徐 珍 珍, 趙 東 霞, 楊 忠 志
( 遼寧師范大學(xué) 化學(xué)化工學(xué)院, 遼寧 大連 116029 )
取代的5-己烯自由基進(jìn)攻雙鍵碳原子而形成五元或六元環(huán)的分子內(nèi)加成反應(yīng),在有機(jī)合成中引起了廣泛的興趣,被很多的實(shí)驗(yàn)[1-2]和理論化學(xué)家[3-5]所研究。圖1所示即為烷基取代的5-己烯自由基的閉環(huán)反應(yīng)。該反應(yīng)有兩種反應(yīng)途徑:一種是自由基C1進(jìn)攻5號(hào)雙鍵碳原子生成五元環(huán)產(chǎn)物,稱為5-exo型;另一種是自由基進(jìn)攻6號(hào)碳原子生成六元環(huán)產(chǎn)物,稱為6-endo型。實(shí)驗(yàn)上一般認(rèn)為,5-己烯自由基的環(huán)化加成(反應(yīng)1、2、4、5)具有較高的區(qū)位選擇性,形成的是五元環(huán)產(chǎn)物[1,4,6-8]。然而,當(dāng)C5位置上有取代基(反應(yīng)3),將會(huì)由于空間位阻效應(yīng),而生成6-endo型產(chǎn)物[5-7,9]。反應(yīng)6和7也是由于空間效應(yīng),以生成大環(huán)為主要產(chǎn)物[3-4]。
1. R1=H, R2=H, R3=H, R4=H 2. R1=Me, R2=H, R3=H, R4=H 3. R1=H, R2=Me, R3=H, R4=H 4. R1=H, R2=H, R3=Me, R4=H 5. R1=H, R2=H, R3=Me, R4=Me 6. R1=Me, R2=H, R3=Me, R4=H 7. R1=Me, R2=H, R3=Me, R4=Me
圖1 烷基-取代的自由基閉環(huán)反應(yīng)分別生成5-exo型異構(gòu)和6-endo型異構(gòu)的產(chǎn)物
Fig.1 The alkyl-substituted radical ring closure additions, producing two isomers, 5-exoand 6-endoisomers
本文主要是利用Fukui函數(shù)和廣義Fukui函數(shù)[10],分別結(jié)合局域HSAB原理,預(yù)測(cè)圖1中所示的7個(gè)烷基-取代的自由基閉環(huán)反應(yīng)的區(qū)位選擇性以及反應(yīng)之間的活性序列,其中活性指標(biāo)是利用ABEEMσπ方法[11-14]獲得的。
Fukui函數(shù),f(r),是概念密度泛理論中預(yù)測(cè)分子活性位點(diǎn)的重要反應(yīng)性指標(biāo)之一,Parr和Yang等[15]將其定義為
(1)
根據(jù)HSAB原理以及局域HSAB原理,提出了廣義Fukui函數(shù)[10]fG(r)的概念,如式(2)所示:
fG(r)=NMf(r)
(2)
其中,NM為體系的原子個(gè)數(shù)。從它的定義式中可以看出,廣義Fukui函數(shù)是歸一化到原子個(gè)數(shù)NM的,并且體系中任意r處的活性不僅與電荷的變化f(r)相關(guān),而且還與體系的原子個(gè)數(shù)NM相關(guān)。
局域HSAB原理指出[16],兩個(gè)分子發(fā)生反應(yīng)并不在Fukui函數(shù)最大的地方,而是發(fā)生在局域軟度(局域軟度等于體系的整體軟度與Fukui函數(shù)的乘積)幾乎相等的地方。由于本文所研究的反應(yīng)屬于分子內(nèi)的反應(yīng),因而整體軟度為一定值,所以使用Fukui函數(shù)即可,即分子內(nèi)的反應(yīng)是發(fā)生在Fukui函數(shù)幾乎相等的地方。使用中心原子的Fukui函數(shù)或廣義Fukui函數(shù)差的絕對(duì)值(Δf或ΔfG)來體現(xiàn)這一原理,如式(3)和(4)所示:
Δf=|f1-f5/6|
(3)
(4)
本文所有反應(yīng)物均是在UB3LYP/6-311++G(d,p)方法下,使用Gaussian-03程序優(yōu)化得到的。在同樣的基組和方法下進(jìn)行振動(dòng)頻率的計(jì)算,均無虛頻出現(xiàn)。反應(yīng)物中心原子的Fukui函數(shù)和廣義Fukui函數(shù)是通過ABEEMσπ模型[11-14]得到的。
以5-己烯自由基的閉環(huán)加成反應(yīng)(反應(yīng)1)為例,在UB3LYP/6-311++G(d,p)水平下,通過改變二面角φC1C2C3C4和φC2C3C4C5的角度,從-180°~180°,每隔10°改變一次,獲得了如圖2所示的能量曲線。從圖中可以看出,共獲得了5個(gè)能量最低的構(gòu)象,分別是轉(zhuǎn)動(dòng)二面角φC1C2C3C4,得到1-c(cc)、1-b和1-a;而轉(zhuǎn)動(dòng)二面角φC2C3C4C5得到了1-bb(b)、1-e(ee)和1-d三個(gè)構(gòu)象,其中a、b(bb)和d型構(gòu)象屬于near-attack型構(gòu)象,而c(cc)和e(ee)屬于直線型構(gòu)象。其中,直線型構(gòu)象1-c(cc)和1-e(ee)的能量最低,而1-e(ee)型構(gòu)象又是直線型中能量最低的。盡管1-b(1-bb)的能量低于1-a和1-d,但是從它們的結(jié)構(gòu)上來看,1-a和1-d中自由基碳原子距離C5原子要更近一些,因此更容易發(fā)生自由基進(jìn)攻反應(yīng)。因此,選擇構(gòu)象1-a、1-d和1-e作為研究對(duì)象。其他反應(yīng)物也能夠得到與圖2相類似的能量曲線,因此,在后面的討論中選擇構(gòu)象a、d和e作為研究對(duì)象。
圖2 UB3LYP/6-311++G(d,p)水平下,改變5-己烯自由基中的二面角φC1C2C3C4和φC2C3C4C5所得到的能量曲線(括號(hào)中所列的是二面角的角度和所對(duì)應(yīng)的構(gòu)象的能量)
Fig.2 The variation of the total energy with the dihedral anglesφC1C2C3C4andφC2C3C4C5of 5-hexenyl radical at the level of UB3LYP/6-311+ +G(d,p) (The angle and the energy of stable conformers are presented in the brackets)
Δf5-exo×102Δf6-endo×102ΔfG5-exoΔfG6-endoExperimental rate constantsk5-exok6-endo1a1.110 62.072 60.188 80.352 3d1.095 22.016 60.186 20.342 8 1.000 00.020 0e1.197 52.292 30.203 60.389 72a0.300 82.940 00.060 20.588 0d 0.124 22.696 40.024 80.539 3e 0.077 43.063 00.015 50.612 63a6.781 72.317 91.356 30.463 6d6.704 32.349 31.340 90.469 9e6.853 52.708 41.370 70.541 74a0.681 32.114 50.136 30.422 9d0.569 52.167 40.113 90.433 5e0.515 62.470 10.103 10.494 05a0.410 12.738 90.094 30.630 0d0.406 42.602 00.093 50.598 51.400 00.020 0e0.085 22.766 20.019 60.636 26a4.905 92.956 71.128 40.680 0d4.777 73.242 31.098 90.745 70.022 00.040 0e5.218 73.220 51.200 30.740 77a4.201 72.823 51.092 40.734 1d4.296 22.788 21.117 00.724 9<0.000 20.020 0e4.473 13.193 41.163 00.830 3注:k是相對(duì)速率常數(shù)[4]。
在ABEEMσπ模型下獲得的Fukui函數(shù)以及廣義Fukui函數(shù),結(jié)合局域HSAB原理,能夠很好地預(yù)測(cè)烷基-取代的自由基環(huán)化反應(yīng)的區(qū)位選擇性。此外,主要產(chǎn)物的廣義Fukui函數(shù),還能夠準(zhǔn)確地預(yù)測(cè)出這一個(gè)系列反應(yīng)之間的活性序列,與實(shí)驗(yàn)測(cè)得速率常數(shù)有很好的關(guān)聯(lián)一致性。廣義Fukui函數(shù)作為分子間的反應(yīng)性指標(biāo),在預(yù)測(cè)分子內(nèi)反應(yīng)間的活性序列方面,也能夠取得令人滿意的結(jié)果。
[1] BECKWITH A L J, EASTON C J, SERELIS A K. Some guidelines for radical reactions[J]. Journal of the Chemical Society, Chemical Communication, 1980(11):482-483.
[2] MIRANDA N, DAUBLAIN P, HORNER J H, et al. Carboxylate-substituted radicals from phenylselenide derivatives. Designs on models for coenzyme B12-dependent enzyme-catalyzed rearrangements[J]. Journal of the American Chemical Society, 2003, 125:5260-5261.
[3] TUZUN N S, AVIYENTE V. A computational study on the substituent effect of diallylamine monomers in their cyclopolymerization reactions[J]. The Journal of Physical Chemistry A, 2002, 106:8184-8190.
[4] BECKWITH A L J. Regio-selectivity and stereo-selectivity in radical reactions[J]. Tetrahedron, 1981, 37:3073-3100.
[5] LEACH A G, WANG R X, WOHLHIETER G E, et al. Theoretical elucidation of kinetic and thermodynamic control of radical addition regioselectivity[J]. Journal of the American Chemical Society, 2003, 125:4271-4278.
[6] BECKWITH A L J, BLAIR I A, PHILLIPOU G. Substituent effects on the cyclization of hex-5-enyl radical[J]. Tetrahedron Letters, 1974, 15:2251-2254.
[7] BECKWITH A L J, BLAIR I A, PHILLIPOU G. Preferential cis cyclization of 6-hepten-2-yl and related radicals. Example of orbital symmetry control[J]. Journal of the American Chemical Society, 1974, 96:1613-1614.
[8] WALLING C, CIOFFARI A. Cyclization of 5-Hexenyl Radicals[J]. Journal of the American Chemical Society, 1972, 94:6059-6064.
[9] BECKWITH A L J, LAWRENCE T. The effect of non-bonded interactions on the regioselectivity of cyclization of the hex-5-enyl radical[J]. Journal of the Chemical Society, Perkin Transactions 2, 1979(11):1535-1539.
[10] ZHAO D X, XU Z Z, YANG Z Z. Local HSAB rationalization of Diels-Alder reactions by means of ab initio and ABEEMσπ methods:stereoselectivity and reaction rate[J]. International Journal of Quantum Chemistry, 2012, DOI:10.1002/qua.24173 (in press).
[11] YANG Z Z, WANG C S. Atom-bond electronegativity equalization method.1. calculation of the charge distribution in large molecules[J]. The Journal of Physical Chemistry A, 1997, 101:6315-6321.
[12] WANG C S, YANG Z Z. Atom-bond electronegativity equalization method. II. Lone-pair electron model[J]. Journal of Chemical Physics, 1999, 110:6189.
[13] CONG Y, YANG Z Z. General atom-bond electronegativity equalization method and its application in prediction of charge distributions in polypeptide[J]. Chemical Physics Letters, 2000, 316:324-329.
[14] ZHAO D X, LIU C, WANG F F, et al. Development of a polarizable force field using multiple fluctuating charges per atom[J]. Journal of Chemical Theory and Computation, 2010, 6:795-804.
[15] PARR R G, YANG W T. Density-functional Theory of Atoms and Molecules[M]. Oxford:Oxford University Press, 1989.
[16] GAZQUEZ J L, MENDEZ F. The hard and soft acids and bases principle:an atoms in molecules viewpoint[J]. The Journal of Physical Chemistry, 1994, 98:4591-4593.