• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assessment of Sericin Biosorbent for Selective Dye Removal*

    2012-10-31 03:35:04CHENXinqingLAMKoonFungMAKShukFongCHINGWaiKwongNGTszNokandYEUNGKingLun

    CHEN Xinqing, LAM Koon Fung, MAK Shuk Fong, CHING Wai Kwong, NG Tsz Nok and YEUNG King Lun,2,**

    1 Department of Chemical and Biomolecular Engineering, 2 Division of Environment, the Hong Kong University of Science and Technology, Hong Kong, China

    Assessment of Sericin Biosorbent for Selective Dye Removal*

    CHEN Xinqing1, LAM Koon Fung1, MAK Shuk Fong1, CHING Wai Kwong1, NG Tsz Nok1and YEUNG King Lun1,2,**

    1Department of Chemical and Biomolecular Engineering,2Division of Environment, the Hong Kong University of Science and Technology, Hong Kong, China

    The silk sericin is the main residue in silk production and it is found to be a low cost and efficient biosorbent. In this study, sericin was characterized with various techniques including SEM (scanning electron microscope), XRD, N2physisorption, FTIR (Fourier transformed infrared spectroscopy) and XPS (X-ray photoelectron spectroscopy). The nitrogen content of sericin was ca. 8.5 mmol·g?1according to elemental analysis. Dye adsorption by sericin biosorbent was investigated with the acid yellow (AY), methylene blue (MB) and copper (II)phthalocyanine-3,4′4″4′″-tetrasulfonic acid (CuPc) dyes from water. Sericin displayed large capacity for AY and CuPc adsorption with adsorption capacities of respectively 3.1 and 0.35 mmol·g?1, but it did not adsorbed methylene blue dye. This selectivity is due to the basicity of amide groups in sericin biosorbents.

    dye adsorption, silk protein, biosorbent

    1 INTRODUCTION

    Adsorption has long been recognized as a simple and economical process for removal of water pollutants. Adsorption properties of heavy metals and persistent organic compounds by numerous materials have been reported in the past decades. Although, in general, synthetic adsorbents such as resin, zeolite and mesoporous silica have large adsorption capacity and good selectivity for various pollutants [1-4], biosorbents are considered as attractive alternatives for environmental remediation because of their low cost and availability [5]. Pollutants including dyes [6], pesticides [7] and metal ions [8-10] were successfully treated by various biosorbents derived from agricultural and industrial biomass. Biomass-derived adsorbents have been examined for dye removal by several research groups [11-19]. Chuah et al. [11] and Malik [12] reported the use of rice husk activated carbon for removal of textile dyes such as malachite green and acid yellow 36. Sugar beet pulp is shown to be effective for removing the reactive dye, Gemazol turquoise blue-G [13], while Brazil nut shell [14], wood sawdust [15], orange bagasse [16] and aerobic sludge[17] have all been shown to have varying effectiveness for removing dye pollutants from water. Rocher and coworkers [18] showed that it is possible to prepare magnetic biosorbent by embedding magnetic nanoparticles and activated carbons in alginate for removal of methyl orange and methylene blue dyes.

    This work investigates the adsorption of acidic and basic dyes (acid yellow 34 and methylene blue)and large metal-organic complex dye [copper (II)phthalocyanine-3,4′4″4′″-tetrasulfonic acid] by the silk protein, sericin, a byproduct of silk manufacturing process. Emphasis is made to examine the potential of this biosorbent for the selective removal of dyes from water.

    2 EXPERIMENTAL

    2.1 Silk sericin biosorbent

    The silk sericin powder was supplied free-of-charge from Italy. Prior to the adsorption study, the sericin powder was dried overnight in an oven at 373 K. Repeated boiling was used to lower the solubility of sericin in powder by transforming the more soluble random coil structured protein into the less soluble β-sheets [20]. The biosorbent was examined by scanning electron microscope (JEOL 6300F). The sericin powder was attached to the specimen holder by conducting adhesive and sputter-coated with a 10 nm gold layer.Its specific surface area and pore structure were determined by N2physisorption (Coulter SA 3100),while its surface charge were measured by Zetaplus(Brookhaven Instruments Corp). The elemental and chemical compositions of the biosorbent were analyzed by various methods. The carbon, nitrogen, hydrogen and sulphur contents of the biosorbent were measured by Elementar Vario EL III. Six milligrams of sample powder were pyrolyzed at high temperature and the resulting composition of the flue gas was analyzed by a thermal conductivity detector. The surface elemental composition and their oxidation states were analyzed by Physical Electronics PHI 5000 X-ray photoelectron spectroscopy using a monochromatic Al X-ray source (1486.6 eV) at 350 W, 14 kV and 25 mA at a vacuum of 1×10?8Torr. Both regular and high resolution scans were performed and the data were plotted with respect to the binding energy. Fourier transformed infrared spectroscopy (Perkin-Elmer GX 2000) of the biosorbent was done using a Harrick praying mantis diffuse reflectance accessory. Eachspectrum was an average of 128 scans taken between 400 to 4000 cm?1at a resolution of 0.5 cm?1and optical path difference (OPD) velocity of 2 cm·s?1. The sample spectrum was plotted in transmittance for convenience.

    Figure 1 Molecular structures of (a) acid yellow, (b) copper (II) Phthalocyanine-3,4′4″4′″-tetrasulfonic acid and (c) methylene blue

    2.2 Dye adsorption experiments

    Acid Yellow 34 (AY, 75%, Aldrich) and a metallocomplex dye, copper (II) phthalocyanine-3,4′4″4′″-tetrasulfonic acid (CuPc, 85%, Aldrich) are acidic dyes, while methylene blue (MB, 85%, Aldrich) is a basic dye. Fig. 1 shows the molecular structure of the dyes, while Table 1 lists their molecular masses, size and characteristic peaks under UV-visible spectrometer. The dyes, AY and CuPc possess the same3RSO?functional groups but CuPc is roughly four times larger than AY [Figs. 1 (a) & (b)]. Adsorption of AY and CuPc could provide insights on the accessibility of the adsorption sites in the biosorbent. MB contains amine groups and is basic [Fig. 1 (c)]. It is also slightly smaller than AY. The similarity in the size of AY and MB means that both dyes could access similar sites within the biosorbent, and their adsorption will depends mainly on the chemical interactions between the dye molecules and the surface adsorption sites.

    Table 1 Physical properties of dyes used in this study

    The batch adsorption experiments were performed at room temperature (298±2 K) using 0.04 g of sericin for 40 ml aqueous dye solution. The pH of the solution was adjusted by diluted hydrochloric acid (HCl,Mallinckrodt) and sodium hydroxide (NaOH, BDH)solutions. The initial and final concentrations of the dyes were analyzed by UV/visible spectrophotometer(Ultrospec 4300pro). Calibrations between 0 to 30 mg·kg?1dye were made before each set of measurements and the intensities of the absorption bands at 416 nm (AY), 630 nm (CuPc) and 665 nm (MB) display a linear correlation with their concentration. Adsorption samples were diluted and three measurements taken and averaged to obtain the equilibrium adsorption capacity [Eq. (1)].

    where Co(mmol·L?1) and Ce(mmol·L?1) are the initial and final dye concentrations, respectively. V (L) is the solution volume and m (g) is the mass of adsorbent.

    The batch adsorption isotherm data were modeled by Langmuir and Freundlich equations [Eqs. (2)& (3) respectively].

    where Qe(mmol·g?1) is the calculated adsorption capacity. KL, bL, KFand n are the model parameters of the equations. The adsorption rates were determined by measuring the dye concentration at fixed time intervals during the adsorption. Pseudo-first-order adsorption (cf. Eq. 4) and the pseudo-second-order adsorption (cf. Eq. 5) were used to model the adsorption kinetic data [21].where Qeis the estimated steady state adsorption(mmol·g?1), Qtis the adsorption capacity at given time,t is the contact time (h), k1is the pseudo-first-order kinetic constant (h?1) and k2is the pseudo-second-order kinetic constant (mmol·g?1·h?1).

    3 RESULTS AND DISCUSSION

    3.1 Biosorbent characterization

    The silk sericin powder received from the supplier was recovered from the silk degumming process water by filtration. Although the original powder is slightly soluble in water, repeated boiling in water can render it insoluble. The SEM image in Fig. 2 (a) shows the irregular, elongated shape of the dried sericin powder. The particle size ranges from less than a micron to tens of microns. Based on the nitrogen physisorption measurement, the specific surface area of the silk sericin is only 1.5 m2·g?1and can be considered to be non-porous.

    The chemistry of sericin was examined by FTIR.Fig. 2 (b) plots the infrared spectrum of the silk protein.The sericin powder displays prominent peaks at 3339,2940, 1676 and 1568 cm?1corresponding to amide A,B, I and II as reported by Gulrajani and coworkers [22].The peaks at the vicinity of 2989 and 3298 cm?1are mainly from the N H stretching vibration belonging to amide A and B. The peak at 1676 cm?1in the spectrum is assigned to amide I peak and is believed to originate from the stretching vibrations of C O and C N groups. The peak found between 1530-1570 cm?1was reported to belong to amide II and arises from the in-plane N H bending while the peaks at 1071 (C OH), 1240 (N H), 1398 (O H), 1568 cm?1(N H) had been assigned to amides III and V.

    Figure 2 Characterization of sericin by (a) scanning electron microscopy, (b) Fourier-Transform Infra-Red and (c) X-ray photoelectron spectroscopy

    Table 2 Bulk and surface composition of silk sericin

    Figure 3 (a) AY isotherm at pH 2.5; (b) CuPc isotherm at pH 2.5; (c) MB isotherm at pH 2.5; (d) pH effect on AY adsorption; (e) pH effect on CuPc adsorption; (f) pH effect on MB adsorption Langmuir model; Freundlich model

    The bulk and surface elemental compositions of the silk sericin were determined by elemental analyzer and X-ray photoelectron spectroscopy and the results are presented in Fig. 2 (c) and Table 2. It can be seen from the C1 peak of sericin that the biosorbent contains carboxyl (287.8 eV), carbonyl (286.6 eV), alkyl(285 eV) and carbon (282.6 eV) [23]. Sericin consists of three polypeptides with molecular masses of 400000, 250000 and 150000 [24] and composed of 18 different amino acids including serine (30%-40%),aspartic acid (10%-20%) and glutamic acid (3%-15%)rich in hydroxyl groups [25]. Wu and coworkers [26]reported that sericin recovered from silk wastewater contains 92% protein, 1% sugar and 4% ash with a total nitrogen content of 14.6%. Similarly, Vaithanomsat and Kitpreechavanich [27] also reported the nitrogen content of sericin to be within 12%-14%. The sericin biosorbent prepared in this study has total nitrogen and sulphur contents of 11.9% and 5.0%, respectively.Nitrogen contents are comparable to literature values while most of the sulphur content is present in bulk phase instead of the surface by comparing the bulk and surface composition.

    3.2 Dye adsorption on biosorbent

    Acid yellow 34 (AY) is roughly quarter of the size of CuPc and has a single sulfonate group compared to four in CuPc, while MB is comparable in size to AY but differs in its chemistry. The adsorptions of the dyes on sericin are shown in Fig. 3. Silk sericin adsorbs 0.96 mmol·g?1(i.e. 400 mg·g?1) of AY and 0.18 mmol·g?1(i.e., 180 mg·g?1) of CuPc separately, but not MB at pH 2.5 and room temperature. The AY and CuPc adsorption occurs at pH below sericin’s point-of-zero charge (i.e., pH 3.5, Fig. 4) during which the amines become protonated. CuPc being larger than AY can only access sites located near the surface or in large pores. It is therefore not surprising that the adsorption capacity of sericin for CuPc [Fig. 3 (b)] is significantly lower than AY [Fig. 3 (a)]. The dyes were adsorbed by electrostatic interaction between the negatively charged sulfonate group (i.e.,3SO?) of the dye molecule and the positive protonated amino groups on sericin. Figs. 3 (d) and 3 (e) show that the adsorption capacities of the dyes are higher at lower pH, i.e. higher hydrogen ion concentration with adsorption capacity for AY reaching 3.1 mmol·g?1(i.e.,1280 mg·g?1) at pH 1.5. The Zeta-potential plot in Fig. 4 for sericin at various pHs shows its surface is positively charged below pH 3.5 and negatively charged above this pH due to deprotonated amino and carboxylgroups. According to Fig. 4, the surface charge of sericin at pH 1.5 is higher than that at pH 2.5, which could explained the higher adsorption capacity of sericin for the acid dyes at low pH.

    Table 3 Dye adsorption on various adsorbents listed in literature

    Figure 4 Zeta-potential of sericin against pH

    Methylene blue does not adsorb on sericin as shown by Figs. 3 (c) and 3 (f). This is likely due to the repulsion between the positively-charged surface of the biosorbent and the dye molecules at low pH. Thus,this study shows that sericin is selective for acid dye at low pH similar to modified mesoporous silica adsorbent [28]. Table 3 lists the adsorption capacities of acid dyes and methylene blue on various adsorbents.The sericin has a relatively high adsorption capacities for acidic dyes compared to other adsorbents, while it does not adsorb any MB. This adsorption selectivity of sericin is unique compared to most biosorbents.

    Langmuir and Freundlich models were used to fit the adsorption data and Table 4 shows that the Langmuir adsorption isotherm has better fit compared to Freundlich for the adsorption of AY and CuPc on sericin.

    The batch adsorption kinetics of both dyes on sericin were measured with initial AY and CuPc concentration of 2 mmol·L?1and L/S (liquid per solid ratio) of 1000 ml·g?1at pH 1.5. Figs. 5 (a) and 5 (b) plots the adsorp-tion with time and it can be seen that the adsorption rate of CuPc is faster than AY in spite of less CuPc being adsorbed on the biosorbent. This could be due to the stronger electrostatic charge of CuPc than AY and CuPc being mainly adsorbed on the surface. The correlation coefficient (R2) for the pseudo-second-order model has higher value (>0.99) from Table 5 suggesting that the dye adsorption on sericin is likely to be chemisorptive.

    Table 4 Langmuir and Freundlich model parameters of dye on silk sericin

    Figure 5 Adsorption kinetics (Pseudo-second order models are plotted on the graphs) of (a) AY and (b) CuPc on sericin (Experimental conditions: 0.1 g sericin in 100 mldye solution at pH 1.5)

    Table 5 Kinetic model parameters of dyes on sericin

    4 CONCLUSIONS

    Silk sericin derived from waste biomass is low cost and effective for removal of acidic dyes from water. Also, the strong similarity in structure and chemistry of AY and CuPc similar to many active pharmaceuticals suggests that sericin could have potential application for treatment of these pollutants as well. Sericin is complex biosorbent rich in amide groups that could be further altered to achieve different adsorption behaviour and selectivity for targeted remediation of polluted water. Indeed, it has been demonstrated that sericin biosorbent could selectively adsorb precious metals (i.e., gold, palladium) from solutions containing other metals [23]. Gold, palladium and platinum find uses in catalysis [37-40] and membranes [41-44] and improper disposal could lead to pollution by these heavy metals. We also believe that lesson learned from sericin biosorbents could be translated to synthetic adsorbents to achieve high adsorption capacity and selectivity [45-47].

    1 Lam, K.F., Yeung, K.L., McKay, G., “A new approach for Cd2+and Ni2+removal and recovery using mesoporous adsorbent with tunable selectivity”, Environ. Sci. Tech., 41, 3329-3334 (2007).

    2 Lam, K.F., Yeung, K.L., McKay, G., “Preparation of selective mesoporous adsorbents forand C u2+separation”, Microporous Mesoporous Mater., 100, 191-201 (2007).

    3 Chen, X.Q., Lam, K.F., Zhang, Q.J., Pan, B.C., Arruebo, M., Yeung,K.L., “Synthesis of highly selective magnetic mesoporous adsorbent”, J. Phys. Chem. C., 113, 9804-9813 (2009).

    4 Sun, W., Lam, K.F., Wong, L.W., Yeung, K.L., “Zeolite micropattern for biological applications”, Chem. Commun., 39, 4911-4912(2005).

    5 Park, D., Yun, Y.S., Park J.M., “The past, present, and future trends of biosorption”, Biotechnol. Bioproc. E., 15, 86-102 (2010).

    6 Khattri, S.D., Singh, M.K., “Colour removal from synthetic dye wastewater using a bioadsorbent”, Water Air Soil Pollut., 120,283-294 (2000).

    7 Boucher, J., Steiner, L., Marison, I.W., “Bio-sorption of atrazine in the press-cake from oilseeds”, Water Res., 41, 3209-3216 (2007).

    8 Mcafee, B.J., Douglas Gould, W., Nadeau, J. C. , da Costa, A. C. A.,“Biosorption of metal ions using chitosan, chitin, and biomass of Rhizopus oryzae”, Sep. Sci. Technol., 36 (14), 3207-3222 (2001).

    9 Mata, Y. N., Gavrilescu, M., “Removal of heavy metals from the environment by biosorption”, Eng. Life Sci., 4, 219-232 (2004).

    10 Torres, E., Blazquez, M.L., Ballester, A., Gonzalez, F., Munoz, J.A.,“Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus”, J. Hazardous Mater., 166, 612-618 (2009).

    11 Chuah, T.G., Jumasiah, A., Azni, I., Katayon, S., Thomas Choong,S.Y., “Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: An overview”, Deaslination, 175, 305-316 (2005).

    12 Malik, P.K., “Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: A case study of Acid Yellow 36”, Dyes Pigments, 56, 239-249 (2003).

    13 Aksu, Zumriye, Isoglu Alper, I., “Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution”, J. Hazard. Mater., B137, 418-430 (2006).

    14 de Oliveria Brito, S.M., Andrade, H.M.C., Soares, L.F., de Azevedo,R.P., “Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions”, J. Hazard. Mater.,174, 84-92 (2010).

    15 Ofomaja, A.E., “Equilibrium sorption of methylene blue using mansonia wood sawdust as biosorbent”, Desalination Water Treat., 3,1-10 (2009).

    16 Fiorentin, L.D., Trigueros, D.E.G., Modenes, A.N.,Espinoza-Quinones, F.R., Pereira, N.C., Barros, S.T.D., Santos,O.A.A., “Biosorption of reactive blue 5G dye onto drying orange bagasse in batch system: Kinetic and equilibrium modeling”, Chem.Eng. J., 163, 68-77 (2010).

    17 Gao, J., Zhang, Q., Su, K., Chen, R., Peng, Y., “Biosorption of acid yellow 17 from aqueous solution by non-living aerobic granular sludge”, J. Hazard. Mater., 174, 215-225 (2010).

    18 Rocher, V., Bee, A., Siaugue, J.M., Cabuil, V., “Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin”, J. Hazard. Mater., 178, 434-439 (2010).

    19 Gadd, G.M., “Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment”, J.Chem. Technol Biotechnol., 34, 13-28 (2009).

    20 Zhu, L.J., Yao, J., Youlu, L., “Structural transformation of sericin disolved from cocoon layer in hot water”, Zhejiang Nongye Daxue Xuebao, 24, 268-272 (1998). (in Chinese)

    21 Ho, Y.S., McKay, G., “The kinetics of sorption of divalent metal ions onto sphagnum moss peat”, Water Res., 34, 735-742 (2000).

    22 Gulrajani, M.L., Brahma, K.P., Senthil Kumar, P., Purwar, R.,“Application of silk sericin to polyester fabric”, J. Appl. Polym. Sci.,109, 314-321 (2008).

    23 Chen, X.Q., Lam, K.F., Mak, S.F., Yeung, K.L., “Precious metal recovery by selective adsorption using biosorbents”, J. Hazard. Mater.,186, 902-910 (2011).

    24 Takasu, Y., Yamada, H., Tsubouchi, K., “Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori”,Biosci. Biotechnol. Biochem., 66, 2715-2718 (2002).

    25 Kwang, Y.C., Jae, Y.M., Yong, W.L., Kwang, G.L., Joo, H.Y., Hae,Y.K., “Preparation of self-assembled silk sericin nanoparticles”, Int.J. Biol. Macromol., 32, 36-42 (2003).

    26 Wu, J.H., Wang, Z., Xu, S.Y., “Preparation and characterization of sericin powder extracted from silk industry wastewater”, Food Chem., 103, 1255-1262 (2007).

    27 Vaithanomsat, P., Kitpreechavanich, V., “Sericin separation from silk degumming wastewater”, Sep. Purif. Technol., 59, 129-133 (2008).

    28 Ho, K.Y., McKay, G., Yeung, K.L., “Selective adsorbents from ordered mesoporous silica”, Langmuir, 19, 3019-3024 (2003).

    29 Russo, M.E., Marzocchella, A., Olivieri, G., Prigione, V., Salation, P.,Tigini, V., Varese, G.C., “Characterization of dyes biosorption on fungal biomass”, Chem. Eng. Trans., 17, 1071-1076 (2009).

    30 Iqbal, J., Wattoo, F.H., Wattoo, M.H.S., Malik, R., Tirmizi, S., Imran,M., Ghangro, A.B., “Adsorption of acid yellow dye on flaskes of chitosan prepared from fishery wastes”, Arabian J. Chem., 4,389-395 (2011).

    31 Ozacar, M., Sengil, I.A., “Adsorption of metal complex dyes from aqueous solutions by pine sawdust”, Biores. Techno., 96, 791-795.

    32 Anbia, M., Mohammadi, N., Mohammadi,K., “Fast and efficient mesoporous adsorbents for the separation of toxic compounds from aqueous media”, J. Hazard. Mater., 176, 965-972 (2010).

    33 Gusmao, K.A.G., Gurgel, L.V.A., Melo, T.M.S., Gil, L.F., “Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions-kinetic and equilibrium studies”, Dyes Pigments, 92, 967-974 (2012).

    34 Liu,T., Li,Y., Du, Q., Sun, J., Jiao, Y., Yang, G., Wang, Z., Xia, Y.,Zhang, W., Wang, K., Zhu, H., Wu, D., “Adsorption of methylene blue from aqueous solution by graphene”, Colloids Surf. B., 90,197-203 (2012).

    35 Vadivelan, V., Kumar, K.V., “Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk”, J.Colloids Inter. Sci., 286, 90-100 (2005).

    36 Kavitha,D., Namasivayam, C., “Experimental and kinetic studies on methylene blue adsorption by coir pith carbon”, Bioresource Tech.,98, 14-21 (2007).

    37 Ho, K.Y., Yeung, K.L., “Effects of ozone pretreatment on the performance of Au/TiO2catalyst for CO oxidation reaction”, J. Catat.,242, 131-141 (2006).

    38 Yeung, K.L., Wolf, E.E., “A scanning tunneling microscopy study of the platinum catalysts particles supported on graphite”, J. Vac. Sci.Technol. B., 9, 798-803 (1991).

    39 Yeung, K.L., Wolf, E.E., “Scanning tunneling microscopy studies of sized and morphology of Pt graphite catalysts”, J. Catat., 135, 13-26(1992).

    40 Cheng, Y.S., Yeung, K.L., “Effects of electroless plating chemistry on the synthesis of palladium membranes”, J. Membrane Sci., 182,195-203 (2001).

    41 Yeung, K.L., Sebastian, J.M., Varma, A., “Novel preparation of Pd/Vycor composite membranes”, Catat. Today, 25, 231-236 (1995).

    42 Yeung, K.L., Aravind, R., Szegner, J., Varma, A., “Metal composite membranes: Synthesis, characterization and reaction studies”, Stud.Surf. Sci. Catal., 101, 1349-1358 (1996).

    43 Yeung, K.L., Cheng, Y.S., “Effects of electroless plating chemistry on the synthesis of palladium membranes”, J. Membrane Sci., 182,195-203 (2001).

    44 Guo, Y., Zhang, X.F., Zou, H., Liu, H., Wang, J., Yeung, K.L.,“Pd-silicalite-1 composite membrane for direct hydroxylation of benzene”, Chem. Commun., 39, 5898-5900 (2009).

    45 Chen, X.Q., Lam, K.F., Yeung, K.L., “Selective removal of chromium from different aqueous systems using magnetic MCM-41 nanosorbents”, Chem. Eng. J., 172, 728-734 (2011).

    46 Pan, B.C., Chen, X.Q., Pan, B.J., Zhang, W.M., Zhang, X., Zhang,Q.X., “Preparation of an aminated macroreticular resin adsorbent and its adsorption of p-nitrophenol from water”, J. Hazard. Mater.,137, 1236-1240 (2006).

    47 Lam, K.F., Chen, X.Q., McKay, G., Yeung, K.L., “Anion effect on Cu2+adsorption on NH2-MCM-41”, Ind. Eng. Chem. Res., 47,9376-9383 (2008).

    2012-03-15, accepted 2012-04-04.

    * Supported by the Hong Kong Research Grant Council (605009), the Hong Kong Innovation Technology Fund (ITS/108/09FP)and the Environment and Conservation Fund (ECWW11EG02).

    ** To whom correspondence should be addressed. E-mail: kekyeung@ust.hk

    国产人妻一区二区三区在| 久久6这里有精品| 少妇的逼好多水| 一区二区三区四区激情视频 | 麻豆国产97在线/欧美| 99久久无色码亚洲精品果冻| 女人被狂操c到高潮| 国产欧美日韩精品一区二区| 久久久久久九九精品二区国产| 国产91精品成人一区二区三区| 亚洲最大成人av| 嫩草影院新地址| 成年人黄色毛片网站| 能在线免费观看的黄片| 美女被艹到高潮喷水动态| 999久久久精品免费观看国产| 国产伦精品一区二区三区视频9| 18禁在线播放成人免费| 非洲黑人性xxxx精品又粗又长| 久久久精品大字幕| 悠悠久久av| 淫秽高清视频在线观看| 能在线免费观看的黄片| 日韩在线高清观看一区二区三区 | 最近最新免费中文字幕在线| 别揉我奶头 嗯啊视频| 久久久久国产精品人妻aⅴ院| 日韩欧美精品v在线| 中文字幕熟女人妻在线| 国产69精品久久久久777片| 美女被艹到高潮喷水动态| 我的老师免费观看完整版| 国产精品,欧美在线| 久久午夜福利片| 99热这里只有精品一区| 国产视频一区二区在线看| 久久亚洲精品不卡| 色精品久久人妻99蜜桃| 99热这里只有是精品在线观看| 两人在一起打扑克的视频| 午夜精品在线福利| 露出奶头的视频| 我的女老师完整版在线观看| 国内揄拍国产精品人妻在线| 久久国产乱子免费精品| 又粗又爽又猛毛片免费看| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久亚洲 | 麻豆一二三区av精品| 一级黄片播放器| 综合色av麻豆| 免费高清视频大片| 久久久久久久久久黄片| 国产精品无大码| 校园春色视频在线观看| 国产精品嫩草影院av在线观看 | 久久久久久久久久黄片| 欧美三级亚洲精品| 日韩,欧美,国产一区二区三区 | 日本一二三区视频观看| 少妇猛男粗大的猛烈进出视频 | 91久久精品电影网| 亚洲精品456在线播放app | 级片在线观看| 中出人妻视频一区二区| 一级av片app| 日本三级黄在线观看| 中文字幕免费在线视频6| 韩国av在线不卡| 精品无人区乱码1区二区| 精品无人区乱码1区二区| 成人av在线播放网站| 国产精品久久视频播放| 免费搜索国产男女视频| 精品久久久久久久末码| 日本a在线网址| 国产高清视频在线观看网站| 亚洲精品一区av在线观看| 亚洲精品一卡2卡三卡4卡5卡| 2021天堂中文幕一二区在线观| 熟妇人妻久久中文字幕3abv| 啦啦啦观看免费观看视频高清| 亚洲不卡免费看| 91精品国产九色| 女的被弄到高潮叫床怎么办 | 亚洲午夜理论影院| 久久久久精品国产欧美久久久| 国产v大片淫在线免费观看| 极品教师在线视频| 亚洲精品乱码久久久v下载方式| 成人亚洲精品av一区二区| 亚洲av电影不卡..在线观看| 十八禁国产超污无遮挡网站| 麻豆成人午夜福利视频| 麻豆成人午夜福利视频| 熟女人妻精品中文字幕| 麻豆国产97在线/欧美| 一a级毛片在线观看| 日本与韩国留学比较| 国产精品一区www在线观看 | 国产麻豆成人av免费视频| 九色成人免费人妻av| 国产主播在线观看一区二区| 久久人人精品亚洲av| 亚洲美女视频黄频| 国产精品久久久久久精品电影| 伊人久久精品亚洲午夜| 欧美成人免费av一区二区三区| 男人和女人高潮做爰伦理| 最新在线观看一区二区三区| 老女人水多毛片| 小蜜桃在线观看免费完整版高清| 久久久久国产精品人妻aⅴ院| 色哟哟哟哟哟哟| 国产主播在线观看一区二区| 亚洲国产精品sss在线观看| 看十八女毛片水多多多| 联通29元200g的流量卡| 少妇的逼水好多| 免费av观看视频| 中文资源天堂在线| 日韩国内少妇激情av| 日本一本二区三区精品| 日日摸夜夜添夜夜添小说| 成年版毛片免费区| 久久香蕉精品热| 亚洲精品亚洲一区二区| 婷婷六月久久综合丁香| 国产av不卡久久| 日本与韩国留学比较| 国产精品福利在线免费观看| 久久久久久伊人网av| 国产黄a三级三级三级人| 69人妻影院| 午夜精品在线福利| 久久99热6这里只有精品| 99精品久久久久人妻精品| 能在线免费观看的黄片| 美女 人体艺术 gogo| 午夜老司机福利剧场| 一区二区三区激情视频| 网址你懂的国产日韩在线| 在线天堂最新版资源| 看十八女毛片水多多多| 97碰自拍视频| 无遮挡黄片免费观看| 久久欧美精品欧美久久欧美| 悠悠久久av| 悠悠久久av| 国产乱人视频| 97碰自拍视频| 成人毛片a级毛片在线播放| 男插女下体视频免费在线播放| 91在线观看av| 成人美女网站在线观看视频| 午夜视频国产福利| 在线观看免费视频日本深夜| 搡老岳熟女国产| 日韩欧美三级三区| 精品久久久久久久末码| 中文字幕免费在线视频6| 国产精品乱码一区二三区的特点| 国产男靠女视频免费网站| 麻豆国产97在线/欧美| 少妇猛男粗大的猛烈进出视频 | 亚洲一区高清亚洲精品| 亚洲国产日韩欧美精品在线观看| 一进一出抽搐gif免费好疼| 久久国产乱子免费精品| 丰满人妻一区二区三区视频av| 日本a在线网址| 日本黄色片子视频| 成人精品一区二区免费| 精品一区二区三区人妻视频| www日本黄色视频网| 日韩强制内射视频| 99在线视频只有这里精品首页| 中文字幕免费在线视频6| av在线老鸭窝| 一本久久中文字幕| 国产麻豆成人av免费视频| 亚洲图色成人| 久久精品91蜜桃| 久久久久久久久大av| 午夜福利在线观看吧| 女人被狂操c到高潮| 亚洲欧美日韩高清在线视频| 婷婷亚洲欧美| 1000部很黄的大片| 日韩欧美精品v在线| 国产高清视频在线观看网站| 我要搜黄色片| 狂野欧美白嫩少妇大欣赏| 亚洲av成人精品一区久久| 成人国产综合亚洲| av中文乱码字幕在线| 长腿黑丝高跟| 国产一区二区三区在线臀色熟女| 久久6这里有精品| 人妻少妇偷人精品九色| 亚洲美女搞黄在线观看 | 亚洲人成网站在线播| 免费人成在线观看视频色| 中文在线观看免费www的网站| 在现免费观看毛片| 国产欧美日韩一区二区精品| 九九爱精品视频在线观看| 韩国av一区二区三区四区| 波多野结衣高清无吗| 88av欧美| 夜夜爽天天搞| 人妻久久中文字幕网| 免费av观看视频| 国产熟女欧美一区二区| 国产精品一及| 一区二区三区四区激情视频 | 成人特级黄色片久久久久久久| 午夜福利欧美成人| 亚洲无线在线观看| 亚洲va在线va天堂va国产| 亚洲天堂国产精品一区在线| 中文字幕av在线有码专区| 少妇高潮的动态图| av天堂在线播放| 99在线人妻在线中文字幕| 日韩高清综合在线| 亚洲avbb在线观看| 久久精品国产亚洲av涩爱 | 久久久久九九精品影院| 内地一区二区视频在线| 白带黄色成豆腐渣| 日韩精品有码人妻一区| 搡老妇女老女人老熟妇| 免费黄网站久久成人精品| av福利片在线观看| 久久久久久伊人网av| 国产亚洲av嫩草精品影院| 啦啦啦韩国在线观看视频| 91久久精品电影网| 国产精品三级大全| 国产69精品久久久久777片| 成人精品一区二区免费| 久久久久久久久久成人| 动漫黄色视频在线观看| 久久精品人妻少妇| 亚洲国产精品sss在线观看| 日韩中字成人| 国产精品av视频在线免费观看| 露出奶头的视频| 能在线免费观看的黄片| av黄色大香蕉| 少妇熟女aⅴ在线视频| 国产乱人视频| 国产亚洲91精品色在线| 国产私拍福利视频在线观看| 亚洲自偷自拍三级| 乱人视频在线观看| a在线观看视频网站| 在线免费十八禁| 成年免费大片在线观看| 亚洲天堂国产精品一区在线| a级一级毛片免费在线观看| 在线观看66精品国产| 男女啪啪激烈高潮av片| 久久精品国产清高在天天线| 欧美成人一区二区免费高清观看| 亚洲美女搞黄在线观看 | 国产成人a区在线观看| 国产视频一区二区在线看| 久久久成人免费电影| 亚洲黑人精品在线| 亚洲欧美激情综合另类| 欧美潮喷喷水| 老熟妇乱子伦视频在线观看| 成人三级黄色视频| 十八禁网站免费在线| 亚洲内射少妇av| 国产欧美日韩精品亚洲av| 国产精品,欧美在线| 亚洲熟妇熟女久久| 观看美女的网站| 一进一出抽搐动态| 国产精品电影一区二区三区| 人人妻,人人澡人人爽秒播| 极品教师在线免费播放| 在线免费观看不下载黄p国产 | 色噜噜av男人的天堂激情| 18禁在线播放成人免费| 乱系列少妇在线播放| 国产色爽女视频免费观看| 国产黄片美女视频| 日本色播在线视频| 深爱激情五月婷婷| 亚洲av不卡在线观看| 日本成人三级电影网站| 亚洲成人中文字幕在线播放| 黄色视频,在线免费观看| 久久99热6这里只有精品| 日韩一区二区视频免费看| 国产午夜精品论理片| 老熟妇仑乱视频hdxx| 日韩欧美三级三区| 99国产精品一区二区蜜桃av| 日本黄色片子视频| 国产免费男女视频| 午夜福利高清视频| 久久久成人免费电影| 成人午夜高清在线视频| 久久久久性生活片| 日韩一区二区视频免费看| 九九在线视频观看精品| 国内揄拍国产精品人妻在线| 观看美女的网站| 亚洲成a人片在线一区二区| 国产高清三级在线| 国产毛片a区久久久久| 国产精品福利在线免费观看| 天堂动漫精品| 狂野欧美白嫩少妇大欣赏| 成人一区二区视频在线观看| 国产黄片美女视频| 日日撸夜夜添| 国产精华一区二区三区| 免费观看精品视频网站| 国产爱豆传媒在线观看| 亚洲无线在线观看| 国产麻豆成人av免费视频| 黄色欧美视频在线观看| 999久久久精品免费观看国产| 91av网一区二区| 91在线精品国自产拍蜜月| 蜜桃亚洲精品一区二区三区| 不卡视频在线观看欧美| 少妇被粗大猛烈的视频| 毛片一级片免费看久久久久 | 一本精品99久久精品77| 99视频精品全部免费 在线| 久久久成人免费电影| 中亚洲国语对白在线视频| 国产精品久久电影中文字幕| h日本视频在线播放| 丰满人妻一区二区三区视频av| 给我免费播放毛片高清在线观看| 久久人妻av系列| 999久久久精品免费观看国产| 精品久久久久久久久av| 亚洲va在线va天堂va国产| 亚洲第一电影网av| 婷婷亚洲欧美| 国产 一区精品| 噜噜噜噜噜久久久久久91| 毛片女人毛片| 欧洲精品卡2卡3卡4卡5卡区| 欧美精品啪啪一区二区三区| 国产高清视频在线观看网站| 春色校园在线视频观看| 国产久久久一区二区三区| netflix在线观看网站| 91久久精品电影网| 深夜精品福利| 51国产日韩欧美| 中文字幕高清在线视频| 成人特级黄色片久久久久久久| 久久99热这里只有精品18| 国内毛片毛片毛片毛片毛片| 熟女人妻精品中文字幕| 窝窝影院91人妻| 精品人妻1区二区| 国国产精品蜜臀av免费| 简卡轻食公司| 免费av观看视频| 亚洲精品在线观看二区| 国产黄色小视频在线观看| 少妇人妻精品综合一区二区 | 亚洲专区国产一区二区| 久久中文看片网| 国产淫片久久久久久久久| 波多野结衣巨乳人妻| 18禁黄网站禁片免费观看直播| 男人的好看免费观看在线视频| 免费在线观看日本一区| av天堂在线播放| 欧美成人性av电影在线观看| 亚洲国产精品久久男人天堂| 免费av不卡在线播放| 久久精品国产清高在天天线| 久99久视频精品免费| 国产亚洲精品av在线| 国产午夜精品久久久久久一区二区三区 | www.www免费av| 久久人妻av系列| 老熟妇仑乱视频hdxx| 天天躁日日操中文字幕| 精品国内亚洲2022精品成人| 午夜免费成人在线视频| 日日干狠狠操夜夜爽| 蜜桃久久精品国产亚洲av| 日韩欧美 国产精品| 一级毛片久久久久久久久女| 性欧美人与动物交配| 久久精品国产亚洲av涩爱 | 免费看日本二区| 夜夜看夜夜爽夜夜摸| 久久久久久国产a免费观看| 亚洲精品456在线播放app | 成年女人永久免费观看视频| 久久99热6这里只有精品| 看免费成人av毛片| 久久精品国产亚洲av香蕉五月| 一本久久中文字幕| 国产伦精品一区二区三区四那| 亚洲精品在线观看二区| 超碰av人人做人人爽久久| 国产精品一区二区免费欧美| 神马国产精品三级电影在线观看| 欧美成人一区二区免费高清观看| av黄色大香蕉| 精品一区二区三区视频在线观看免费| 美女黄网站色视频| 非洲黑人性xxxx精品又粗又长| 日本熟妇午夜| 免费av毛片视频| 亚洲成人久久爱视频| 伦理电影大哥的女人| 高清日韩中文字幕在线| 夜夜夜夜夜久久久久| 国产大屁股一区二区在线视频| 天天一区二区日本电影三级| 色吧在线观看| 99精品久久久久人妻精品| 人妻制服诱惑在线中文字幕| 亚洲熟妇中文字幕五十中出| 特大巨黑吊av在线直播| 男女啪啪激烈高潮av片| 男插女下体视频免费在线播放| 成人永久免费在线观看视频| 久久中文看片网| 在线免费观看不下载黄p国产 | 国产伦精品一区二区三区视频9| 国产亚洲精品久久久com| 国产伦在线观看视频一区| 一进一出好大好爽视频| aaaaa片日本免费| 国产白丝娇喘喷水9色精品| 又粗又爽又猛毛片免费看| www日本黄色视频网| 国产精品嫩草影院av在线观看 | 午夜免费成人在线视频| 男插女下体视频免费在线播放| 国产亚洲精品av在线| 草草在线视频免费看| 亚洲人与动物交配视频| 在线观看免费视频日本深夜| 岛国在线免费视频观看| 亚洲国产日韩欧美精品在线观看| 免费电影在线观看免费观看| 亚洲成人久久爱视频| 欧美最新免费一区二区三区| 男女边吃奶边做爰视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品亚洲一区二区| 日韩欧美精品免费久久| 欧美绝顶高潮抽搐喷水| 露出奶头的视频| 老师上课跳d突然被开到最大视频| 成人三级黄色视频| 人妻少妇偷人精品九色| 成年版毛片免费区| 亚洲精品国产成人久久av| 日本三级黄在线观看| 色在线成人网| 亚洲成人久久爱视频| 小说图片视频综合网站| 亚洲欧美日韩卡通动漫| 尾随美女入室| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆 | 天堂av国产一区二区熟女人妻| 久久精品久久久久久噜噜老黄 | 国内久久婷婷六月综合欲色啪| 欧美日韩精品成人综合77777| 成人性生交大片免费视频hd| 全区人妻精品视频| 一夜夜www| 联通29元200g的流量卡| 亚洲综合色惰| 校园春色视频在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲av免费高清在线观看| 久久久久国产精品人妻aⅴ院| 国产一区二区三区在线臀色熟女| 日韩一区二区视频免费看| 日本精品一区二区三区蜜桃| 久久草成人影院| 亚洲真实伦在线观看| 午夜精品久久久久久毛片777| 熟女电影av网| 欧美激情在线99| 国产精品国产高清国产av| 18禁在线播放成人免费| 成人综合一区亚洲| 国产精品国产三级国产av玫瑰| 久久久久久久久久久丰满 | 黄色视频,在线免费观看| 亚洲av中文字字幕乱码综合| 美女黄网站色视频| 最近最新中文字幕大全电影3| 亚洲综合色惰| 亚洲国产精品久久男人天堂| 亚洲美女视频黄频| 成年女人毛片免费观看观看9| 精品一区二区三区人妻视频| 久久九九热精品免费| 亚洲国产高清在线一区二区三| 国产精品久久视频播放| 国产黄片美女视频| 岛国在线免费视频观看| 特级一级黄色大片| 一夜夜www| 欧美日韩瑟瑟在线播放| 少妇裸体淫交视频免费看高清| 国产亚洲精品av在线| 女生性感内裤真人,穿戴方法视频| 淫妇啪啪啪对白视频| 亚洲av美国av| 国产aⅴ精品一区二区三区波| 精品国产三级普通话版| 亚洲久久久久久中文字幕| 日韩欧美国产一区二区入口| 给我免费播放毛片高清在线观看| 少妇熟女aⅴ在线视频| 国产精品爽爽va在线观看网站| 成人欧美大片| 99在线人妻在线中文字幕| 免费人成在线观看视频色| 日韩欧美三级三区| av在线老鸭窝| 亚洲精品成人久久久久久| 亚洲精品456在线播放app | 国产精品嫩草影院av在线观看 | 亚洲熟妇中文字幕五十中出| 一本精品99久久精品77| 国产伦精品一区二区三区四那| 国产高清视频在线播放一区| 久久久久国内视频| 成人永久免费在线观看视频| 国内毛片毛片毛片毛片毛片| 看片在线看免费视频| 久久亚洲精品不卡| 亚洲久久久久久中文字幕| 成人国产麻豆网| 蜜桃久久精品国产亚洲av| 国产精品av视频在线免费观看| 亚洲av电影不卡..在线观看| 国产伦精品一区二区三区视频9| 亚洲天堂国产精品一区在线| 精品午夜福利在线看| 久久人妻av系列| 五月玫瑰六月丁香| 美女被艹到高潮喷水动态| 黄色视频,在线免费观看| 内射极品少妇av片p| 一个人观看的视频www高清免费观看| h日本视频在线播放| 色精品久久人妻99蜜桃| 亚洲专区国产一区二区| 亚洲精华国产精华精| 国产精品一区二区三区四区免费观看 | 精品一区二区三区视频在线观看免费| 深爱激情五月婷婷| 欧美高清成人免费视频www| 长腿黑丝高跟| 精品国内亚洲2022精品成人| or卡值多少钱| 特级一级黄色大片| 欧美zozozo另类| 国产精品98久久久久久宅男小说| 国产精华一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 高清毛片免费观看视频网站| 国产亚洲精品久久久久久毛片| 最后的刺客免费高清国语| 亚洲第一区二区三区不卡| 国产亚洲精品久久久com| 精品一区二区三区视频在线观看免费| 久久午夜亚洲精品久久| 精品一区二区三区人妻视频| 成人性生交大片免费视频hd| 国内少妇人妻偷人精品xxx网站| 亚洲成人久久爱视频| 久久精品人妻少妇| 在线免费观看不下载黄p国产 | 久9热在线精品视频| 成人国产一区最新在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲精品一区av在线观看| 亚洲成a人片在线一区二区| 国产不卡一卡二| av黄色大香蕉| 长腿黑丝高跟| 在线播放无遮挡| 国产高清有码在线观看视频| 一级黄色大片毛片| 欧美色视频一区免费| 久久久午夜欧美精品| 婷婷丁香在线五月| 99久久精品热视频| 十八禁国产超污无遮挡网站| 亚洲熟妇中文字幕五十中出| 日韩欧美在线乱码| 成人午夜高清在线视频| 女同久久另类99精品国产91| 午夜福利视频1000在线观看| 嫩草影视91久久| 如何舔出高潮|