• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    分光光度滴定法測(cè)某些多齒配體與Ni(Ⅱ)配合物的穩(wěn)定常數(shù)

    2012-09-15 11:45:02HavaOzayAhmetUlgenYakupBaran
    關(guān)鍵詞:化學(xué)系文理學(xué)院滴定法

    Hava OzayAhmet UlgenYakup Baran*,

    (1Onsekiz Mart大學(xué),文理學(xué)院,化學(xué)系,恰納卡萊 17100,土耳其)

    (2Erciyes大學(xué),文理學(xué)院,化學(xué)系,開(kāi)塞利,土耳其)

    分光光度滴定法測(cè)某些多齒配體與Ni(Ⅱ)配合物的穩(wěn)定常數(shù)

    Hava Ozay1Ahmet Ulgen2Yakup Baran*,1

    (1Onsekiz Mart大學(xué),文理學(xué)院,化學(xué)系,恰納卡萊 17100,土耳其)

    (2Erciyes大學(xué),文理學(xué)院,化學(xué)系,開(kāi)塞利,土耳其)

    制備了多齒大環(huán)配體 1,4,7,10-四氮雜環(huán)十二烷(L1);1,4,8,11-四(2-羥乙基)-1,4,8,11-四氮雜環(huán)十四烷(L2)和無(wú)環(huán)多齒配體;3-(2-氨基環(huán)己氨基)-2-(2-氨基環(huán)己氨基甲基)丙酸(L3),4,7,10-十三烷二腈三氫氯化物(L4),2,2′-(1,2-二乙基-雙((甲基二氮雜烷基)二乙醇(L5)and 1,1′-(1,2-二乙基-雙((2-氨基乙基)二氮雜烷基))-2-二丙醇 (L6),并用 FTIR,NMR 和 MS 進(jìn)行了表征,用配有二極管陣列檢測(cè)器、蠕動(dòng)泵和pH計(jì)的UV-VIS光度儀,經(jīng)分光光度滴定法測(cè)定了它們與Ni(Ⅱ)的配合物的穩(wěn)定常數(shù)。將穩(wěn)定常數(shù)的數(shù)據(jù)與配體的開(kāi)鏈和環(huán)狀結(jié)構(gòu)特性進(jìn)行了關(guān)聯(lián)討論。還討論了側(cè)基對(duì)配合物穩(wěn)定常數(shù)的影響。

    配合物;多齒;分光光度滴定;Ni(Ⅱ)

    0 Introduction

    Forthe pastdecade,linearormacrocyclic polyamines have been studied extensively.They are an important class of compounds due to their role as polyprotic bases[1],biologically important compounds[2-3],sensors for the detection of metal ions and metal ion complexation[4-8].Transition metal complexes of multidentate ligands with N and O donors are used as model systems for many metalloenzymes[9-11],luminescencesensing,light-emitting devices,inter-metallic communication,catalysts,molecular electronics,chromotropic compounds,non-linear chromophores[12-16]and in coordination polymer chemistry[17].

    Nickel has a very rich coordination chemistry[18].Nickel(Ⅱ)complexes are rich in color variation.They have coordination structures containing square-planar,tetrahedral,square-pyramidal,trigonal-bipyramidal and octahedral forms.Due to these properties of nickel(Ⅱ)complexes,a great number of studies relating to chromotropic metal complexes with applications as multi functional molecular devices have been carried out[19-20].In addition to these properties,metal ions may be part of the active sites of enzymes.There has been a great interest in the preparation of metal complexes which could mimic these metalloprotein′s active sites[21].

    Potentiometric and spectrophotometric titration methods are generally used to investigate the equilibria in solutions to determine the acid-base constants[22-23].The potentiometric titration is used frequently due to the simplicity ofequipmentand minimaltime requirement[24].However,this method does not include all aspects of solution chemistry.In order to gain complete information about the species formed during titration,spectrophotometric titrations are usually carried out simultaneously[25].This technique shows how much equilibrium exists in the solution during the study and can be applied to structural analysis of compounds.A great number of studies have reported on the stability of nickel(Ⅱ)complexes with nitrogen and oxygen donor atoms.Basallote and co-workers reported equilibrium constants of mono-and bi-nuclear nickel complexes of the hexaazamacrocycle ligand.The equilibrium constants of complexes were obtained from potentiometric titration studies[26].Krot and co-workers investigated the stability constants of copper,nickel,silver and mercury complexes of a tetra amide ligand using the potentiometric titration method and determined that the nickel complexesarelessstablethantheircopperanalogues[27].

    Here we report the synthesis of L1,L2,L3,L4,L5and L6and present the stability constants of nickel(Ⅱ)complexes obtained by spectrophotometric titration and subsequent global analysis of the data with Specfit/32 software package.
    Fig.1 shows the structures of ligands.

    1 Experimental

    1.1 Chemicals and methods

    All reagents were obtained commercially and used as received without further purification.Solvents were purified according to the standard methods prior to use.L1waspurchased from Sigma-Aldrich Chemical Company.Mass spectra were measured with a GC-MS,Thermo Finnigan Trace DSQ.NMR spectra were obtained with a Varian 300 MHzspectrometer.Spectrophotometric titration was measured with a UVVis,HP 8453 Diode Array Spectrophotometer.For the spectrophotometric titration acid or base solution was added to 1 cm quartz cell with a peristaltic pump(Cole Palmer,Masterflex)and the pH value of the solutions was measured with an Orion pH meter combined with a Metrohm semi-micro electrode.FTIR spectra were recorded with a Perkin Elmer BXII spectrometer.The molar magnetic susceptibilities of the complexes were measured on powdered sample at room temperature using a Sherwood Scientific Magnetic Susceptibility Balance.

    1.2 Synthesis of ligands

    1.2.1 Synthesis of 1,4,8,11-tetra(2-hydroxyethyl)-1,4,8,11-tetraazacyclo decane,L2·4H2O

    Ethylene oxide(2.01 mL,40 mmol)was added to a solution of cyclam(1.38 g,4 mmol)in water(15 mL)at 0℃on a magnetic stirrer for six hours and warmed to room temperature.Solvent volume was reduced by a rotary evaporatorand the solution wasleftfor crystallization.Clear colorless crystals formed and werewashed with ice-cold water (2 mL)and dried under vacuum.Yield 1.1 g,63%.1H NMR (300 MHz,25 ℃,CDCl3,δ,J(Hz)):5.11(s),3.59(t,J=5.45,2H),2.27(s),2.49(s),2.43(t,J=6.12),2.13(m).13C NMR(300 MHz,25 ℃,CDCl3,δ):58.9,56.5,51.4,51.7,21.5,m/z:377(M+),FTIR(ATR,cm-1):Ⅴ(OH):3 349.

    1.2.2 Synthesis of 3-(2-aminocyclohexylamino)-2-(2-aminocyclohexylaminomethyl)propionic acid,L3·4HCl·2H2O

    L3was prepared by template synthesis from bis(cyclohexane-1,2-diamine)copper(Ⅱ),triethylamine,diethylmalonate and formaldehyde in methanol.The aqueous solution of copper(Ⅱ)perchlorate hexahydrate(11.28 g,30.00 mmol)was added to a solution of 1,2-diaminocyclohexane (6.85 g,60.00 mol)in deionized water (300 mL)on a magnetic stirrer.The reaction mixture was warmed to 50℃and was stirred at this temperature for 2 h.Then the solution was cooled to room temperature and Bis(cyclohexane-1,2-diamine)copper(Ⅱ) perchlorate was separated by filtering.

    The solution ofbis(cyclohexane-1,2-diamine)copper(Ⅱ) perchlorate(6.00 g,12.00 mmol)in 250 mL methanol was heated to 50℃while stirring magnetically and to this solution,triethylamine (6 mL,43.05 mmol)and diethylmalonate(1.90 mL,12.00 mmol)were added.Then,a solution of formaldehyde(37%aqueous solution,3 mL)in methanol(50 mL)was added drop wise to the reaction mixture and the solution was stirred for 16 h at 50℃.The color of the reaction mixture converted to purple-red during to this time.This solution was diluted to 2 L with distilled water and then the solution was passed through a column (35×3.5 cm)of SP Sephadex C-25 resin (Na+form)and eluted with 0.2 mol·L-1NaClO4solution.After a while,two bands,one narrow and one broad,were observed.Both bands were collected and controlled.It was observed that a small amount of macrocyclic compound formed.The solvent of the acyclic compound was evaporated and dried.5 mL of triethylamine was diluted to 25 mL with deionized water and added to the solution of acyclic compound(3.5 g)in methanol(200 mL).The reaction mixture was stirred on a magnetic stirrer at 60℃for 12 h.Then the mixture was cooled to room temperature and diluted to 2 L with deionized water.The diluted solution was passed through a column (35×4 cm)of SP Sephadex C-25 resin (Na+form)and the column was elutedwith0.2mol·L-1NaClO4solution.Bands observed in the column were collected and the solution was concentrated to 300 mL by rotary evaporation.This solution and 3 mol·L-1HCl solution were simultaneously added over 2 hours drop wise from dropping funnels to Zn powder while stirring on a magnetic stirrer at room temperature.Then the solution was heated to 50 ℃ and stirred 30 min at this temperature.The solution was cooled to room temperature and was filtered on celite to remove Cu and residual Zn.The clear solution was diluted to 2 L with deionized water and the solution was passed through a column (35×3 cm)of Dowex 50 W×2 resin(H+form)and the column was eluted for a while with deionized water and afterwards with 1 mol·L-1HCl solution to remove Zn2+ions.Elution continued until no further Zn2+ions were present(checked by the addition of NaOH solution to eluent in order to observe Zn(OH)2).When the formation of jelly Zn(OH)2finished,the column was eluted with 3 mol·L-1HCl.After evaporation of the solvent by a rotary evaporator,the white colored crude product was obtained.Then the crude product was recrystallized in hot methanol and L3was obtained as a white powder(C16H32N4O2·4HCl·H2O),L3.Yield:2.1 g,52%.C16H35Cl4N4O2·4HCl·2H2O (Calcd.C,38.95;H,7.97;N,11.36)found%:C,38.79;H,7.81;N,11.44).1H NMR(300 MHz,D2O,δ,J(Hz)):1.28~2.11(m,16 H),2.13~2.46(m,6H),3.31~3.73(m,9H).13C NMR(300 MHz,D2O,δ):19.3,(2C);19.4(2C);22.8;23,1;26.1(2C);33.7;40.6;41.6;47.4 (2C);54.6;56.4;and 173.3.m/z:314(M+),FTIR(ATR,cm-1):Ⅴ(COOH):1 711 vs(br),2 017 m,1 612 s,1 514 s,Ⅴ(NH):3 369,3 152.

    1.2.3 Synthesis of 4,7,10-triazatridecanedinitrile trihydrochloride,L4·3HCl

    4,7,10-Triazatridecanedinitrile trihydrochloride was synthesized by condensation of diethylenetriamine(dien)and acrylonitrile according to the literature[27].Acrylonitrile(3.19 g,60.00 mmol)was added drop wise to a magnetically stirred dien solution (2.58 g,25 mmol),and the mixture was stirred for 20 h at roomtemperature.The crude product was purified as the trihydrochloride by recrystallization from methanol/water/HCl and L4·3HCl was obtained as a white powder.Yield:3.20 g,40%.C10H19N53HCl(Calc.C,37.69;H,6.96;N,21.98)found%:C,37.43;H,7.11;N,21.84).1H NMR(300 MHz,D2O,δ,J(Hz)):2.49(t,J=6.81,4H),2.55(t,J=5.97,4H),2.83(t,J=4.45,4H),2.89(t,J=5.77,4H).13C NMR(300 MHz,D2O,δ):120.2(2C);46.9(2C);46.5(2C);46.3(2C);17.9(2C);m/z:210(M+),FTIR(ATR,cm-1):Ⅴ(NH3+):2667,2435;Ⅴ(CN):2661.

    1.2.4 Synthesis of 2,2′-(ethane-1,2-diyl)bis(methylazanediyl))diethanol,L5

    Ethylene oxide (3.02 g,60.00 mmol)was added dropwise to a solution of N,N′-dimethylethylenediamine(2.00 g,22.68 mmol)in methanol(50 mL)at 0 C and the reaction mixture was stirred for 12 h.Then the reaction mixture was warmed to the room temperature and solvent volume was reduced by a rotary evaporator.The solution was left for crystallization and L5was obtained as a viscose oil.Yield:2.7 g,76%.C8H20N2O2(Calcd.C,38.88;H,8.16;N,11.33)found%:C,38.79;H,7.88;N,11.28).).1H NMR (300 MHz,D2O,δ,J(Hz)):3.83(t,J=6.0,4H),2.78(t,J=6.0,4H),2.53(t,J=6.0,4H),2.23(s,6H).13C NMR (300 MHz,D2O,δ):58.6(2C);58.1(2C);53.6(2C);41.7(2C);m/z:176.99(M+),FTIR(ATR,cm-1):Ⅴ(OH):3270 br.

    1.2.5 Synthesis of 1,1′-(ethane-1,2-diylbis((2-aminoethyl)azanediyl))dipropan-2-ol,L6

    Propylene oxide (2.32 g,40 mmol)was added dropwise to solution of triethylenetetraamine(2.92 g,20 mmol)in methanol(50 mL)at 0℃and the reaction mixture was stirred for 12 h.Then,the reaction mixture was warmed to room temperature and solvent volume was reduced by a rotary evaporator.The solution was left for crystallization and L5was obtained as a viscose oil.Yield:2.9 g,55%.C12H30N4O2(Calcd.C,54.93;H,11.52;N,21.35 found%:C,54.73;H,11.48;N,21.28).1H NMR(300 MHz,D2O,δ,J(Hz)):3.89(m,2H),3.28(t,J=6 Hz,4H),2.71(t,J=6,4H),2.49(t,J=6 Hz,4H),2.43(t,J=3,4H),1.22(d J=6,6H).13C NMR(300 MHz,D2O,δ):66.1(2C);61.1(2C);58.6(2C);53.7(2C);41.8(2C);21.5(2C)m/z:263.11(M+),FTIR(ATR,cm-1):Ⅴ(OH):3275 br,(NH):3357,3190.

    1.3 Synthesis of the NiL1complex

    A solution containing (1.13 mmol,0.36g)L1and 1.15 mmol,0.27g)NiCl26H2O in 80 mL argon saturated water was stirred and heated at 60℃for several hours.The green solution was then diluted to 500 mL with water,filtered and sorbed onto a column of SP Sephadex C25(Na+form)resin(20×5 cm).Upon elution 0.125 mol·L-1NaClO4,two bands were separated.A green band eluted with 0.2 mol·L-1NaClO4.This band was stable in acidic medium which was the initial indication of macrocyclic complex.The green band was reduced in volume by rotary evaporation and left to crystallize.The solid product was dried in vacuum desiccators.Anal.Calcd.for:[NiL1]Cl2·2H2O;C8H24Ni Cl2N4O2(%):C,28.44;H,7.16;N,16.58.Found(%)C,28.37;H,7.11;N,16.49.FTIR(cm-1,KBr):Ⅴ(N-H),3178,Ⅴ(Ni-N),543.

    1.3.1 Synthesis of the NiL2complex

    All the other complexes are prepared by the same method.Yield:68%,Anal.Calcd.for[NiL2]Cl2.H2O:C18H42NiCl2N4O5(%)C,41.25;H,8.08;N,10.69.Found(%):C,41.37;H,8.11;N,10.51.FTIR(cm-1,KBr):Ⅴ(NH),3166,Ⅴ(Ni-N),566.

    1.3.2 Synthesis of the NiL3complex

    Yield:73%,FTIR (KBr,cm-1):Anal.Calcd.for:[NiL3]Cl2·H2O;C16H36NiCl2N4O(%):C,44.68;H,8.44;N,13.03.Found(%)C,44.57;H,8.41;N,13.09.FTIR(cm-1,KBr):Ⅴ(N-H),3149,Ⅴ(Ni-N),577.

    1.3.3 Synthesis of the NiL4complex

    Yield:66%,Anal.Calcd.For%:[NiL4Cl]Cl·2H2O;C10H23NiCl2N5O2(%)C,32.04;H,6.18;N,18.64.Found(%):C,32.13;H,6.11;N,18.59.FTIR(cm-1,KBr):Ⅴ(NH),3182,Ⅴ(Ni-N),559.

    1.3.4 Synthesis of the NiL5complex

    Yield:75%,Anal.Calcd.For%:[NiL5]Cl2·H2O;C8H22NiCl2N2O3(%):C,29.67;H,6.85;N,8.65.Found(%)C,29.57;H,7.01;N,8.69.FTIR(cm-1,KBr):Ⅴ(NH),3176,Ⅴ(Ni-N),571.

    1.3.5 Synthesis of the NiL6complex

    Yield:58%,Anal.Calcd.For%:[NiL6]Cl2·H2O;C12H32NiCl2N4O3(%):C,35.15;H,7.87;N,13.66.Found(%):C,35.27;H,7.71;N,13.59.FTIR(cm-1,KBr):Ⅴ(NH),3174,Ⅴ(Ni-N),579.

    1.4 Electronic spectra

    The electronic spectra data for the Ni(Ⅱ)complexes are given in Table 1.There are four bands for the Ni(Ⅱ)complexes in UV-Vis spectrum.The low intensity bands around 560 and 950 nm could be assigned to dd,Laporte forbidden,spin allowed transitions of Ni(Ⅱ)ions.The medium intensity bands around 380 nm are due to metal-ligand charge transfer processes.

    Table 1 Absorbance changes in Ni-L complexes during spectrophotometric titration

    1.5 Magnetic measurements

    The Ni(Ⅱ)complexes with the allligands are diamagnetic indicating the square planer structure of the complex.

    1.6 Spectrophotometric titrations

    Stability constants of the complexes were measured with an automatic titration set up consisting of a computer interfaced to an Agilent HP 8453 Diode ArraySpectro-photometerwith astirrerundera thermostated cell holder,a peristaltic pump,Cole Palmer and an Orion pH meter combined with an Metrohm semi-micro electrode.The electrode was calibrated with pH value of 4.0 and 7.0 buffers for measurements in aqueous solutions.Argon-saturated solutions of the ligands(1.2 mmol)and the nickel(Ⅱ)(1.2 mmol)containing 0.1 mol·L-1NaClO4for the adjustment of ionic strength were titrated with base,0.1 mol·L-1NaOH,in 1 cm quartz cell and the cell compartment was thermostated to (25±0.1)℃ during titration.The cell was containing a pH electrode and a capillary tip from peristaltic pump.The UV-Vis spectrum was determined during the titration at 60 sec intervals over the wavelength range of 350~1 100 nm Fig.2 shows typical 2D absorption spectra of NiL3during spectrophotometric titration as a function of pH value.Fig.3 shows speciation graph for the complex formation of Ni(Ⅱ) with L5.The measurements were made over the pH value range of 2.0 to 11.0.Triplicate data analyses were performed for each complex.Data analysis was carried out using the nonlinear leastsquare fitting program Specfit/32.An initial guess for the equilibrium constants were entered and these values iteratively refined until the best fit was achieved.

    2 Results and discussion

    2.1 Stability of the complexes

    All the macrocyclic and acyclic complexes are colored solid and stable at room temperature.They are soluble in water.Each Ni(Ⅱ) ion is coordinated to four nitrogen atoms in the NiL1,NiL2,NiL3and NiL6complexes.The Ni(Ⅱ) ion is incorporated into ligands to form square planer environment.The other ligands L4and L5which have N3and N2O2donor atoms form also square planer geometry.Magnetic measurements of thecomplexes support for the square planer geometry.All the complexes exhibit diamagnetism in solid state at room temperature.Pendant groups in L2,L4and L6ligands do not involve in coordination and stay as dangling group in the complexes.This is supported by FTIR study of the complexes and ligands.The O-H stretching vibration of the ligands does not change after complex formation.The trend in stability order for diamagnetic Ni(Ⅱ) complexes are observed that Ni(Ⅱ)ions prefer the smallest macrocycle L1.The same effect is found for the open-chain tetraazaamines L6~L3.The larger the cavity,the more their complexes are destabilized by the presence of six membered rings.Large differences in stability constants within the series are observed for the nickel(Ⅱ)complexes of macrocyclic and acyclic ligands.When NiL1stability is compared with open chain analogue NiL6,stability decreases from 21.61 to 17.93.As the number of chelate rings increase,stability of the complexes decrease for the Ni(Ⅱ)ions[28].When the intermediate in a five-membered chelate ring is compared with the six-membered chelate ring,it is observed that in the five-membered chelate ring,the free donor group will possess increased entropy.As a result,the small size chelate ring will show greatest entropy increase while the larger ring chelate will show a decrease in entropy.This effect may be observed when NiL1is compared with NiL2.NiL2has two six membered rings while NiL1has no six membered ring,as a result stability decrease from 21.61 to 19.52.The enhanced stability of the macrocyclic ligand over its acyclic analogue is explained by the macrocyclic effect.Solvation of the ligands is also important during complexation.Macrocycles are thought to be less solvated than their acyclic analogues which leads to an enhancement of the thermodynamic stability for cyclic ligands over their acyclic analogues.Pendant groups on the nitrogen atoms will cause a decrease in the basicity of the nitrogen donor atoms and as a result of this,the stability of the complexes will decrease.There is a wealth of stability constant data for the polyazamacrocycles with different metal ions[29-32].Macrocycles can be organized to select particular metal ions from solution and can be used in metal ion extractions.Selectivity of the macrocycles can be altered in different ways.By changing cavity size and adding pendant groups to the nitrogen atom in the ring,the selectivity of the macrocycles changes.

    3 Conclusions

    For the most of the complexation titrations,one protonated complex species is observed which can be assigned to protonation of the primary amine or one of the secondary amines in the macrocycle.It is expected that the stability and selectivity of the ligands with nickel(Ⅱ)can be classified according to the parameters mentioned.NiL1complex is the most stable.The macrocyclic effect,number of rings and ring size cause nickel(Ⅱ) to bind to L1selectively.The stability of the NiL2decreases when compared to the NiL1.The cavity size,change in basicity of the donor atoms and steric effect cause a decrease in the stability of the nickel(Ⅱ)complex with L2.L6and L5ligands are the acyclic analogue of L1and L2,respectively.The stabilities of NiL6and NiL5decrease as expected.The least stable complex is NiL5with an alkylated secondary amine and two oxygen donor atoms.The stability constant of NiL4is 12.31 with three donor nitrogens which do not saturate the coordination sphere of the nickel(Ⅱ).Tetradentate coordination has been established for nickel(Ⅱ) with all of the ligands studied.Similar complex formation constants are observed for macrocyclic NiL1and NiL2since nickel(Ⅱ)is bound to the macrocyclic plane in the same manner.Table 2 shows the stability constants of the complexes at 20℃,I=0.1 mol·L-1NaClO4.

    Table 2 Stability constants of the complexes at 20 ℃,I=0.1 mol·L-1NaClO4

    Continued Table 2

    Acknowledgements:The authors thank the Scientific and Technological Research Council of Turkey (TUBITAK)for financial support(Project No.104T389).

    [1]Cascio S,Robertis A D,Foti C.Fluid Phase Equilibr.,2000,170:167-181

    [2]Silva J A,Felcman A L R,Lopes C C,et al.Inorg.Chim.Acta,2003,356:155-166

    [3]Herve A C,Yaouanc J J,Toupet L,et al.J.Organomet.Chem.,2002,664:214-222

    [4]Lai R A,Chakraborty M,Chanu O B,et al.J.Coord.Chem.,2010,63:1239-1251

    [5]Ajibade A P,Zulu H N.J.Coord.Chem.,2010,63:3229-3239

    [6]Ozay H,Baran Y.J.Coord.Chem.,2010,63:4299-4308

    [7]Yamada Y,Takenoudhi S I,Okamoto K I,et al.J.Coord.Chem.,2010,63:996-1012

    [8]Basallote M G,Domenech A,Verdejo B,et al.Inorg.Chim.Acta,2006,359:2004-2014

    [9]Jubert C,Mohamadou A,Barbier J P,et al.Inorg.Chem.Commun.,2003,6:900-907

    [10]Ambrosi G,Formica M,Pontellini R,et al.Inorg.Chim.Acta,2009,362:2667-2677

    [11]Sarma M,Singh A,Mondal B,et al.Inorg.Chim.Acta,2010,363:63-70

    [12]Shirase H,MiuraY,Fukuda Y.Monatsh Chem.,2009,140:807-814

    [13]Shirase H,Mori Y,Uchiyama M,et al.Monatsh Chem.,2009,140:801-805

    [14]Deplano P,Marchio L,Yagubski E B,et al.Monatsh Chem.,2009,140:775-781

    [15]Amatore C,Jutand A,Rollin Y,et al.Monatsh Chem.,2000,131:1293-1304

    [16]Panda G,Selim M,Mukherjea K K,et al.Monatsh Chem.,2009,140:281-286

    [17]Kirillov A M,Kopylovich M N,Pombeiro A J L,et al.Angew Chem.Int.Ed.,2005,44:4345-4349

    [18]Chattopadhyay T,Mukherjee M,Das D,et al.Inorg.Chem.,2010,49:3121-3125

    [19]Murata F,Arakawa M,Fukuda Y,et al.Polyhedron,2007,26:1570-1578

    [20]Koner S,Tsutake M,Banerjee S,et al.J.Mol.Struct.,2002,608:63-69

    [21]Hubert S,Mohamadou A,Gerard C.Inorg.Chim.Acta,2007,360:1702-1710

    [22]Ibanez G A,Escander G M.Polyhedron,1998,17:4433-4441

    [23]Kadar M,Biro A,Huszthy P.Spectrochim Acta A,2005,62:1032-1038

    [24]Dyson R M,Kaderli S,Zuberbühler A D,et al.Anal.Chim.Acta,1997,353:381-393

    [25]Dyson R M,Lawrance G A,Maeder M,et al.Polyhedron,1999,18:3243-3251

    [26]Basallote M G,Fernandez-Trujillo M J,Manez M A.Dalton Trans.,2002:3691-3695

    [27]Krot K A,Namor A F D,Nolan K B,et al.Inorg.Chim.Acta,2005,358:3497-3505

    [28]Polster J,Lachmann H.Spectrometric Titrations:Analysis of Chemical Equilibria,VCH,1989.

    [29]Luckay R C,Hancock R D.Dalton Trans.,1991:1491-1494

    [30]Martel A E,Smith R M.The Critical Stability Constants:Vol.1-6,N Y:Plenum Press,1974-1989.

    [31]Bianchi A,Micheloni M,Paoletti P.Coord.Chem.Rev.,1991,110:17-113

    [32]Izzat R M,Pawlak P,Breuning R L,et al.Chem.Rev.,1991,91:1721-1733

    Stability Constants of Some Polydentate Ligands with Nickel(Ⅱ)by Spectrophotometric Titration

    Hava Ozay1Ahmet Ulgen2Yakup Baran*,1
    (1Onsekiz Mart University,Art and Science Faculty,Department of Chemistry,Canakkale 17100,Turkey)
    (2Erciyes University,Art and Science Faculty,Department of Chemistry,Kayseri,Turkey)

    The polydentate macrocyclic ligands,1,4,7,10-tetraazacyclododecane (L1),1,4,8,11-tetra(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane (L2);and acyclicpolydentate ligands;3-(2-aminocyclohexylamino)-2-(2-aminocyclohexylaminomethyl)propionic acid(L3),4,7,10-triazatridecane dinitrile trihydrochloride(L4),2,2′-(1,2-diyl)bis(methylazanediyl)diethanol(L5)and 1,1′-(ethane-1,2-diylbis((2-aminoethyl)azanediyl))dipropan-2-ol,(L6)were prepared and their structures were investigated by FTIR,NMR and MS.The stability constants of the nickel(Ⅱ)complexes with these ligands were determined by spectrophotometric titration using a diode array UV-VIS spectrophotometer equipped with peristaltic pump and pH meter.The values of the stability constants are discussed in terms of the open chain or cyclic nature of the ligands.The effect of pendant group on the stability of the complexes is discussed.

    complex;polydentate;stability constants;spectrophotometric titration;nickel(Ⅱ)

    O614.4;O614.81+3

    A

    1001-4861(2012)08-1680-07

    2011-12-20。收修改稿日期(Date revised):2011-03-06。

    The Scientific and Technological Research Council of Turkey(TUBITAK)(Project No.104T389)資助項(xiàng)目。

    *通訊聯(lián)系人(Corresponding Author)。E-mail:yakupbaran@yahoo.com

    猜你喜歡
    化學(xué)系文理學(xué)院滴定法
    一種鎘基配位聚合物的合成及其對(duì)2,4,6-三硝基苯酚的熒光識(shí)別
    電位滴定法測(cè)定聚丙烯酰胺中氯化物
    云南化工(2021年11期)2022-01-12 06:06:18
    電位滴定法在食品安全檢測(cè)中的應(yīng)用
    長(zhǎng)江大學(xué)文理學(xué)院作品選登
    湖北師范大學(xué)文理學(xué)院作品
    大眾文藝(2020年15期)2020-09-11 02:28:04
    淺析采用滴定法解題的策略
    黑夜的獻(xiàn)詩(shī)
    大眾文藝(2019年23期)2019-12-15 09:59:08
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    西安文理學(xué)院高萍教授
    国产亚洲精品第一综合不卡| 亚洲精品第二区| 亚洲人成电影免费在线| 18在线观看网站| 免费人妻精品一区二区三区视频| 69av精品久久久久久 | 老熟妇仑乱视频hdxx| 咕卡用的链子| 国产成+人综合+亚洲专区| 97人妻天天添夜夜摸| 亚洲精品国产av成人精品| 99国产精品99久久久久| 欧美日韩国产mv在线观看视频| 精品高清国产在线一区| 亚洲 欧美一区二区三区| 啦啦啦中文免费视频观看日本| 真人做人爱边吃奶动态| 中文字幕av电影在线播放| 亚洲精品av麻豆狂野| 99久久99久久久精品蜜桃| 亚洲av成人一区二区三| 夜夜骑夜夜射夜夜干| 亚洲国产精品成人久久小说| 亚洲精品在线美女| 波多野结衣av一区二区av| 国产免费现黄频在线看| e午夜精品久久久久久久| 91精品伊人久久大香线蕉| 午夜视频精品福利| 亚洲精品美女久久久久99蜜臀| 黄频高清免费视频| 纵有疾风起免费观看全集完整版| 十八禁网站免费在线| 久久久精品免费免费高清| 国产精品国产av在线观看| 中文字幕人妻丝袜一区二区| 日韩熟女老妇一区二区性免费视频| 天天添夜夜摸| cao死你这个sao货| 这个男人来自地球电影免费观看| 十八禁人妻一区二区| 国产精品秋霞免费鲁丝片| 美女扒开内裤让男人捅视频| 亚洲国产中文字幕在线视频| 搡老乐熟女国产| 欧美人与性动交α欧美软件| 亚洲综合色网址| 亚洲欧美一区二区三区久久| 欧美97在线视频| 免费女性裸体啪啪无遮挡网站| 成人国产av品久久久| 一区二区三区乱码不卡18| 99国产极品粉嫩在线观看| 美女高潮到喷水免费观看| 青草久久国产| 精品国产乱子伦一区二区三区 | 视频区图区小说| 亚洲色图综合在线观看| av天堂在线播放| 久久女婷五月综合色啪小说| 成年女人毛片免费观看观看9 | 亚洲美女黄色视频免费看| 黄色a级毛片大全视频| 热re99久久精品国产66热6| 宅男免费午夜| 免费看十八禁软件| 亚洲欧美日韩高清在线视频 | 亚洲,欧美精品.| 汤姆久久久久久久影院中文字幕| 人人澡人人妻人| 色老头精品视频在线观看| 一级毛片电影观看| 91精品三级在线观看| 亚洲成av片中文字幕在线观看| 美女高潮到喷水免费观看| 久久久久久久久久久久大奶| 美女主播在线视频| 欧美日韩福利视频一区二区| 亚洲五月婷婷丁香| bbb黄色大片| 亚洲av男天堂| 国产亚洲欧美精品永久| 亚洲国产欧美在线一区| av片东京热男人的天堂| 亚洲精品乱久久久久久| 欧美日韩亚洲国产一区二区在线观看 | 久久精品国产亚洲av香蕉五月 | 久热爱精品视频在线9| 亚洲专区中文字幕在线| 男人添女人高潮全过程视频| 日韩三级视频一区二区三区| 久久人妻福利社区极品人妻图片| 交换朋友夫妻互换小说| 如日韩欧美国产精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 国产精品 欧美亚洲| 亚洲精品久久午夜乱码| 三上悠亚av全集在线观看| 性高湖久久久久久久久免费观看| 欧美一级毛片孕妇| 热99国产精品久久久久久7| 一个人免费看片子| 黄片大片在线免费观看| 热re99久久国产66热| 极品少妇高潮喷水抽搐| 最近最新免费中文字幕在线| 久久99热这里只频精品6学生| 亚洲精品国产区一区二| 国产精品九九99| 视频区图区小说| av电影中文网址| 日韩 欧美 亚洲 中文字幕| 精品福利永久在线观看| 黄色毛片三级朝国网站| 精品一区二区三卡| 欧美日韩视频精品一区| 热re99久久国产66热| 丝袜喷水一区| 久久精品成人免费网站| 午夜日韩欧美国产| 丝袜喷水一区| 成人手机av| 国产成人免费无遮挡视频| 18禁观看日本| 精品福利永久在线观看| 人人澡人人妻人| 久久人人97超碰香蕉20202| 黑丝袜美女国产一区| 亚洲av男天堂| av免费在线观看网站| 亚洲视频免费观看视频| 如日韩欧美国产精品一区二区三区| 日日爽夜夜爽网站| 欧美在线黄色| 久久久久国内视频| 国产av国产精品国产| 涩涩av久久男人的天堂| 嫁个100分男人电影在线观看| 色视频在线一区二区三区| 老熟妇仑乱视频hdxx| 国内毛片毛片毛片毛片毛片| 久久国产精品人妻蜜桃| 午夜免费成人在线视频| 亚洲五月婷婷丁香| 精品高清国产在线一区| 国产淫语在线视频| 亚洲五月婷婷丁香| 国产精品久久久久成人av| 考比视频在线观看| 国产麻豆69| 国产老妇伦熟女老妇高清| 91麻豆精品激情在线观看国产 | 在线观看一区二区三区激情| 欧美日韩视频精品一区| 色老头精品视频在线观看| 人妻一区二区av| 亚洲伊人久久精品综合| 亚洲熟女毛片儿| 亚洲av日韩精品久久久久久密| 首页视频小说图片口味搜索| 亚洲成人免费电影在线观看| 岛国毛片在线播放| 国产精品 欧美亚洲| 国产精品国产三级国产专区5o| 成年人免费黄色播放视频| 亚洲伊人久久精品综合| 一边摸一边做爽爽视频免费| 成在线人永久免费视频| 淫妇啪啪啪对白视频 | 桃红色精品国产亚洲av| 精品少妇内射三级| 亚洲国产看品久久| 中文欧美无线码| 久久精品国产综合久久久| 一区福利在线观看| 亚洲国产av影院在线观看| 国产精品久久久久久精品电影小说| 深夜精品福利| 国产激情久久老熟女| 欧美亚洲日本最大视频资源| 永久免费av网站大全| 精品国产乱子伦一区二区三区 | 制服人妻中文乱码| 搡老岳熟女国产| 超色免费av| 亚洲成人手机| 国产精品二区激情视频| 国产亚洲欧美精品永久| 十八禁高潮呻吟视频| 久久99一区二区三区| 亚洲欧洲日产国产| 99国产极品粉嫩在线观看| 中亚洲国语对白在线视频| 国精品久久久久久国模美| videos熟女内射| a在线观看视频网站| 午夜日韩欧美国产| 精品少妇黑人巨大在线播放| www.精华液| 18禁观看日本| 国产精品成人在线| 777久久人妻少妇嫩草av网站| 十八禁网站免费在线| 老司机午夜福利在线观看视频 | 日本五十路高清| 中亚洲国语对白在线视频| 一级毛片精品| 国产欧美日韩一区二区三 | 老汉色∧v一级毛片| 中文字幕另类日韩欧美亚洲嫩草| av在线播放精品| 啦啦啦免费观看视频1| 免费观看a级毛片全部| www日本在线高清视频| 国产欧美日韩精品亚洲av| 老司机午夜福利在线观看视频 | 我的亚洲天堂| 欧美精品啪啪一区二区三区 | 啦啦啦 在线观看视频| 欧美日韩福利视频一区二区| 99久久综合免费| 丁香六月天网| 亚洲av日韩在线播放| av天堂久久9| 天天躁夜夜躁狠狠躁躁| 亚洲精品一区蜜桃| av有码第一页| 一本色道久久久久久精品综合| 搡老熟女国产l中国老女人| 少妇粗大呻吟视频| 91麻豆av在线| 久久人妻福利社区极品人妻图片| 女警被强在线播放| 久久久久久久久免费视频了| 国产精品99久久99久久久不卡| 新久久久久国产一级毛片| 亚洲性夜色夜夜综合| a在线观看视频网站| 成人18禁高潮啪啪吃奶动态图| 色播在线永久视频| 欧美日韩亚洲高清精品| 久久精品熟女亚洲av麻豆精品| 在线永久观看黄色视频| 亚洲精品粉嫩美女一区| 久久午夜综合久久蜜桃| 黄网站色视频无遮挡免费观看| 成人国产av品久久久| 亚洲精品美女久久av网站| 久久精品久久久久久噜噜老黄| 天天躁日日躁夜夜躁夜夜| 国产亚洲精品第一综合不卡| 国产av又大| 欧美性长视频在线观看| 91麻豆精品激情在线观看国产 | 亚洲五月色婷婷综合| 啦啦啦在线免费观看视频4| 国产高清videossex| 色播在线永久视频| 999久久久国产精品视频| 老汉色av国产亚洲站长工具| 亚洲国产精品一区二区三区在线| 久久久久久久久久久久大奶| 亚洲一码二码三码区别大吗| 欧美日韩成人在线一区二区| 狂野欧美激情性xxxx| av国产精品久久久久影院| 一边摸一边抽搐一进一出视频| 亚洲精品成人av观看孕妇| 久久久国产欧美日韩av| 日韩,欧美,国产一区二区三区| 国产精品久久久久久人妻精品电影 | 久久久久国产精品人妻一区二区| 人人妻,人人澡人人爽秒播| 热99久久久久精品小说推荐| 国产成人精品在线电影| 黄片播放在线免费| 80岁老熟妇乱子伦牲交| av网站在线播放免费| 成年av动漫网址| 麻豆av在线久日| 搡老熟女国产l中国老女人| 午夜福利,免费看| 国产精品亚洲av一区麻豆| 啦啦啦啦在线视频资源| 色精品久久人妻99蜜桃| 一级毛片精品| 欧美激情 高清一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产老妇伦熟女老妇高清| 午夜福利视频在线观看免费| 成年av动漫网址| 国产成+人综合+亚洲专区| 亚洲精品国产av成人精品| 欧美日韩亚洲高清精品| 热99久久久久精品小说推荐| 女性生殖器流出的白浆| 亚洲国产日韩一区二区| 狠狠婷婷综合久久久久久88av| 成年人黄色毛片网站| 午夜成年电影在线免费观看| 夜夜骑夜夜射夜夜干| 国产精品国产三级国产专区5o| 岛国在线观看网站| 少妇精品久久久久久久| 国产成人精品在线电影| tocl精华| 久久久久久久精品精品| 亚洲熟女毛片儿| 国产精品久久久人人做人人爽| 精品国产乱码久久久久久男人| 性少妇av在线| 三上悠亚av全集在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲专区字幕在线| 天天添夜夜摸| 精品高清国产在线一区| 性高湖久久久久久久久免费观看| 看免费av毛片| 99国产精品免费福利视频| 法律面前人人平等表现在哪些方面 | 国产不卡av网站在线观看| 老司机午夜福利在线观看视频 | 国产一区有黄有色的免费视频| 久久精品人人爽人人爽视色| 国产免费现黄频在线看| 美女视频免费永久观看网站| 日韩欧美国产一区二区入口| av欧美777| 精品卡一卡二卡四卡免费| 老司机在亚洲福利影院| 免费黄频网站在线观看国产| 激情视频va一区二区三区| 欧美国产精品va在线观看不卡| 一级毛片精品| 久热爱精品视频在线9| 欧美在线黄色| 男女下面插进去视频免费观看| 国产成人免费观看mmmm| 两性午夜刺激爽爽歪歪视频在线观看 | 中文精品一卡2卡3卡4更新| 精品福利观看| 国产精品久久久av美女十八| 成在线人永久免费视频| 欧美另类亚洲清纯唯美| 动漫黄色视频在线观看| 在线天堂中文资源库| 亚洲国产av影院在线观看| 老司机在亚洲福利影院| 欧美日本中文国产一区发布| 极品少妇高潮喷水抽搐| 久久久精品免费免费高清| 成年美女黄网站色视频大全免费| 国产精品欧美亚洲77777| 欧美亚洲日本最大视频资源| 无限看片的www在线观看| 在线亚洲精品国产二区图片欧美| 免费高清在线观看日韩| 日本猛色少妇xxxxx猛交久久| 亚洲一区中文字幕在线| 国产在线观看jvid| 永久免费av网站大全| 91大片在线观看| 久久久久久久国产电影| 欧美xxⅹ黑人| 国产高清国产精品国产三级| 午夜视频精品福利| 亚洲九九香蕉| av一本久久久久| 18禁观看日本| 在线看a的网站| av视频免费观看在线观看| 成年人黄色毛片网站| 咕卡用的链子| 青春草视频在线免费观看| 免费人妻精品一区二区三区视频| 亚洲国产精品一区三区| 国产成人欧美| 亚洲精品自拍成人| 一边摸一边做爽爽视频免费| 国产av又大| 美女视频免费永久观看网站| 日本一区二区免费在线视频| 亚洲精品国产av蜜桃| 69精品国产乱码久久久| 久久人人97超碰香蕉20202| 国产成人一区二区三区免费视频网站| 黑人巨大精品欧美一区二区蜜桃| 操美女的视频在线观看| 搡老岳熟女国产| 老司机福利观看| 日韩 欧美 亚洲 中文字幕| 国产男人的电影天堂91| 少妇被粗大的猛进出69影院| 9色porny在线观看| 国产三级黄色录像| 美国免费a级毛片| 免费女性裸体啪啪无遮挡网站| 在线十欧美十亚洲十日本专区| 男女下面插进去视频免费观看| 午夜激情av网站| a级毛片在线看网站| 一二三四在线观看免费中文在| a级毛片在线看网站| 久久人人爽人人片av| 汤姆久久久久久久影院中文字幕| 久久久久久免费高清国产稀缺| 久9热在线精品视频| 热re99久久精品国产66热6| 两性夫妻黄色片| 国产高清视频在线播放一区 | 性色av一级| tocl精华| 99国产极品粉嫩在线观看| 国产97色在线日韩免费| avwww免费| √禁漫天堂资源中文www| 久久精品国产亚洲av香蕉五月 | 精品欧美一区二区三区在线| 在线观看免费视频网站a站| 夫妻午夜视频| 深夜精品福利| 国产成人免费无遮挡视频| 黑丝袜美女国产一区| av不卡在线播放| 男女之事视频高清在线观看| 黄色a级毛片大全视频| 超碰成人久久| 老司机影院成人| 日韩制服丝袜自拍偷拍| 亚洲九九香蕉| 男女高潮啪啪啪动态图| 丝袜在线中文字幕| 亚洲黑人精品在线| 少妇猛男粗大的猛烈进出视频| 精品人妻在线不人妻| 国产麻豆69| 亚洲中文字幕日韩| 精品国产乱码久久久久久男人| 久久热在线av| 午夜影院在线不卡| 两性夫妻黄色片| 男男h啪啪无遮挡| 深夜精品福利| 一本色道久久久久久精品综合| 丰满饥渴人妻一区二区三| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| h视频一区二区三区| 在线观看免费午夜福利视频| 亚洲精品中文字幕在线视频| 视频区图区小说| 少妇精品久久久久久久| 亚洲欧洲精品一区二区精品久久久| 国产日韩欧美亚洲二区| 欧美黄色淫秽网站| 男女无遮挡免费网站观看| 精品一区在线观看国产| 欧美黄色片欧美黄色片| 黄色毛片三级朝国网站| 国产精品二区激情视频| 国产片内射在线| 欧美精品高潮呻吟av久久| 国产日韩欧美亚洲二区| a在线观看视频网站| 超碰成人久久| 90打野战视频偷拍视频| 午夜久久久在线观看| 精品人妻一区二区三区麻豆| 国产欧美日韩一区二区精品| 久热爱精品视频在线9| 久久精品国产亚洲av高清一级| 在线观看免费高清a一片| 一本一本久久a久久精品综合妖精| 午夜激情久久久久久久| 欧美av亚洲av综合av国产av| 久久久久久亚洲精品国产蜜桃av| 天天躁夜夜躁狠狠躁躁| 精品熟女少妇八av免费久了| 超碰97精品在线观看| 91国产中文字幕| 欧美成人午夜精品| 满18在线观看网站| 久久久久网色| 免费女性裸体啪啪无遮挡网站| 王馨瑶露胸无遮挡在线观看| 亚洲av日韩精品久久久久久密| 国产1区2区3区精品| 日本黄色日本黄色录像| 精品第一国产精品| 宅男免费午夜| 亚洲欧美日韩高清在线视频 | 国产精品国产av在线观看| 国产精品免费大片| 在线永久观看黄色视频| 人妻一区二区av| 欧美黄色淫秽网站| 啦啦啦免费观看视频1| 中文精品一卡2卡3卡4更新| 国产日韩欧美在线精品| 国产成人av教育| 每晚都被弄得嗷嗷叫到高潮| 成人黄色视频免费在线看| 国产精品一二三区在线看| 国产精品 国内视频| 欧美日韩av久久| 欧美在线一区亚洲| 久久久久网色| 欧美精品一区二区大全| av不卡在线播放| 亚洲国产精品一区二区三区在线| 国产老妇伦熟女老妇高清| 永久免费av网站大全| 丝袜脚勾引网站| 午夜福利在线观看吧| 久热爱精品视频在线9| 成年美女黄网站色视频大全免费| 黑人欧美特级aaaaaa片| 久久亚洲国产成人精品v| 夫妻午夜视频| 在线永久观看黄色视频| 国产亚洲午夜精品一区二区久久| 精品国产一区二区三区四区第35| 中文字幕色久视频| 日韩视频在线欧美| 午夜激情久久久久久久| 久久精品熟女亚洲av麻豆精品| 熟女少妇亚洲综合色aaa.| 久久精品熟女亚洲av麻豆精品| 欧美中文综合在线视频| 少妇被粗大的猛进出69影院| 国产精品一区二区在线不卡| 热99久久久久精品小说推荐| 成人18禁高潮啪啪吃奶动态图| 一本一本久久a久久精品综合妖精| 啦啦啦中文免费视频观看日本| 日本av手机在线免费观看| 黄色视频不卡| 亚洲av片天天在线观看| 国产亚洲欧美在线一区二区| 热re99久久国产66热| 成人免费观看视频高清| 天天躁日日躁夜夜躁夜夜| 超色免费av| 亚洲少妇的诱惑av| 精品第一国产精品| 成年美女黄网站色视频大全免费| 黄色 视频免费看| 成年女人毛片免费观看观看9 | 高清欧美精品videossex| 麻豆av在线久日| 97在线人人人人妻| 久久人人爽av亚洲精品天堂| 亚洲欧美精品自产自拍| 国产高清视频在线播放一区 | 啦啦啦 在线观看视频| 色婷婷久久久亚洲欧美| 99热国产这里只有精品6| 久久久精品免费免费高清| 精品卡一卡二卡四卡免费| 十八禁人妻一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 高潮久久久久久久久久久不卡| 日本a在线网址| 国产精品久久久久久精品古装| av网站在线播放免费| 女人久久www免费人成看片| 欧美日韩精品网址| 少妇人妻久久综合中文| 免费在线观看完整版高清| 欧美乱码精品一区二区三区| 嫁个100分男人电影在线观看| 欧美av亚洲av综合av国产av| av在线播放精品| 日韩人妻精品一区2区三区| 午夜免费成人在线视频| 精品一区二区三区av网在线观看 | tocl精华| 在线观看免费视频网站a站| 亚洲av成人一区二区三| 又大又爽又粗| 丁香六月天网| 天堂8中文在线网| 最近最新中文字幕大全免费视频| 男人舔女人的私密视频| 亚洲精品国产色婷婷电影| 黑丝袜美女国产一区| 欧美日韩黄片免| 午夜激情久久久久久久| 国产成人精品在线电影| 啦啦啦啦在线视频资源| 熟女少妇亚洲综合色aaa.| 精品久久久久久久毛片微露脸 | av网站免费在线观看视频| 老熟女久久久| 久久国产精品人妻蜜桃| 在线看a的网站| www.自偷自拍.com| 91大片在线观看| 在线看a的网站| 久久精品国产a三级三级三级| 久久午夜综合久久蜜桃| 亚洲一码二码三码区别大吗| 久久精品国产a三级三级三级| 青青草视频在线视频观看| 美女大奶头黄色视频| 蜜桃国产av成人99| e午夜精品久久久久久久| 亚洲专区中文字幕在线| 热99久久久久精品小说推荐| 国产精品一区二区在线不卡| 19禁男女啪啪无遮挡网站| 99久久99久久久精品蜜桃| 免费观看人在逋| 精品福利观看| 别揉我奶头~嗯~啊~动态视频 |