陶積德,何玉鳳,楊彩霞,王榮民,毛崇武
生態(tài)環(huán)境相關(guān)高分子材料教育部重點(diǎn)實(shí)驗(yàn)室,甘肅省高分子材料重點(diǎn)實(shí)驗(yàn)室,西北師范大學(xué)化學(xué)化工學(xué)院,蘭州 730070
豆渣活性成分的提取、改性及應(yīng)用研究進(jìn)展
陶積德,何玉鳳,楊彩霞,王榮民*,毛崇武
生態(tài)環(huán)境相關(guān)高分子材料教育部重點(diǎn)實(shí)驗(yàn)室,甘肅省高分子材料重點(diǎn)實(shí)驗(yàn)室,西北師范大學(xué)化學(xué)化工學(xué)院,蘭州 730070
豆渣是以纖維等天然高分子為主的食品加工行業(yè)廢棄物,是一種具有廣闊應(yīng)用前景和潛力的原材料。本文綜述了豆渣的活性成分和藥用價(jià)值與保健功能,以及豆渣中可溶性膳食纖維的結(jié)構(gòu)、提取方法、改性及應(yīng)用。豆渣作為可降解生物材料的研究與利用倍受關(guān)注,將為廢棄天然高分子的再利用提供新途徑。
豆渣;廢棄天然高分子;膳食纖維;可降解生物材料
豆渣是豆制品生產(chǎn)過程中產(chǎn)生的不溶性殘?jiān)?。我國大豆食品行業(yè)每年生產(chǎn)約2000萬噸濕豆渣。在大部分地區(qū)豆渣僅作為飼料、肥料或作為廢棄物處理,屬于豆渣的初級利用,不僅經(jīng)濟(jì)效益低,也會造成環(huán)境污染。大豆豆渣是加工大豆制品的副產(chǎn)物,具有豐富的營養(yǎng)價(jià)值、獨(dú)特的藥用價(jià)值和保健功能。另外,豆皮中含有豐富的膳食纖維(dietary fiber,DF),約占豆皮干基的59.0%~62.8%,豆制品加工過程中的豆皮一般直接進(jìn)入豆渣中,因此,豆渣中含有豐富的DF。豆渣中還含有大豆蛋白質(zhì)、鈣、磷、維生素等,具有很高的營養(yǎng)價(jià)值,開發(fā)和利用豆渣具有廣闊的市場潛力,因此豆渣的回收利用受到廣泛關(guān)注。本文即對豆渣的組成、活性成分的提取與改性及應(yīng)用進(jìn)行了綜述。
豆渣的主要成分有纖維素、蛋白質(zhì)、脂類、礦物質(zhì)和維生素等,其中纖維素是很理想的DF。大豆豆渣中富含DF、果膠等物質(zhì)。果膠可與膽酸結(jié)合并排出體外,消耗體內(nèi)的膽固醇,從而降低血液總膽固醇的濃度,進(jìn)而降低機(jī)體患心血管疾病的風(fēng)險(xiǎn)[1]。同時(shí),DF還會影響可利用碳水化合物等成分在腸道內(nèi)的消化吸收,使人不易產(chǎn)生饑餓感,因此對預(yù)防肥胖癥有獨(dú)特功效[2]。
豆渣蛋白中的氨基酸組成與大豆蛋白的氨基酸組成(如亮氨酸、苯丙氨酸、纈氨酸、蘇氨酸、賴氨酸、異亮氨酸等)基本相當(dāng),含量大于36 mg/100 g。特別是豆渣蛋白中賴氨酸含量較高,因而可彌補(bǔ)谷類食品中賴氨酸的不足。大豆中所含有益健康的生物活性物質(zhì)也存在于豆渣中:包括大豆異黃酮、大豆皂甙、大豆低聚糖、大豆膳食纖維、大豆磷脂等,這些物質(zhì)具有抑制腫瘤、提高人體免疫力、增加胃腸功能、美容保健、抗衰老、緩解婦女更年期癥狀等功效。
豆渣DF還能與腸道中的K+、Na+進(jìn)行交換,促使尿液和糞便中排出大量Na+、K+,從而降低血液中Na+與K+的比值,有助于降低血壓[3]。此外,大豆豆渣中還含有大量鈣質(zhì),每100 g風(fēng)干樣中含有約200 mg鈣,很容易被人體吸收。因此,多吃豆渣,對減少骨質(zhì)脆弱和動脈硬化有益。
以豆渣為原料,可制作多種食品。如將豆渣采用化學(xué)處理和膨化處理后制取豆渣粉,用豆渣粉可制作無糖豆渣餅干[4],不僅能提高纖維素和蛋白質(zhì)的含量[5],還能改善口感。豆渣還可以制作具有口感良好的豆渣酥性餅干[6]、豆渣分離蛋白、豆渣發(fā)酵碳酸飲料、人造肉等。以豆渣、芹菜漿為主要原料[7],也制作口味較佳的豆渣蔬菜片。豆渣還可以制作豆渣纖維面,豆渣方便面[8],豆渣掛面等。Chan[9]等在堿性條件下提取了豆渣蛋白,通過酸修飾改善了豆渣的溶解性及功能,拓寬了豆渣蛋白在食品中的應(yīng)用。豆渣中的水溶性大豆多糖還具有穩(wěn)定泡沫、防止蛋白質(zhì)沉淀、優(yōu)良乳化、保水、保油的性能[10,11],是一種優(yōu)良的食品添加劑。高金燕[12]等利用豆渣制得了食品添加劑。此外,以豆渣為原料,還可以制作豆渣食用紙[13]。Nakornpanom[14]等研究了豆渣在胃蛋白酶和胰蛋白酶的消化過程中,對蛋白質(zhì)的消化以及對油類釋放的重要性。
豆渣中含有的小分子活性成分有大豆異黃酮、大豆多酚等,高分子活性成分有多糖(如DF)、多肽等。從豆渣中提取大豆異黃酮有酸解法[15]、沉淀法[16]、超聲波法[17]、微波法[18]和有機(jī)溶劑萃取法[19]等。劉建平[20]等采用超聲波和有機(jī)溶劑萃取提取了豆渣中的大豆異黃酮,提取率可達(dá)8.82 mg/ g。何恩銘[21]等提取的大豆異黃酮,提取量為8.95 mg/10 g。李光[22]等用超聲波提取了大豆異黃酮,浸提率達(dá)1.2%。謝婧[23]發(fā)現(xiàn)以毛霉發(fā)酵法對豆渣發(fā)酵后可使異黃酮含量增加。Quitain[24]等發(fā)現(xiàn)應(yīng)用超臨界二氧化碳技術(shù)可恢復(fù)豆渣中的油組分(包括抗氧化劑大豆多酚和大豆異黃酮)。
大豆異黃酮是含二羥基或三羥基的黃酮類化合物,具有抗氧化[25],耐熱、耐光性好,在酸性介質(zhì)中穩(wěn)定等特點(diǎn),可替代化學(xué)合成抗氧化劑,從而應(yīng)用于大多數(shù)食品中。大豆異黃酮還可緩解婦女更年期綜合癥,小劑量使用可有效防治卵巢切除大鼠的骨量丟失[26]。大豆異黃酮還有防癌[27-30]、降低膽固醇[31]、防止動脈粥樣硬化[32,33]、預(yù)防骨質(zhì)疏松等功效[34-36]。Chiou[37]等從豆渣中提取了一種新的貝塔苷酶,此酶對苷基葡萄糖大豆異黃酮有專屬性作用,而對大豆異黃酮共軛的丙二?;擒真I沒有作用。
豆渣中富含的DF是不能被人體消化的碳水化合物,可分為水溶性纖維素(SDF)和水不溶性纖維素(IDF)。SDF中含有果膠和樹膠等;IDF中含有纖維素、木質(zhì)素和一些半纖維等。DF的營養(yǎng)功能及其研究開發(fā)是目前研究的熱點(diǎn)。
3.1 豆渣膳食纖維的組成
每100 g干豆渣中約含36 g DF。豆渣DF的主要成分是大豆水溶性多糖(SSPS)。SSPS具有與膠質(zhì)類似的結(jié)構(gòu)[38],主要由三部分組成:聚半乳糖醛酸(RG)長鏈和聚半乳糖醛酸(GN)組成的主鏈、同型半乳聚糖短鏈和同型阿拉伯聚糖側(cè)鏈、連接糖蛋白的木聚糖半乳糖醛酸(圖1)。其中糖側(cè)鏈通過聚鼠李糖半乳糖醛酸結(jié)合,比聚半乳糖醛酸主鏈骨干更長[39]。糖蛋白與木聚糖半乳糖醛酸的還原末端共價(jià)相連,主要由脯氨酸(Pro)、天冬氨酸(Asp)和谷氨酸(Glu)組成,分子量約為50000[40]。組成大豆DF的半纖維素主要有阿拉伯木聚糖、木糖葡聚糖、半乳糖甘露聚糖和β(l-3,1-4)-葡聚糖四種。通過測定豆渣及其細(xì)胞壁的紅外光譜[41],發(fā)現(xiàn)其存在較多的酯鍵和糖鍵。
3.2 豆渣膳食纖維的提取與應(yīng)用
豆渣膳食纖維的提取方法主要有:物理法(擠壓法)、化學(xué)法(包括直接水提法和酸堿法)[42]、生物法(酶法)及綜合法。
擠壓工藝可大幅提高豆渣中SDF的含量[43],同時(shí)擠壓豆渣可保持原豆渣的持水力,其膨脹力和DF的粘度也有所提高,因而DF的生理功能也得到了改善。并且擠壓對豆渣纖維的結(jié)晶沒有明顯的破壞。有研究表明通過熱壓處理后的含水豆渣樣品在30℃和60℃再用高液體靜壓處理,SDF的含量可提高8倍多[44]。婁海偉[45]等用擠壓豆渣為原料制備的SDF產(chǎn)率達(dá)到34%。
化學(xué)法是利用化學(xué)試劑提取DF的方法。其中,水浸提法中影響提取率的因素有溫度、時(shí)間、pH值、加水量等,如:在100℃自然pH下提取10 min,SDF產(chǎn)率可達(dá)11%[46]。若利用150℃亞臨界水,SDF的得率可達(dá)22%[47]。以豆渣為原料,可提取以DF為主的水溶性多糖[48]。酸法水解豆渣時(shí),90℃水解5 h,豆渣的水解率可達(dá)58%[49]。酸法和堿法結(jié)合提取豆渣中的DF[50]時(shí),用pH=3的酸液提取1.5 h后,用pH=11的堿液提取2 h,纖維素含量可達(dá)72%。再經(jīng)6%鹽酸水解,92℃下浸泡25 min的微晶化處理,纖維素含量可達(dá)91%,且理化性質(zhì)有較大改善。陳霞[51]等以新鮮豆渣為原料,通過堿-酶法提取的豆渣DF產(chǎn)率為85%,產(chǎn)品纖維素含量為80%。
圖1 豆渣水溶性膳食纖維的結(jié)構(gòu)Fig.1 The structure of soybean dregs soluble fiber
以酶法為代表的生物法提取豆渣DF受到關(guān)注。復(fù)合纖維素酶水解豆渣提取SDF時(shí),SDF的產(chǎn)率可達(dá)39%[52]。部分酶對豆渣纖維有降解作用,如粗壯脈紋孢菌所產(chǎn)生的纖維素酶是一組復(fù)合酶系[53],經(jīng)纖維素酶系的作用,IDF分子變小,且產(chǎn)生大量小分子物質(zhì),導(dǎo)致膳食纖維含量降低,同時(shí)水溶性固形物含量增加[54]。薛振環(huán)[55]等發(fā)現(xiàn)粗壯脈紋孢菌對豆渣中水不溶性非纖維素多糖的降解能力最強(qiáng),其含量由原來的37.14%降為0.58%,纖維素、水溶性非消化性多糖,含量分別由原來的12.87%、0.26%降為7.73%、0.18%,而該菌對木質(zhì)素基本不降解。
孫雁霞[56]等用酸解、堿解和酶解3種方法對DF進(jìn)行了改性研究,發(fā)現(xiàn)通過酸、堿處理后可不同程度地提高SDF的得率,但處理后的纖維顏色變深、持水力和膨脹力有所下降,而酶法得到的纖維品質(zhì)較好。朱會霞[57]等采用堿法脫腥、蛋白酶水解去除殘留蛋白,與原料豆渣相比,其DF的持水性提高了87%,溶脹性提高了94%。此外,酶法與機(jī)械法結(jié)合也可提高SDF的含量[58]。
SDF在結(jié)腸中幾乎被徹底水解,產(chǎn)生的短鏈酸要比IDF多。因此,在降低血液膽固醇含量及對有害物質(zhì)的清除上都比IDF效果好,用途也比IDF廣泛。采用羧甲基化可提高豆渣纖維降血糖的作用。生物法也可以改善豆渣纖維的性質(zhì),Zhu[59]等應(yīng)用枯草桿菌發(fā)酵豆渣提高了其抗氧化活性和縮氨酸的水平。
通過酶法、微生物發(fā)酵法、超高壓均質(zhì)處理及多技術(shù)聯(lián)用等方法都可提高豆渣DF的活性[60]與可溶性。酶法則是因?yàn)槊缚煞纸釯DF中的纖維素成分,生成小分子量的單糖或寡糖,從而增加SDF的產(chǎn)率。微生物發(fā)酵主要是經(jīng)較長時(shí)間的發(fā)酵處理將不斷產(chǎn)生含大量有機(jī)酸的代謝產(chǎn)物,造成DF在較長時(shí)間處于酸性條件,使纖維素的糖苷鍵斷裂,產(chǎn)生新的還原末端,使DF的大分子聚合度下降,部分轉(zhuǎn)化成非消化可溶性多糖。大豆DF具有明顯的生理和醫(yī)療功效,大量攝入DF含量高的食品可降低發(fā)病率[61]。DF還能調(diào)節(jié)血壓[62]、降低血漿和肝臟中的油脂和膽固醇[63],增加組織對胰島素的敏感性[64]?,F(xiàn)已發(fā)現(xiàn)結(jié)腸癌與DF的攝入量不足有關(guān)[65]。DF中起重要生理功能的是SDF和半纖維素[66]。SDF在許多方面具有比IDF更強(qiáng)的生理功能,如持水率高,防便秘等。DF比重小,體積大,縛水后體積更大,對腸道產(chǎn)生容積作用,不會產(chǎn)生饑餓感[67],對肥胖癥的預(yù)防有較好的作用。
肽可以通過與RAS和KKS系統(tǒng)中的ACE結(jié)合,減少血管緊張素II的生成,避免具有舒緩血管作用的緩激肽失活,從而達(dá)到降低血壓的目的[68]。肽在促進(jìn)免疫細(xì)胞增生,抗腫瘤,抗氧化,增強(qiáng)機(jī)體免疫力等方面也有一定的功效。任海偉[69]等采用蛋白酶水解豆渣制備了可溶性蛋白肽,結(jié)果表明:豆渣在120℃,pH=9.0條件下預(yù)處理15 min后,采用堿性蛋白酶在pH=9.0,55℃作用4 h,再用木瓜蛋白酶在pH=7.0下作用4 h,可溶性蛋白肽提取率可達(dá)到63%。
豆渣中富含的DF除被提取利用外,為了提高豆渣的附加值,還可對豆渣進(jìn)行改性后再利用。
5.1 合成熱固性酚醛樹脂
利用豆渣苯酚液化物與甲醛進(jìn)行樹脂化反應(yīng)可制取酚醛樹脂,此樹脂可用于膠合板的壓制,制得膠合板標(biāo)準(zhǔn)的熱固性酚醛樹脂[70]。張?zhí)礻唬?1]等以大豆豆渣為原料,研究了其樹脂化和豆渣液化物樹脂膠。結(jié)果表明:液化產(chǎn)物的殘?jiān)蕿?.7%,液化效率可達(dá)到97.3%。以價(jià)格低廉的豆渣代替苯酚制備豆渣液化物樹脂模壓材料比酚醛樹脂模壓材料具有更好的生物降解性能。Yang[72]等分別用1%的硫酸和1%的氫氧化鈉溶液水解豆渣,用苯酚-間二苯酚-甲醛(PRF)為交聯(lián)劑,用粘合樹脂粘合到豆渣組成的高密度纖維板上制得了抗張強(qiáng)度及甲醛釋放量均符合標(biāo)準(zhǔn)的纖維地板。
5.2 制備新型生物吸附劑
大豆DF由于自身的結(jié)構(gòu)特點(diǎn),可與陽離子進(jìn)行可逆交換,食用DF可降低重金屬離子對人體的毒性。有研究表明,未經(jīng)預(yù)處理的豆渣原料對Cd2+和Zn2+具有吸附能力[73],Cd2+和Zn2+的最大吸附量分別為19.6 mg/g和11.1 mg/g。如采用瞬時(shí)高壓作用[74],對重金屬離子的吸附量可增加30% ~33%。在120°C下,豆渣經(jīng)檸檬酸改性[75],可對Cu2+的吸附能力從0.4 mmol/g提高到2.4 mmol/g。另有研究表明[76],經(jīng)檸檬酸改性的豆渣對Cu2+的吸附量為18.0 mg/g。
5.3 其他應(yīng)用
Mateos-Aparicio[77]等分離了豆渣,豌豆和蠶豆的細(xì)胞壁多糖,制得了三種富含果膠的提取物,兩種含有果膠和半纖維素的復(fù)合物和富含纖維素的殘?jiān)?。通過對豆渣的膨脹力和持水力研究表明,其具有潛在的織物添加劑作用。Ahn等[78]利用豆渣還制得了一種木材防腐劑。
豆渣作為大豆制品生產(chǎn)中的副產(chǎn)物,長期以來僅作為飼料或肥料使用,附加值低,造成主產(chǎn)品成本高,經(jīng)濟(jì)效益低,一直困擾著加工行業(yè)的發(fā)展。近年來,人們從營養(yǎng)學(xué)的角度對其有了新的認(rèn)識。DF是豆渣的主要成分,用豆渣生產(chǎn)DF是大豆綜合利用的一條新途徑。另外,將豆渣改性后將拓寬其應(yīng)用領(lǐng)域,將為廢棄天然高分子的再利用提供一種新途徑。
1 Aleixandre A,Miguel M.Dietary fiber in the prevention and treatment of metabolic syndrome:a review.Crit Rev Food Sci Nutr,2008,48:905-912.
2 Peters U,et al.Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme.Lancet,2003,361:1491-1495.
3 Zhang LF(張麗芳),Zhang AZ(張愛珍).Progress in study of dietary fiber.Chin General Pract(中國全科醫(yī)學(xué)),2007,10:1825-1827.
4 Xiao SX(肖少香),Sheng CM(盛燦梅).Preparation of bean dregs biscuit without sugar.Food Mach(食品與機(jī)械),2004,20(4):43-45.
5 Zhao GL(趙功玲),et al.Cake with soybean residue powder and millet powder.Food Sci Technol(食品科技),2004,(12):28-30.
6 Wu JF(吳金鳳),et al.Study on the crisp bean dregs biscuit.Sichuan Food Ferment(四川食品與發(fā)酵),2006,42 (6):32-35.
7 Wang YP(王越鵬),Wang JM(汪建明).Research and development of bean dregs crisp with vegetable.Guangzhou Food Sci Technol(廣州食品工業(yè)科技),2003,19(4):64-66.
8 Yao XL(姚小玲),Sun WJ(宋衛(wèi)江).Study on the manufacturing technique of convenient noodle from soybean dregs fiber.Food Res Dev(食品研究與開發(fā)),2006,27:140-142.
9 Chan WM,Ma CY.Acid modification of proteins from soymilk residue(okara).Food Res Inter,1999,32:119-127.
10 Schneeman BO.Dietary fiber and gastrointestinal function.Nutr Res,1998,18:625-632.
11 Furuta H,et al.Extraction of water-soluble soybean polysaccharide under acidic conditions.Biosci Biotechnol Biochem,1998,62,2300-2305.
12 Gao JY(高金燕),Chen HB(陳紅兵).Making food additives from soybean residue.Food Sci Technol(食品科技),2002,(12):65-66.
13 Zhang H(張恒),et al.Preparation and quality analysis of edible paper of bean dregs.Food Sci(食品科學(xué)),2008,29: 201-204.
14 Nakornpanom NN,et al.Effect of soy residue(okara)on in vitro protein digestibility and oil release in high-calorie emulsion stabilized by heated mixed proteins.Food Res Inter,2010,43:26-32.
15 Wang HB(汪海波),et al.Study on the processing of extracting soy isoflavone aglycone by acid hydrolysis.Food Sci(食品科學(xué)),2003,24:98-101.
16 Xu FP(許芙萍).Study on affect factors for purification of soy isoflavone by depositing.Chin Food Ind(中國食品工業(yè)),2008,21(8):48-50.
17 Pan LM(潘廖明),et al.Extraction of soybean isoflavone assisted by ultrasonic wave.China Oils Fats(中國油脂),2003,28(11):85-87.
18 Qian LL(錢麗麗),et al.Extraction of soybean isoflavones by microwave pretreatment.Modern Food Sci Technol(現(xiàn)代食品科技),2007,23:38-39.
19 Gao JY(高金燕),Xu JL(徐江林).The prime research on extraction of soybean isoflavones from soybean residues.China Food Addit(中國食品添加劑),2003,3(5):16-18.
20 Liu JP(劉建平),et al.Study on the ultrasonic extraction technology of isoflavone from soybean residues.J Anhui Agric Univ(安徽農(nóng)業(yè)科學(xué)),2010,38:2042-2043.
21 He EM(何恩銘),et al.Research on extraction of soybean isoflavones from soybean residue.Acta Agric Boreali-occid Sin(西北農(nóng)業(yè)學(xué)報(bào)),2006,15:160-162.
22 Li G(李光),et al.Optimization of isoflavones extraction assisted by ultrasound from soybean dregs using response surface methodology.Food Technol(食品科技),2008,(2): 144-148.
23 Xie J(謝婧).Change of content and configuration of isoflavones in process of soybean residue fermentation with mucor.China Brewingy(中國釀造),2009,(5):77-83.
24 Quitain AT.et al,Recovery of oil components of okara by ethanol-modified supercritical carbon dioxide extraction.Bioresour Technol,2006,97:1509-1514.
25 Huang XD(黃曉東),et al.Study on the antioxidative stability of soybean residue extract.China Brewingy(中國釀造),2006,(4):42-43.
26 Wang JH(王建華),et al.Effects of isoflavones on bone mineral density and bone metabolism in ovariectomized rats.Nat Prod Res Dev(天然產(chǎn)物研究與開發(fā)),2003,15:43-45,54.
27 Yamamoto S,et al.Soy isoflavones and breast cancer risk in Japan.J Natl Cancer Inst,2003,95:906-913.
28 Wu AH,et al.Plasma isoflavone levels versus selfreported soy isoflavone levels in Asian-American women in Los Angeles County.Carcinogenesis,2004,25:77-81.
29 Takimoto CH,et al.Phase I pharmacokinetic and pharmacodynamic analysis of unconjugated soy isoflavones administered to individuals with cancer.Cancer Epidemiol Biomar Prev,2003,12:1213-1221.
30 Cha LY(查龍應(yīng)),et al.Advances on anticancer bioactivities of soyasaponins.Nat Prod Res Dev(天然產(chǎn)物研究與開發(fā)),2009,21:1076-1079.
31 Liao WP(廖葦萍),Shi YG(石元剛).Effect of astragalus polysaccharides and soy isoflavones on glucose metabolism in diabetic rats.Acta Acad Med Mil Tert(第三軍醫(yī)大學(xué)學(xué)報(bào)),2007,29:416-418.
32 Nagarajan S,et al.Soy isoflavones attenuate human monocyte adhesion to endothelial cell-specific CD54 by inhibiting monocyte CD11a.J Nutr,2006,136:2384-2390.
33 Ji LL(季莉莉),et al.Effect of Soy isoflavones(SI)on antioxidative enzyme and lipid peroxide in rat.Chin Prev Med(中國預(yù)防醫(yī)學(xué)雜志),2006,7:1-4.
34 Chen YM,et al.Beneficial effect of soy isoflavones on bone mineral content was modified by years sincemenopause,body weight,and calcium intake:a double-blind,randomized,controlled trial.Menopause,2004,11:246-254.
35 Ikeda Y,et al.Intake of fermented soybeans,natto,is associated with reduced bone loss in postmenopausal women:Japanese population-based osteoporosis(JPOS)study.J Nutr,2006,136:1323-1328.
36 Wang JH(王建華),et al.Effects of daidzein on prolifereaction and differentiation of cultured osteoblasts in vitro.Nat Prod Res Dev(天然產(chǎn)物研究與開發(fā)),2003,15:152-154.
37 Chiou TY,et al.Beta-glucosidase isolated from soybean okara shows specificity toward glucosyl isoflavones.J Agric Food Chem,2010,58:8872-8878.
38 Nakamura A,et al.Emulsifying properties of enzyme-digested soybean soluble polysaccharide.Food Hydro,2006,20:1029-1038.
39 Nakamura A,et al.Structural studies by stepwise enzymatic degradation of the main backbone of soybean soluble polysaccharides consisting of galcaturonan and rhamnogalacturonan.Biosci Biotechnol Biochem,2002,66:1301-1313.
40 Nakamura A,et al.Soy soluble polysaccharides stabilization at oil-water interfaces.Food Hydro,2006,20:277-283.
41 Mateos-Aparicio I,et al.Multifunctional antioxidant activity of polysaccharide fractions from the soybean byproduct okara.Carbohydr Polym,2010,82:245-250.
42 Zhang SX(張世仙),et al.Advance in extraction method and function of dietary fiber from soybean dregs.J Southwest China Normal Univ(西南師范大學(xué)學(xué)報(bào)),2009,34(4):93-97.
43 Jin MG(金茂國),Sun W(孫偉).A Study on the use of extrusion for raising the SDF content in soybean dregs.Food Feed Ind(食品與飼料工業(yè)),1996,8:35-38.
44 Mateos-Aparicio I,et al.High hydrostatic pressure improves the functionality of dietary fibre in okara,by-product from soybean.Innov Food Sci Emerg Technol,2010,11:445-450.
45 Lou HW(婁海偉),Chi YJ(遲玉杰).Optimization of technology for preparing soluble dietary fiber from extruded soybean residue.Trans Chin Soc Agric Eng(農(nóng)業(yè)工程學(xué)報(bào)),2009,25:285-289.
46 Jiang ZM(姜竹茂),et al.Producing soluble dietary fibre from bean dregs.J Chin Cereals Oils Assoc(中國糧油學(xué)報(bào)),2001,16(3):52-55.
47 Lou GQ(婁冠群),et al.Sub-critical water extraction of soluble soybean polysaccharide from soybean dregs.China Oils Fats(中國油脂),2010,35(5):61-63.
48 Li Z(李莊).Extraction of water-soluble soybean polysaccharides and its applications.East China Normal Univ(華東師范大學(xué)),2005:1-15.
49 Jiang L(姜錄),Hu F(胡飛).The research of conditions for acid hydrolyzation of soybean dregs.Food Res Dev(食品研究與開發(fā)),2008,29:97-100.
50 Li WJ(李文佳),et al.Study on preparation of soybean dietary fiber from bean dregs.Acad Period Farm Prod Proc(農(nóng)產(chǎn)品加工·學(xué)刊),2010,(6):51-53.
51 Chen X(陳霞),et al.The research of conditions for extraction of soybean dregs natural cellulose.Soybean Sci(大豆科學(xué)),2001,20:128-132.
52 Zhou DH(周德紅),et al.Preparation of soluble dietary fiber from soybean residue and its uses as microencapsulating wall material.Food Ferment Ind(食品與發(fā)酵工業(yè)),2005,31 (5):55-58.
53 Yu E(余瑋),et al.Study on the properties of cellulase in neurospora crassa.Food Sci(食品科學(xué)),2006,27(12):50-53.
54 Romero MD,et al.Cellulose production by neurospora crassa on wheat straw.Enzyme Microb Technol,1999,25:244-250.
55 Xue ZH(薛振環(huán)),et al.Effect on the dietary fiber in soybean residue fermented by neurospora crassa.Sci Technol Food Ind(食品工業(yè)科技),2009,30:156-158.
56 Sun YX(孫雁霞),et al.Study on preparing water-soluble dietary fiber from soybean residue.Food Ferment Ind(食品與發(fā)酵工業(yè)),2009,35:92-95.
57 Zhu HX(朱會霞),Sun JX(孫金旭).The study of preparation conditions for dietary fiber of soy bean dregs.China Brewing(中國釀造),2008,(24):78-80.
58 Xu GC(徐廣超),Yao HY(姚惠源).The research of conditions for extraction of soybean soluble dietary fiber.J Henan Univ Technol(河南工業(yè)大學(xué)學(xué)報(bào)),2006,26:54-57.
59 Zhu YP,et al.Improvement of the antioxidant activity of chinese traditional fermented okara(Meitauza)using Bacillus subtilis B2.Food Contr,2008,19:654-661.
60 Han DP(韓東平),et al.Research progress on improving activity of dietary fiber from soybean dregs.Food Sci(食品科學(xué)),2008,29:670-672.
61 Mark LD.Dietary fiber overview in:dietary fiber in health and disease,handbook of dietary fiber.New York:Marcel Dekker Inc,2001.
62 Burke V,et al.Dietary protein and soluble fiber reduce ambulatory blood pressure in treated hypertensive.Hypertension,2001,38:821-826.
63 Villanueva MJ,et al.Effect of high-fat diets supplemented with okara soybean by-product on lipid profiles of plasma,liver and faeces in Syrian hamsters.Food Chem,2011,124: 72-79.
64 Bessesen DH.The role of carbohydrates in insulin resistance.J Nutr,2001,131:2782-2786.
65 Marlett JA,et al.Position of the american dietetic association:health implications of dietary fiber.J Am Diet Assoc,2002,102:993-1000.
66 Wang S(王遂),Liu F(劉芳).Studies on the preparation,property and application of highly active dietary fibre from corn bran(HAFC).Food Sci(食品科學(xué)),2000,21(7):22-24.
67 James P.In Dietary Fiber.Fiber-depleted foods and disease.london:Academic Press,1985.
68 Li GH,et al.Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects.Nutr Res,2004,24:469-486.
69 Ren HW(任海偉),et al.Research on extraction and structure characterization of soluble protein peptides from soybean dregs by enzyme hydrolysis,F(xiàn)ood Ind Sci Technol(食品工業(yè)科技),2009,30:275-277.
70 Zhang TH(張?zhí)礻?,Zhang QH(張求慧).Study on synthesis of thermosetting PF resin with liquefied soybean dregs in phenol.China Adhesives(中國膠粘劑),2009,18:30-34.
71 Zhang TH(張?zhí)礻?.Liquefaction of soybean dregs in phenol and the resinification of the reactant.Beijing porestry university,2009.
72 Yang I,et al.Adhesives formulated with chemically modified okara and phenol-resorcinol-formaldehyde for bonding fancy veneer onto high-density fiberboard,J Ind Eng Chem,2009,15:398-402.
73 Li L(李蓮),et al.Adsorption of Cd2+and Zn2+in water by bean dregs.Environ Prot Chem Ind(化工環(huán)保),2008,28: 296-299.
74 Liu CM(劉成梅),et al.Instantaneous high pressure impact on adsorption of SDF for Cu2+,Ca2+,Mg2+,Pb2+under physiological condition.Food Sci(食品科學(xué)),2006,27: 170-173.
75 Marshall WE,et al.Enhanced metal adsorption by soybean hulls modified with citric acid.Biores Technol,1999,69:263-268.
76 Xiang GQ,et al.Determination of trace copper in food samples by flame atomic absorption spectrometry after solid phase extraction on modified soybean hull.J Hazard Mater,2010,179:521-525.
77 Mateos-Aparicio I,et al.Isolation and characterisation of cell wall polysaccharides from legume by-products:okara (soymilk residue),pea pod and broad bean pod.Food Chem,2010,112:339-345.
78 Ahn SH,et al.Environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara,copper and/or boron salts.J Hazard Mater,2010,178:604-611.
Advanced in Extraction,Modification,and Utilization of the Active Constituents from Beandregs
TAO Ji-de,HE Yu-feng,YANG Cai-xia,WANG Rong-min*,MAO Chong-wu
Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education,Key Laboratory of Polymer Materials of Gansu Province,College of Chemistry and Chemical Engineering,Northwest Normal University,Lanzhou 730070,China
Beandregs is a kind of natural polymer-based fibers such as food processing industry waste.It has broad application prospects and potential of the raw materials.In this paper,the active constituents,medicinal value and healthy functions of beandregs were introduced,and the structures,extraction methods,modification and application of soluble dietary fiber from beandregs were reviewed.In short,beandregs was worth paying more attention in research and utilization as a degradable biomaterial,and it could provide a new way for the reuse of abandoned natural polymer.
beandregs;abandoned natural polymer;dietary fiber;degradable biomaterials
R284.2
A
1001-6880(2012)05-0702-07
2010-11-25 接受日期:2011-03-22
國家自然科學(xué)基金項(xiàng)目(20964002);甘肅省屬高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2010-176);甘肅省科技支撐計(jì)劃項(xiàng)目(1011GKCA017)
*通訊作者 Tel:86-931-7970358;E-mail:wangrm@nwnu.edu.cn