucleotide/cationic surfactant vesicle formation is very limited.Therefore,considering the growing importance and significance of DNA(including oligonucleotide)/amphiphile systems in medicine,biology,pharmaceutics,and chemistry,this study should provide some helpful information in further understanding these systems.

    Surfactant;Self-assembly;Vesicle; Oligonucleotide;Transmission electron microscope

    Surfactants have the ability to form organized assemblies such as micelles,vesicles,and lamellar structures in solution[1-4].DNA,including oligonucleotide,is a kind of important natural polyelectrolyte.So far,there have been many studies about the interactions between DNA and vesicles and/or cationic surfactants because of their biological and technological significances[5-13].It has been concluded that DNA can become compacted in the presence of cationic surfactant or positively charged vesicles[14-17].In DNA/cationic surfactant system,when the surfactant concentration is much lower than its critical micelle concentration (cmc)but reaches the critical aggregation concentration(cac), surfactant molecules can aggregate into micelle-like structure along the DNA chain[14-15],followed by precipitate formation[14,16-17]; and when the surfactant concentration is much higher than the cmc,DNA can induce micelles to elongate into rod-like structures[18].Moreover,depending on the composition of the complex, the insoluble DNA/cationic surfactant complex can exhibit hexagonal structure,cubic structure,and/or lamellar structure[18-21]and the DNA/vesicle complex can self-assemble into a condensed multilamellar mesophase and an inverted hexagonal phase[21-23].

    Recently,we observed that in the single-chained cationic surfactant/oligonucleotide system,when the surfactant concentration was close to or higher than the cmc,all the precipitates could become soluble and the oligonucleotide/cationic surfactant vesicles could form[24].Furthermore,the facilitation efficiencyofoligonucleotideonvesicle formation depends on its size and base composition;the oligonucleotide with a bigger size or with a hairpin structure favors vesicle formation more[25].The increases in the size of the head group and/or the length of the alkyl group of surfactant decrease the facilitation efficiency of oligonucleotide[25].Since so far,there is very limited report about the vesicle formation in DNA/cationic surfactant solution,this study may be expected to increase the efficiency and applicability for DNA/amphiphile system.However,whether oligonucleotide/ cationic surfactant vesicles only form with surfactant concentration close to or higher than the cmc is left unknown.In the present paper,we will report that the oligonucleotide/cationic surfactant vesicles can form when the surfactant concentration is much lower than the cmc,i.e.,the oligonucleotide/cationic surfactant vesicles coexist with the precipitates.

    1 Materials and methods

    1.1 Materials

    Dodecyl triethyl ammonium bromide(DEAB)was synthesized from dodecyl bromide and triethylamine and the crude product was recrystallized 5 times from acetone/ethanol.Its purity was examined and no surface tension minimum was found in the surface tension curve(1H NMR(600 MHz,D2O,25.0℃),δ:0.777 (t,3J(H,H)=7.2 Hz,3H;CH3),1.192(br,25H),1.275(br,2H), 1.575(br,2H;CH2),3.061(t,3J(H,H)=7.8 Hz,2H;CH2),3.201 (q,3J(H,H)=7.2 Hz,6H;3CH2)).Dodecyl trimethyl ammonium bromide(DTAB)andcetyltrimethylammoniumbromide(CTAB) were bought from Amresco Co.,USA (>99%purity).Oligonucleotides were purchased from Takara Co.(Dalian,China).Propidium iodide(PI)was bought from BD Biosciences(Pharmingen, USA).The water used is ultrapure prepared by Milli-Q system (Millipore Corporation,USA).

    1.2 Sample preparation

    The stock solutions of oligonucleotide and surfactant were prepared in water and the oligonucleotide concentration was determined from UV spectrum at 260 nm and expressed as nucleotide or phosphate(1 mol·L-1nucleotide or phosphate is ca 330 g·L-1).

    The surfactant/oligonucleotide mixtures were prepared by adding water and the desired amounts of the stock solutions of surfactant and oligonucleotide successively in a test tube.

    All the samples,except those used to determine the turbidity with varying temperature,were equilibrated for 1 h at experimental temperature before measurements.

    1.3 Methods

    Turbidity measurements were carried out using a Lambda 850 spectrophotometer(PerkinElmer,USA)at 514 nm at(25.0±0.1)℃or at varying temperatures.In the latter case,the temperature ranges from 5-28℃with an increment of 2℃and an equilibration time of 20 min at each temperature was used throughout the experiment.

    The images of surfactant/oligonucleotide aggregates were observed with a transmission electron microscope(TECNAI 12, Philip Apparatus Co.,The Netherlands)by negative staining technique;the negative staining reagent was uranyl acetate aqueous solution.

    Circular dichroism(CD)spectra were collected on a Jasco J-810 spectrometer at(25.0±0.1)℃.The path length of the quartz cuvette used was 1 cm and four scans were averaged.The step interval is 0.5 nm,the integration time 0.5 s,the bandwidth 1.0 nm,and the scanning rate 20 nm·min-1.The thermal melting analysis was monitored at 288 nm from 10.0 to 75.0℃(±0.1℃) at 2-3℃increments.An equilibration time of 15 min at each temperature was used throughout the melt.

    Dynamic light scattering(DLS)measurements were performed withan ALV 5022 laser light-scattering instrument equipped with a 22 mW He-Ne laser at 632 nm(JDS model 1145P,Germany)in combination with an ALV-5000 digital correlator with a sampling time range from 1.0 μs to 100 ms.The scattering angle was 90°and the intensity autocorrelation functions were analyzed by using CONTIN method.The experimental temperature was 25.0℃.It should be noted here that before we measured the CD spectra and DLS plots for oligonucleotide/cationic surfactant systems,the samples were filtered through a filter paper with a pore size(bigger than 2 μm)to remove the precipitates.

    All the experiments were repeated at least 3 times.

    2 Results and discussion

    2.1 Oligonucleotide/cationic surfactant vesicles coexist with precipitates

    Just as described above,with the increase of the concentration of cationic surfactant,the oligonucleotide/cationic surfactant system is first clear(region A),then becomes turbid and the precipitates can be observed(region B),and finally,when the surfactant concentration is close to or higher than the cmc,all the precipitates become soluble(region C).Take oligo d(C)25/DEAB system as example.The DEAB concentrations in regions A,B,and C are lower than 0.1 mmol·L-1,between 0.1 and 10 mmol·L-1, and higher than 10 mmol·L-1,respectively[24].Fig.1 shows the tur-bidity of oligo d(C)25/DEAB system in region B,from which it can be seen that the readings become obvious and are increased linearly when DEAB concentration reaches 1 mmol·L-1.The monotonic increase in region B(Fig.1)is surprising and interesting because(i)the turbidity readings for a system with precipitates should be very unstable due to precipitation[26],(ii)when DEAB concentration is close to 10 mmol·L-1,the precipitates are very few,however,the turbidity under this condition is most obvious in region B,and(iii)after we remove the precipitates by centrifugation with an Eppendorf microcentrifuge at 5000 r· min-1for 30 min or by using a filter paper with a pore size larger than 2 μm,the turbidity is still obvious(although it becomes smaller).Therefore,the monotonic increase in region B(Fig.1) suggests that some aggregates other than precipitates should exist.

    Fig.2 shows the TEM image and DLS plot of the supernatant (obtained by centrifugation)or the filtrate(obtained by filtering) of oligo d(C)25(120 μmol·L-1)/DEAB(3.33 mmol·L-1)system. Noaggregatescanbeobservedfor3.33mmol·L-1of DEAB aqueous solution since the cmc of DEAB is 16 mmol·L-1[24].However,in the presence of oligo d(C)25,vesicles can be seen(Fig.2a). The DLS plot(Fig.2b)indicates that the aggregates in the supernatant or the filtrate have an average hydrodynamic radius(Rh,app) of about 100 nm,coincident with the vesicle size from Fig.2a. Here,it should be mentioned that(1)when the DEAB concentration is lower than 1 mmol·L-1,although precipitates are observed, no vesicles can be found,and(2)vesicles are easily observed when all the precipitates become soluble(in region C,see Ref. [24]).Therefore,vesicles should be transformed from precipitates.This also explains why the turbidity in region B is most obvious(although the precipitates are very few)when DEAB concentration is close to 10 mmol·L-1.Fig.3 presents the CD spectra of the oligonucleotide aqueous solution(curve a)and of the filtrate of oligonucleotide/DEAB system(curve b).The smaller CD signal in curve b than that in curve a is reasonable since some of the oligonucleotide molecules exist in the precipitates. However,what should be noted is that compared with the case in water,when DEAB is present,both the positive and the negative Cotton effects for the oligonucleotide shift to longer wavelengths.The bathochromic shift of the Cotton effect suggests the oligonucleotide conformation should become more extended[24-25,27-29].

    Moreover,the same phenomenon is also observed when we use oligo d(A)15and oligo d(C)15or change the cationic surfactant from DEAB to CTAB or DTAB.

    2.2 Temperature effect on vesicle formation in region B

    It is well known that temperature shows a great effect on DNA conformation.To better understand the vesicle formation, we measured the turbidity of oligonucleotide/cationic surfactant system in region B with temperature(exemplified by the case for oligo d(C)25/DEAB system,Fig.4).

    From Fig.4,it can be seen that when the temperature is higher than 29℃,the turbidity is increased with temperature.Fig.5 further elucidates the TEM images of the supernatant or the filtrate of oligo d(C)25/DEAB system in region B at 37℃.By comparing with the case at 25℃(shown in Fig.2),it is easily seen that more vesicles can be found at higher temperature.

    Fig.6 presents the CD melting curves for oligo d(C)25in water (curve a)and in DEAB aqueous solution(curve b).By comparing curve a with curve b,it can be seen that in DEAB aqueous solution,oligo d(C)25becomes melt at ca 29℃,which means that from 29℃on,oligo d(C)25begins to extend from random-coiled structure.By combining the results from Figs.2-6,it could be concluded that in DEAB aqueous solution,at the temperature higher than 29℃,oligonucleotide becomes less compacted and more efficient for vesicle formation.

    It has been well illustrated that when the cationic surfactant concentration is lower than the cmc,DNA-surfactant complex is generally insoluble in water,with the alkyl chain of surfactant going out,and the hydrophobic interaction exists not only among the surfactant molecules but also between the bound surfactant and the hydrophobic DNA core[22,30-31].Fig.3 implies that the oligonucleotide should become more extended in the presence of cationic surfactant.With the addition of the cationic surfactant, the added surfactant could bind to the negatively charged elongated oligonucleotide chain to give more precipitates,or interact with the insoluble oligonucleotide/cationic surfactant complex driven by hydrophobic force.While a definite mechanism for vesicle formation is difficult to be drawn at present,the latter interaction should be attributable to the formation of bilayer membranous structure,which may result in vesicle formation.Figs.4 and 5 together further indicate that more extended oligonucleotide,much easier for vesicle formation,implying the important role of the hydrophobic interaction for vesicle formation since the bases are more exposed in the extended oligonucleotide.

    3 Conclusions

    With the increase of cationic surfactant concentration,the oligonucleotide/cationic surfactant precipitates could transform into vesicles due to the hydrophobic interaction between the added cationic surfactant and the precipitates.Moreover,more extended oligonucleotide,much easier for vesicle formation.Asfar as we know,this study reported for the first time that the oligonucleotide/cationic surfactant vesicles could be transformed from and coexist with the precipitates.Considering the structure and composition of DNA(including oligonucleotide)/amphiphile complex may play a key role in its application,such as in gene transfer,this study should be expected to provide helpful information for its efficient application.

    1 Fendler,J.H.Membrane mimetic chemistry.New York:Wiley, 1982:110-125

    2 Holowka,E.P.;Pochan,D.J.;Deming,T.J.J.Am.Chem.Soc., 2005,127:12423

    4 Wang,Y.;Guo,X.;Guo,R.J.Colloid Interface Sci.,2008,317: 568

    5 de Lima,M.C.P.;Simoes,S.;Pires,P.;Faneca,H.;Duzgunes,N. Adv.Drug Delivery Rev.,2001,47:277

    6 Pontius,B.W.;Berg,P.Proc.Natl.Acad.Sci.U.S.A.,1991,88: 8237

    7 Geck,P.;Nasz,I.Anal.Biochem.,1983,135:264

    8 Allers,T.;Lichten,M.Nucleic Acids Research,2000,28:e6

    9 McLoughlin,D.M.;O′Brien,J.;Canus,J.J.;Gorelov,A.V.; Dawson,K.A.Bioseparation,2000,9:307

    10 Lander,R.J.;Winters,M.A.;Meacle,F.J.;Buckland,B.C.;Lee, A.L.Biotechnol.Bioeng.,2002,79:776

    11 Bell,P.C.;Bergsma,M.;Dolbnya,I.P.;Brass,W.;Stuart,M.C. A.;Rowan,A.E.;Feiters,M.C.;Engberts,J.B.F.N.J.Am.Chem. Soc.,2003,125:1551

    12 Vijayanathan,V.;Thoma,T.;Thomas,T.J.Biochemistry,2002, 41:14085

    13 Mel′nikov,S.M.;Sergeyev,V.G.;Yoshikawa,K.J.Am.Chem. Soc.,1995,117:2401

    14 Zhu,D.M.;Evans,R.K.Langmuir,2006,22:3735

    15 Clamme,J.P.;Bernacchi,S.;Vuilleumier,C.;Duportail,G.;Mely, Y.Biochimica et Biophysica Acta,2000,1467:347

    16 Mel′nikov,S.M.;Sergeyev,V.G.;Yoshikawa,K.;Takahashi,H.; Hatta,I.J.Chem.Phys.,1997,107:6917

    17 Sergeyev,V.G.;Mikhailenko,S.V.;Pyshkina,O.A.;Yaminsky,I. V.;Yoshikawa,K.J.Am.Chem.Soc.,1999,121:1780

    18 Ghirlando,R.;Wachtel,E.J.;Arad,T.;Minsky,A.Biochemistry, 1992,31:7110

    19 Zhou,S.;Liang,D.;Burger,C.;Yeh,F.;Chu,B. Biomacromolecules,2004,5:1256

    20 Krishnaswamy,R.;Mitra,P.;Raghunathan,V.A.;Sood,A.K. Europhys.Lett.,2003,62:357

    21 Hsu,W.L.;Chen,H.L.;Liou,W.;Lin,H.K.;Liu,W.L. Langmuir,2005,21:9426

    22 Karlsson,L.;van Eijk,M.C.P.;S?derman,O.J.Colloid Interface Sci.,2002,252:290

    23 Pizzey,C.L.;Jewell,C.M.;Hays,M.E.;Lynn,D.M.;Abbott,C. L.J.Phys.Chem.B,2008,112:5849

    24 Guo,X.;Li,H.;Zhang,F.M.;Zheng,S.Y.;Guo,R.J.Colloid Interface Sci.,2008,324:185

    25 Guo,X.;Cui,B.;Li,H.;Gong,Z.;Guo,R.J.Polym.Sci.A,2009, 47:434

    26 Spink,C.H.;Chaires,J.B.J.Am.Chem.Soc.,1997,119:10920

    27 Zhang,Z.;Huang,W.;Tang,J.;Wang,E.;Dong,S.Biophys. Chem.,2002,97:7

    28 Marck,C.;Thiele,D.Nucleic Acids Research,1978,5:1017

    29 Ivanov,V.I.;Minchenkova,L.E.;Schyolkina,A.K.;Poletayev,A. I.Biopolymers,1973,12:89

    30 Dias,R.S.;Magno,L.M.;Valente,A.J.M.;Das,D.;Prasanta,K.; Maiti,S.;Miguel,M.G.;Lindman,B.J.Phys.Chem.B,2008, 112:14446

    31 Hayakawa,K.;Santerre,J.P.;Kwak,J.C.T.Biophys.Chem., 1983,17:175

    寡聚核苷酸/單鏈陽離子表面活性劑囊泡與沉淀共存

    郭 霞*李 華 郭 榮

    (揚(yáng)州大學(xué)化學(xué)化工學(xué)院,江蘇揚(yáng)州 225002)

    DNA(包括寡聚核苷酸)和陽離子表面活性劑可形成難溶復(fù)合物.本文通過濁度測試和透射電子顯微鏡觀察,發(fā)現(xiàn)單鏈陽離子表面活性劑可以誘使寡聚核苷酸/單鏈陽離子表面活性劑沉淀轉(zhuǎn)變成為寡聚核苷酸/單鏈陽離子表面活性劑囊泡,且寡聚核苷酸/單鏈陽離子表面活性劑囊泡可以與寡聚核苷酸/單鏈陽離子表面活性劑沉淀共存.在寡聚核苷酸/單鏈陽離子表面活性劑沉淀向囊泡的轉(zhuǎn)變過程中,表面活性劑和沉淀之間的疏水作用力發(fā)揮了重要作用.此外,當(dāng)體系溫度達(dá)到寡聚核苷酸開始融解的溫度后,寡聚核苷酸/單鏈陽離子表面活性劑體系更容易形成囊泡.因此,寡聚核苷酸的鏈越伸展,越易于寡聚核苷酸/單鏈陽離子表面活性劑囊泡的生成.據(jù)我們所知,有關(guān)寡聚核苷酸/陽離子表面活性劑囊泡的報(bào)道尚不多見.因此,考慮到DNA(包括寡聚核苷酸)/兩親分子體系在醫(yī)學(xué)、生物學(xué)、藥學(xué)和化學(xué)中的重要性,該研究應(yīng)該有助于我們進(jìn)一步了解該體系并對(duì)其進(jìn)行更合理有效的應(yīng)用.

    表面活性劑;自組裝;囊泡;寡聚核苷酸;透射電子顯微鏡

    O648

    Received:March 1,2010;Revised:May 5,2010;Published on Web:June 25,2010.

    *Corresponding author.Email:guoxia@yzu.edu.cn;Tel:+86-514-87975590-9513;Fax:+86-514-87975244.The project was supported by the National Natural Science Foundation of China(20603031).

    國家自然科學(xué)基金(20603031)資助項(xiàng)目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    囊泡電子顯微鏡單鏈
    本刊對(duì)稿件組織病理學(xué)彩色圖片及電子顯微鏡圖片中標(biāo)尺的要求
    本刊對(duì)稿件組織病理學(xué)彩色圖片及電子顯微鏡圖片中標(biāo)尺的要求
    聚二乙炔囊泡的制備及其在醫(yī)療檢測領(lǐng)域的應(yīng)用
    逐步添加法制備單鏈環(huán)狀DNA的影響因素探究*
    人教版高中生物教材中囊泡的作用及功能行使過程
    鹽酸克倫特羅生物素化單鏈抗體在大腸埃希氏菌中的表達(dá)
    急性淋巴細(xì)胞白血病單鏈抗體(scFv)的篩選與鑒定
    SDS/DTAB/堿金屬氯化鹽復(fù)配囊泡為模板制備PMMA微球
    DNA處理蛋白A在細(xì)菌自然轉(zhuǎn)化中的作用
    透射電子顯微鏡中的掃描探針裝置
    女警被强在线播放| 亚洲伊人久久精品综合| 大码成人一级视频| 9191精品国产免费久久| 久久久久久久大尺度免费视频| 在线观看一区二区三区激情| 国产在线视频一区二区| 国产精品成人在线| 搡老乐熟女国产| 亚洲精品国产av成人精品| 丰满饥渴人妻一区二区三| 精品一区二区三卡| 90打野战视频偷拍视频| 亚洲天堂av无毛| 丰满人妻熟妇乱又伦精品不卡| 在线观看免费高清a一片| 麻豆乱淫一区二区| 精品人妻在线不人妻| 国产男女超爽视频在线观看| 99久久国产精品久久久| 国产成人免费无遮挡视频| 欧美激情久久久久久爽电影 | 99国产精品免费福利视频| 在线看a的网站| 国产成人一区二区三区免费视频网站| 精品少妇久久久久久888优播| 岛国在线观看网站| 男人添女人高潮全过程视频| 亚洲性夜色夜夜综合| 视频区欧美日本亚洲| 久久精品成人免费网站| tocl精华| 中文字幕色久视频| 欧美日韩国产mv在线观看视频| 亚洲精品国产区一区二| 91精品三级在线观看| 色精品久久人妻99蜜桃| 国产成人欧美在线观看 | 成人18禁高潮啪啪吃奶动态图| 99久久99久久久精品蜜桃| 国产精品久久久久久精品古装| 午夜福利一区二区在线看| 亚洲成av片中文字幕在线观看| 亚洲国产欧美一区二区综合| 99久久精品国产亚洲精品| 啦啦啦在线免费观看视频4| 国产亚洲av高清不卡| 国产精品香港三级国产av潘金莲| 久久女婷五月综合色啪小说| 久久香蕉激情| 亚洲精品av麻豆狂野| 天堂俺去俺来也www色官网| 亚洲精品久久成人aⅴ小说| 老司机影院毛片| 亚洲色图 男人天堂 中文字幕| 欧美国产精品一级二级三级| 在线 av 中文字幕| av免费在线观看网站| 美女视频免费永久观看网站| 老熟妇仑乱视频hdxx| 好男人电影高清在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产无遮挡羞羞视频在线观看| 麻豆乱淫一区二区| 国产精品一二三区在线看| 在线观看www视频免费| 欧美激情 高清一区二区三区| 黑人巨大精品欧美一区二区mp4| 夫妻午夜视频| 99久久综合免费| 男人爽女人下面视频在线观看| 国产成人欧美| 老司机靠b影院| 嫩草影视91久久| 欧美在线黄色| 在线天堂中文资源库| 久热这里只有精品99| 久久久国产欧美日韩av| 亚洲成人国产一区在线观看| 一本一本久久a久久精品综合妖精| 国产一区二区激情短视频 | 国产麻豆69| 亚洲一卡2卡3卡4卡5卡精品中文| 一区在线观看完整版| 亚洲一卡2卡3卡4卡5卡精品中文| 日本wwww免费看| 18禁裸乳无遮挡动漫免费视频| 欧美少妇被猛烈插入视频| 91大片在线观看| 日日摸夜夜添夜夜添小说| 王馨瑶露胸无遮挡在线观看| 久久久久国产精品人妻一区二区| 国产深夜福利视频在线观看| 国产一级毛片在线| 亚洲精品粉嫩美女一区| 中文字幕人妻熟女乱码| 日日夜夜操网爽| 不卡一级毛片| 午夜福利在线免费观看网站| 精品久久蜜臀av无| 一二三四在线观看免费中文在| 欧美在线黄色| 亚洲五月婷婷丁香| 人人妻人人添人人爽欧美一区卜| 成人国产一区最新在线观看| 国产有黄有色有爽视频| 亚洲欧洲日产国产| 在线观看www视频免费| 日本精品一区二区三区蜜桃| 国产熟女午夜一区二区三区| 国产在视频线精品| 午夜免费观看性视频| 日本a在线网址| 中文字幕色久视频| 黄色视频在线播放观看不卡| 日本精品一区二区三区蜜桃| 69精品国产乱码久久久| 熟女少妇亚洲综合色aaa.| 两个人看的免费小视频| 日韩中文字幕视频在线看片| 国产男人的电影天堂91| 高清在线国产一区| 国精品久久久久久国模美| 亚洲av成人一区二区三| 妹子高潮喷水视频| www.自偷自拍.com| 国产亚洲av片在线观看秒播厂| 国产主播在线观看一区二区| 黄片小视频在线播放| 女人久久www免费人成看片| 老鸭窝网址在线观看| 男人操女人黄网站| av网站在线播放免费| 欧美国产精品va在线观看不卡| 国产日韩欧美亚洲二区| 日韩欧美免费精品| 国产亚洲欧美精品永久| 麻豆乱淫一区二区| 国产一区二区激情短视频 | 无遮挡黄片免费观看| 国产免费福利视频在线观看| 国产成人啪精品午夜网站| 老熟妇乱子伦视频在线观看 | 三级毛片av免费| 午夜91福利影院| 丁香六月天网| 最近最新免费中文字幕在线| 久久久久精品国产欧美久久久 | 亚洲熟女毛片儿| 欧美日韩亚洲国产一区二区在线观看 | 亚洲一码二码三码区别大吗| 久久九九热精品免费| 久久久国产一区二区| 亚洲欧美一区二区三区久久| 亚洲精品一卡2卡三卡4卡5卡 | 黄色视频不卡| 日本a在线网址| 久久久国产成人免费| 亚洲精品国产一区二区精华液| 亚洲av成人一区二区三| 又紧又爽又黄一区二区| 亚洲少妇的诱惑av| 欧美黑人欧美精品刺激| 精品国产一区二区三区久久久樱花| 免费高清在线观看视频在线观看| 国产麻豆69| 老司机亚洲免费影院| 动漫黄色视频在线观看| 久久久精品区二区三区| 热99re8久久精品国产| 一本色道久久久久久精品综合| 国产男女内射视频| av国产精品久久久久影院| 亚洲专区字幕在线| 香蕉丝袜av| 69av精品久久久久久 | 欧美精品人与动牲交sv欧美| av片东京热男人的天堂| 男女国产视频网站| 午夜日韩欧美国产| 亚洲精品中文字幕在线视频| 美女午夜性视频免费| 成人亚洲精品一区在线观看| 精品熟女少妇八av免费久了| 男男h啪啪无遮挡| 少妇精品久久久久久久| 最近最新免费中文字幕在线| 中文字幕高清在线视频| 另类亚洲欧美激情| 99久久国产精品久久久| 老熟妇乱子伦视频在线观看 | 成年女人毛片免费观看观看9 | 欧美另类一区| 韩国精品一区二区三区| 交换朋友夫妻互换小说| 久久99热这里只频精品6学生| 99国产极品粉嫩在线观看| 高清黄色对白视频在线免费看| 伦理电影免费视频| 嫩草影视91久久| 中文字幕人妻丝袜制服| 欧美精品av麻豆av| 伊人久久大香线蕉亚洲五| 久久人妻熟女aⅴ| 国产人伦9x9x在线观看| 久久人人97超碰香蕉20202| 叶爱在线成人免费视频播放| 黄片播放在线免费| 丝袜喷水一区| 69精品国产乱码久久久| av免费在线观看网站| 欧美激情极品国产一区二区三区| 国产精品免费大片| 99国产极品粉嫩在线观看| 伊人亚洲综合成人网| 精品少妇久久久久久888优播| 在线观看人妻少妇| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品一区二区精品视频观看| 99国产综合亚洲精品| 欧美少妇被猛烈插入视频| 国产高清视频在线播放一区 | 建设人人有责人人尽责人人享有的| 欧美激情 高清一区二区三区| 成人黄色视频免费在线看| 日韩免费高清中文字幕av| 热99久久久久精品小说推荐| 欧美一级毛片孕妇| 老熟女久久久| 制服诱惑二区| 一本综合久久免费| 久久久久久久国产电影| 午夜免费观看性视频| 久久久国产精品麻豆| 如日韩欧美国产精品一区二区三区| 午夜激情久久久久久久| 中文字幕精品免费在线观看视频| 久久久久久久大尺度免费视频| 亚洲,欧美精品.| 亚洲七黄色美女视频| 波多野结衣一区麻豆| 免费av中文字幕在线| 色婷婷久久久亚洲欧美| 午夜两性在线视频| 日韩精品免费视频一区二区三区| 国产免费福利视频在线观看| 亚洲国产av影院在线观看| xxxhd国产人妻xxx| 一二三四在线观看免费中文在| 蜜桃在线观看..| 国产欧美日韩综合在线一区二区| 精品福利观看| 午夜福利在线免费观看网站| 9色porny在线观看| 一区二区日韩欧美中文字幕| 桃花免费在线播放| 成人av一区二区三区在线看 | 亚洲精品成人av观看孕妇| 欧美日韩中文字幕国产精品一区二区三区 | 欧美人与性动交α欧美精品济南到| 高清欧美精品videossex| 亚洲,欧美精品.| 国产一区二区在线观看av| 亚洲成人手机| 男人舔女人的私密视频| 俄罗斯特黄特色一大片| 成人三级做爰电影| 久久国产精品影院| 国产欧美日韩精品亚洲av| 国产一区二区三区av在线| 黄色怎么调成土黄色| 动漫黄色视频在线观看| 日韩三级视频一区二区三区| bbb黄色大片| 窝窝影院91人妻| 亚洲 国产 在线| videosex国产| 久久久久久亚洲精品国产蜜桃av| 久久久久网色| 美女中出高潮动态图| 女人久久www免费人成看片| 别揉我奶头~嗯~啊~动态视频 | 男人添女人高潮全过程视频| 亚洲成av片中文字幕在线观看| 亚洲视频免费观看视频| a级毛片在线看网站| 搡老乐熟女国产| 9191精品国产免费久久| 天天影视国产精品| 大陆偷拍与自拍| 免费不卡黄色视频| 91精品伊人久久大香线蕉| 每晚都被弄得嗷嗷叫到高潮| 少妇被粗大的猛进出69影院| cao死你这个sao货| 亚洲欧美日韩高清在线视频 | 老熟妇仑乱视频hdxx| 高清黄色对白视频在线免费看| 国产三级黄色录像| 国产高清国产精品国产三级| 日本五十路高清| 亚洲av日韩在线播放| 脱女人内裤的视频| 久久国产精品男人的天堂亚洲| 亚洲国产欧美一区二区综合| 欧美精品啪啪一区二区三区 | 欧美日韩视频精品一区| 黑人巨大精品欧美一区二区mp4| 在线亚洲精品国产二区图片欧美| 男女下面插进去视频免费观看| 啦啦啦视频在线资源免费观看| 国产日韩欧美在线精品| 一级片免费观看大全| 久久人人爽av亚洲精品天堂| 国产xxxxx性猛交| 中文欧美无线码| 岛国在线观看网站| 日韩熟女老妇一区二区性免费视频| 欧美精品av麻豆av| 女人高潮潮喷娇喘18禁视频| 日本a在线网址| 热re99久久国产66热| 欧美黄色片欧美黄色片| 亚洲免费av在线视频| 久久久久久免费高清国产稀缺| videosex国产| 国精品久久久久久国模美| 日本91视频免费播放| 免费在线观看黄色视频的| 成年人午夜在线观看视频| 午夜福利,免费看| 中亚洲国语对白在线视频| 国产成+人综合+亚洲专区| 久久久欧美国产精品| 一进一出抽搐动态| 美国免费a级毛片| 亚洲成av片中文字幕在线观看| 久久久久久亚洲精品国产蜜桃av| 黄色视频在线播放观看不卡| 男女下面插进去视频免费观看| 我的亚洲天堂| 涩涩av久久男人的天堂| 亚洲精品久久久久久婷婷小说| 免费日韩欧美在线观看| 国产伦理片在线播放av一区| 国产精品一区二区在线不卡| 无遮挡黄片免费观看| 菩萨蛮人人尽说江南好唐韦庄| 侵犯人妻中文字幕一二三四区| 满18在线观看网站| 久久99热这里只频精品6学生| tube8黄色片| 午夜老司机福利片| 五月天丁香电影| 黄色视频,在线免费观看| 狂野欧美激情性xxxx| 国产精品免费视频内射| 精品少妇黑人巨大在线播放| 男女边摸边吃奶| 欧美另类亚洲清纯唯美| 黄色视频在线播放观看不卡| 成年动漫av网址| 国产欧美亚洲国产| 免费在线观看黄色视频的| 亚洲色图综合在线观看| 好男人电影高清在线观看| 母亲3免费完整高清在线观看| 国产精品欧美亚洲77777| 亚洲精品成人av观看孕妇| 国产精品九九99| 国产黄频视频在线观看| 人人妻人人添人人爽欧美一区卜| 18禁观看日本| 美女高潮到喷水免费观看| 久久久国产成人免费| 日本av手机在线免费观看| 亚洲欧美激情在线| 在线永久观看黄色视频| 日韩电影二区| 国产伦人伦偷精品视频| 99久久国产精品久久久| 少妇猛男粗大的猛烈进出视频| 飞空精品影院首页| 捣出白浆h1v1| 两人在一起打扑克的视频| 91九色精品人成在线观看| 久久久久久久国产电影| 亚洲欧美一区二区三区黑人| 老司机午夜福利在线观看视频 | 欧美日本中文国产一区发布| 男女之事视频高清在线观看| 亚洲五月婷婷丁香| 日本猛色少妇xxxxx猛交久久| 国产1区2区3区精品| 巨乳人妻的诱惑在线观看| 国产有黄有色有爽视频| 久久久精品94久久精品| 少妇精品久久久久久久| 久久久久国内视频| 亚洲自偷自拍图片 自拍| 国产淫语在线视频| 亚洲人成电影免费在线| 两性午夜刺激爽爽歪歪视频在线观看 | 久久女婷五月综合色啪小说| 国产亚洲欧美精品永久| 久久人人97超碰香蕉20202| 叶爱在线成人免费视频播放| 精品一区二区三区av网在线观看 | 飞空精品影院首页| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美激情在线| 99国产精品一区二区蜜桃av | 香蕉国产在线看| 久久久久国产一级毛片高清牌| 窝窝影院91人妻| 亚洲精品久久成人aⅴ小说| 性色av乱码一区二区三区2| 国产黄频视频在线观看| 国产成人a∨麻豆精品| 午夜免费成人在线视频| 1024香蕉在线观看| 日本黄色日本黄色录像| 满18在线观看网站| 天天添夜夜摸| 亚洲精品国产av蜜桃| 免费在线观看影片大全网站| h视频一区二区三区| 狠狠狠狠99中文字幕| 午夜久久久在线观看| 热re99久久精品国产66热6| 一本一本久久a久久精品综合妖精| 中文字幕色久视频| 久久人人爽av亚洲精品天堂| 伊人久久大香线蕉亚洲五| 亚洲精品自拍成人| 我的亚洲天堂| 欧美日韩亚洲高清精品| 99精国产麻豆久久婷婷| 午夜激情久久久久久久| 午夜精品久久久久久毛片777| 久久久久视频综合| 秋霞在线观看毛片| 视频在线观看一区二区三区| 伦理电影免费视频| 老熟妇仑乱视频hdxx| 美女脱内裤让男人舔精品视频| 成年女人毛片免费观看观看9 | 日韩大片免费观看网站| 久久热在线av| 脱女人内裤的视频| 无限看片的www在线观看| 久久人人爽人人片av| 久久亚洲国产成人精品v| 久久精品国产亚洲av高清一级| 国产精品亚洲av一区麻豆| 国产精品一区二区精品视频观看| 99国产精品免费福利视频| 亚洲激情五月婷婷啪啪| 亚洲av成人一区二区三| 国产不卡av网站在线观看| 99香蕉大伊视频| 丝袜美足系列| 亚洲成人免费av在线播放| 亚洲一区二区三区欧美精品| 真人做人爱边吃奶动态| 极品少妇高潮喷水抽搐| 久久久水蜜桃国产精品网| 国产精品久久久久久人妻精品电影 | 亚洲欧美精品综合一区二区三区| 91精品三级在线观看| 国产国语露脸激情在线看| 欧美国产精品va在线观看不卡| 天天影视国产精品| 汤姆久久久久久久影院中文字幕| 日日摸夜夜添夜夜添小说| 老司机靠b影院| 美女脱内裤让男人舔精品视频| 少妇人妻久久综合中文| 两个人看的免费小视频| 又紧又爽又黄一区二区| 日韩视频在线欧美| 建设人人有责人人尽责人人享有的| 涩涩av久久男人的天堂| 考比视频在线观看| 日韩视频一区二区在线观看| 成年女人毛片免费观看观看9 | 9色porny在线观看| 国产日韩欧美亚洲二区| 国产黄频视频在线观看| 一区二区三区四区激情视频| av在线播放精品| 婷婷成人精品国产| 黑丝袜美女国产一区| 如日韩欧美国产精品一区二区三区| 两人在一起打扑克的视频| 久久久久国产精品人妻一区二区| 欧美黄色片欧美黄色片| av福利片在线| 中文精品一卡2卡3卡4更新| 老熟妇乱子伦视频在线观看 | 国产又爽黄色视频| 男女边摸边吃奶| 又黄又粗又硬又大视频| 久久天躁狠狠躁夜夜2o2o| 国产精品久久久久久精品电影小说| 黄色视频,在线免费观看| 大片免费播放器 马上看| 国产免费现黄频在线看| 正在播放国产对白刺激| 亚洲国产成人一精品久久久| 亚洲熟女精品中文字幕| 热re99久久精品国产66热6| 电影成人av| 久久国产亚洲av麻豆专区| 欧美激情极品国产一区二区三区| 窝窝影院91人妻| 国产伦人伦偷精品视频| 丝袜美足系列| 久久久久久久久久久久大奶| 黄色视频在线播放观看不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人欧美| 操出白浆在线播放| 精品一区二区三卡| 成人三级做爰电影| h视频一区二区三区| 美女扒开内裤让男人捅视频| 欧美黑人精品巨大| 午夜久久久在线观看| 日韩精品免费视频一区二区三区| www.精华液| 久久久欧美国产精品| 91麻豆av在线| 国产精品久久久av美女十八| 国产成人欧美在线观看 | 成人国语在线视频| 在线亚洲精品国产二区图片欧美| 视频区图区小说| 亚洲精品一卡2卡三卡4卡5卡 | 视频在线观看一区二区三区| 一区二区三区乱码不卡18| 欧美变态另类bdsm刘玥| 欧美大码av| 亚洲中文av在线| 欧美精品一区二区免费开放| 又紧又爽又黄一区二区| 国产男女超爽视频在线观看| 精品高清国产在线一区| 大陆偷拍与自拍| 一本大道久久a久久精品| 一个人免费在线观看的高清视频 | 岛国在线观看网站| 国产男女超爽视频在线观看| 成人影院久久| 日韩,欧美,国产一区二区三区| 精品亚洲成国产av| 欧美国产精品一级二级三级| 人人妻人人澡人人爽人人夜夜| 成年人午夜在线观看视频| 久久精品国产亚洲av高清一级| 色婷婷久久久亚洲欧美| cao死你这个sao货| 午夜久久久在线观看| 国产在线免费精品| 大片电影免费在线观看免费| 建设人人有责人人尽责人人享有的| 丝袜美腿诱惑在线| 中文字幕av电影在线播放| 视频区欧美日本亚洲| 777久久人妻少妇嫩草av网站| 一边摸一边抽搐一进一出视频| 国产一区二区三区av在线| 欧美国产精品一级二级三级| 色94色欧美一区二区| 亚洲国产精品一区三区| 国产一区二区激情短视频 | 亚洲精品一区蜜桃| 男女高潮啪啪啪动态图| 亚洲成人国产一区在线观看| 窝窝影院91人妻| 91精品三级在线观看| 不卡av一区二区三区| 十八禁网站网址无遮挡| 欧美激情久久久久久爽电影 | 国产真人三级小视频在线观看| 男女高潮啪啪啪动态图| 久久狼人影院| 2018国产大陆天天弄谢| 亚洲第一青青草原| av天堂久久9| 国产一区二区激情短视频 | 精品免费久久久久久久清纯 | 搡老乐熟女国产| 十八禁网站网址无遮挡| 免费在线观看日本一区| 视频区欧美日本亚洲| 亚洲va日本ⅴa欧美va伊人久久 | 91麻豆精品激情在线观看国产 | 久久久精品国产亚洲av高清涩受| 国产日韩欧美亚洲二区| 2018国产大陆天天弄谢| 999久久久国产精品视频| 91麻豆av在线| 另类精品久久| 欧美成狂野欧美在线观看| 在线亚洲精品国产二区图片欧美| 少妇的丰满在线观看| av线在线观看网站| 欧美中文综合在线视频| 青春草视频在线免费观看| 91大片在线观看| 久久久国产精品麻豆| 亚洲国产精品一区三区| 国产在线免费精品| 欧美日韩av久久|