• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于直覺模糊距離法的堰塞湖減災(zāi)方案選優(yōu)*

      2012-09-08 02:15:54王紹玉黃星
      災(zāi)害學(xué) 2012年4期
      關(guān)鍵詞:文家堰塞湖直覺

      王紹玉,黃星

      (1.哈爾濱工業(yè)大學(xué)管理學(xué)院,黑龍江哈爾濱150001;2.哈爾濱工業(yè)大學(xué)建筑學(xué)院,黑龍江哈爾濱150001)

      基于直覺模糊距離法的堰塞湖減災(zāi)方案選優(yōu)*

      王紹玉1,2,黃星1

      (1.哈爾濱工業(yè)大學(xué)管理學(xué)院,黑龍江哈爾濱150001;2.哈爾濱工業(yè)大學(xué)建筑學(xué)院,黑龍江哈爾濱150001)

      針對堰塞湖減災(zāi)群決策信息的不確定性與模糊性,為解決不完全信息條件下屬性指標(biāo)及專家之間存在的相互關(guān)聯(lián)群決策問題,綜合運(yùn)用直覺模糊集理論、海明距離原理和熵權(quán)理論,將直覺模糊距離群決策方法運(yùn)用到堰塞湖減災(zāi)決策過程中。工程實(shí)例研究表明,運(yùn)用直覺模糊距離法決策出的最優(yōu)方案具有較高的區(qū)分度和敏感性,增強(qiáng)了決策的客觀性、科學(xué)性,能為堰塞湖減災(zāi)決策提供更為可靠的依據(jù),具有較強(qiáng)的實(shí)用價值。

      直覺模糊距離;堰塞湖減災(zāi);群決策;敏感性分析

      0 引言

      堰塞湖減災(zāi)決策往往是在信息不完全、時間緊迫的情況下進(jìn)行的,若決策失誤,勢必造成嚴(yán)重?fù)p失[1],這意味著決策者將面臨決策風(fēng)險的巨大壓力,會加大決策失誤的概率;同時,在緊急狀態(tài)下,單個決策者不可能具備解決問題的所有經(jīng)驗(yàn)和知識,這就要求決策過程需要多個決策者共同參與才可能保證堰塞湖減災(zāi)決策的準(zhǔn)確和安全。因此,堰塞湖減災(zāi)決策本質(zhì)上是多個專家共同參與的群決策問題。

      群決策為多個決策者關(guān)于方案集合中方案的偏好按某種規(guī)則集結(jié)為群體決策的一致或妥協(xié)的群體偏好序[2]。目前,國內(nèi)外群決策研究眾多,在研究方法上主要集中在決策者偏好的信息描述與集結(jié)上。然而,在堰塞湖減災(zāi)方案選擇過程中,會出現(xiàn)各位專家偏好不同和備選方案評判不完全一致的問題。如何有效地將專家個人意見,通過科學(xué)的評價方法集結(jié)為群體的一致性意見,是眾多群決策研究者關(guān)注的問題。為此,本文把直覺模糊距離法引入到堰塞湖減災(zāi)方案選優(yōu)決策中,該方法用一個三元組(tA(x),fA(x),πA(x))表示決策者對某一事物的支持、反對和棄權(quán)三方面信息,使得決策者在處理不確定信息時比傳統(tǒng)的模糊集有更強(qiáng)的表現(xiàn)力,適宜用來解決堰塞湖應(yīng)急初期信息不確定條件下的緊急決策問題。該方法能夠在應(yīng)急狀態(tài)下很好地集中專家智慧,較為準(zhǔn)確地對備選方案建立直覺模糊評價矩陣,并利用海明距離原理將個人意見集結(jié)成能反映專家群體的一致性意見。工程實(shí)例表明,直覺模糊距離法在堰塞湖減災(zāi)方案選優(yōu)決策中有較高的實(shí)用性,其敏感性分析也證明該模型和算法具有較高的區(qū)分度,能較好地保證應(yīng)急決策結(jié)果的準(zhǔn)確和可靠。

      1 直覺模糊距離群決策原理

      1.1 直覺模糊距離簡介

      堰塞湖減災(zāi)方案選優(yōu)屬于多屬性群決策問題,本質(zhì)上是集結(jié)專家個人意見為群體意見的過程,并根據(jù)專家群意見的一致度決策出最優(yōu)的方案[3-4]。1986年,Atanassov對模糊集進(jìn)行拓展,提出了直覺模糊集的概念,其基本定義為:設(shè)X為非空經(jīng)典集合,X=(x1,x2,…,xn),X上形如A={(x,tA(x),fA(x)|x∈X}的三重組稱為X上的一個直覺模糊集,其中,tA(x)∶X→[0,1]和fA(x)∶X→[0,1]均為X上的隸屬函數(shù),分別表示X上元素x屬于A的隸屬度函數(shù)和非隸屬度函數(shù),且對于A上的所有x∈X,滿足:

      對于直覺模糊集A:

      為A中x的直覺指數(shù)。式中,tA(x)表示支持x∈A的證據(jù)的隸屬度下界,稱為直覺模糊集A的真隸屬函數(shù);fA(x)表示反對x∈A的證據(jù)的隸屬度下界,稱為直覺模糊集A的假隸屬函數(shù);πA(x)為直覺模糊集A的不確定度,是x相對于A的未知信息的一種度量。

      1.2 模型構(gòu)建

      當(dāng)專家兩兩之間對方案i的意見完全一致時,設(shè)其直覺模糊距離為0;當(dāng)專家兩兩之間對方案i的意見完全相反時,設(shè)其直覺模糊距離為1;當(dāng)專家兩兩之間對方案i的意見不全一致時,設(shè)其直覺模糊距離為[0,1]中的某個值[5-7]。根據(jù)實(shí)際情況,結(jié)合每位專家的經(jīng)驗(yàn)及個人偏好,第k位專家對方案i的第j個評價準(zhǔn)則或指標(biāo)作出的模糊評價為則可得第k位專家對備選方案集A的模糊評價偏好矩陣為:

      此距離反映了每一對專家(k,t)間對備選方案i意見的一致度。

      如果所有專家兩兩之間一致度測量完畢,則可構(gòu)造出備選方案i(i=1,2,…,r)的意見一致度矩陣(AM),它表示m位專家兩兩間對備選方案i意見的一致性程度。

      對評價準(zhǔn)則{c1,c2,…,cn}的權(quán)重w={w1, w2,…,wn}的確定,因?yàn)?zāi)害環(huán)境一般較為復(fù)雜,眾多信息很難及時獲取,只能依靠專家經(jīng)驗(yàn)賦予各屬性指標(biāo)的權(quán)重,可采取Delphi法,通過計(jì)算程序快速實(shí)現(xiàn)。具體方法是組織m個專家,每個專家給出一組屬性權(quán)重:。對m個專家給出的權(quán)重值進(jìn)行平均,得到權(quán)重均值:

      計(jì)算出每位專家所給權(quán)重與均值之間的偏差:

      對偏差Δij較大的第j個屬性,再請第i個專家重新估計(jì)權(quán)重wij。重復(fù)上述過程,直到偏差滿足一定要求為止,并將最后得到的權(quán)重均值w={w1,w2,…,wn}作為屬性的權(quán)重。

      1.3 評價函數(shù)

      堰塞湖減災(zāi)方案選優(yōu)的評價函數(shù),主要是綜合每位專家的相對重要權(quán)重及對備選方案意見的相對一致度,得到所有專家備選方案i(i=1,2,…,r)意見的最終綜合一致度為:

      按照由小到大的順序排列ei的值,值最小的方案表示專家群體對此方案評價意見的一致性程度要高,專家之間的意見分歧不大。

      1.4 熵值法確定專家權(quán)重

      在信息論中,熵是度量不確定性的一個指標(biāo)。信息量越大,不確定性就越小,熵也越小。反之,信息量越小,不確定性越大,熵也越大[8-10]。堰塞湖減災(zāi)方案選優(yōu)對專家群體的要求很高,是減災(zāi)方案決策前的重要工作。一般來講,專家權(quán)威性越高其決策結(jié)果越可靠。因此,確定專家的權(quán)重十分重要,有必要通過一系列量化指標(biāo)予以客觀、公正地測度。

      設(shè)專家集合Q={q1,q2,…,qk},評價指標(biāo)集B={B1,B2,…,Bn},指標(biāo)屬性值L={1,2,…,n},設(shè)滿足各理想指標(biāo)的理想專家的評價向量X*={1,1,1,1,1,1},根據(jù)評價指標(biāo)量值構(gòu)建專家信息矩陣為:

      式中:xij表示第i個專家在第j個指標(biāo)的屬性值,其值越小越好,屬于成本型指標(biāo)。

      ①對信息矩陣M=(xij)m×k用線性比例變換法做標(biāo)準(zhǔn)化處理,得到標(biāo)準(zhǔn)化矩陣Y=(yij)m×k,并進(jìn)行歸一化處理,得:

      其中,i=1,2,…,m;j=1,2,…,k;|x*jxij|表示第k個專家qk取值相對于理想專家取值的優(yōu)劣次序差異,x*j恒為1,|x*j-xij|越大則差異越大;|d*j-dij|表示第j個指標(biāo)下專家qk的取值的優(yōu)劣差異,|d*j-dij|越大則差異越大。

      ③每位專家的選擇熵-Hk為:

      ④對專家選擇熵大小進(jìn)行比較,得到專家的優(yōu)劣次序,根據(jù)優(yōu)劣次序?qū)γ课粚<屹x予相對比較權(quán)重rk。則每位專家最終的相對重要權(quán)重為

      1.5 敏感度分析

      從決策結(jié)果可知,對集結(jié)以后計(jì)算每個方案的ei值,并按從小到大順序排列,ei最小為最優(yōu)方案。從以上模型可知,群決策者采取直覺模糊距離模型對堰塞湖減災(zāi)方案進(jìn)行評價和判斷,其目的是選出最優(yōu)方案,這就要求最優(yōu)方案的ei值與其他方案有較大差異,才能保證決策模型和算法具有很好的敏感度,保證最優(yōu)方案的可靠和正確,很顯然敏感性越大,所用決策模型和算法對方案的決策效果就越好[11-12]。

      假設(shè)某模型以最終決策系數(shù)ηi對決策方案進(jìn)行評價,若決策系數(shù)以ηi越大越好(越小越好的情況,可用1/ηi表示),本文以ηi越小越好來評價方案,若以max(1/η)為決策系數(shù)中最大值,次最大值為sec(1/η),則定義方案的敏感度為:

      2 堰塞湖減災(zāi)工程實(shí)例

      2.1 工程概況

      四川省平武縣南壩鎮(zhèn)是汶川8.0級地震的重災(zāi)區(qū),文家壩堰塞湖位于南壩鎮(zhèn)的涪江左岸一級支流石坎河上游,距南壩鎮(zhèn)5 km,堰塞壩主要由石坎河左岸崩塌的覆蓋層和大粒徑塊石組成,結(jié)構(gòu)松散,多處滲水,堰塞湖基本情況如表1所示。2008年5月23日,湖內(nèi)水深已達(dá)20.5 m,距壩頂僅10 m。石坎河為高山峽谷型河流,兩岸山體陡峭,湖水上漲較快,平均每天上漲約0.8 m,據(jù)此推算,距漫頂僅13 d時間,而距文家壩上游約13.5 km的馬鞍石還有一個較大的堰塞湖,若文家壩以上發(fā)生降雨或馬鞍石堰塞湖發(fā)生潰壩,文家壩堰塞湖將提前漫頂溢流。因汶川地震的破壞,通往南壩鎮(zhèn)的交通主干道全部中斷,大型設(shè)備運(yùn)不進(jìn)去,給堰塞湖除險帶來極大困難,僅有一條鄉(xiāng)村公路可從江油到南壩鎮(zhèn),但只能通過輕型車輛,南壩鎮(zhèn)幾乎成為一座孤島;而南壩鎮(zhèn)又安置了數(shù)萬災(zāi)民,駐有大批救災(zāi)部隊(duì)和搶險人員,存放了大量的救災(zāi)物資;文家壩堰塞湖一旦發(fā)生潰壩,將嚴(yán)重威脅下游僅5 km的南壩鎮(zhèn)受災(zāi)群眾和搶險人員的安全,因此文家壩堰塞湖的排險施工顯得異常急迫。

      2.2 堰塞湖應(yīng)急治理群決策

      2.2.1 決策方案

      由于堰塞湖上游兩岸均為高山,沒有過水通道,且交通中斷,施工設(shè)備無法到達(dá)現(xiàn)場,只能在堰塞體上開挖明渠導(dǎo)流,以快速降低水位。測量資料顯示堰塞體表面形狀極不規(guī)則,總體上左高右低,中間局部形成溝底,橫向有數(shù)條高差10 m左右的隆起帶,縱向沒有一條完整的溝狀地形。根據(jù)現(xiàn)有施工條件和現(xiàn)場環(huán)境,專家集中研究了導(dǎo)流明渠的開挖線路,對擬開挖的導(dǎo)流明渠斷面按石坎河發(fā)生50年一遇洪水,上游馬鞍石按1/3潰壩計(jì)算潰壩洪水為2 070 m3/s,疊加馬鞍石和文家壩區(qū)間洪水流量780 m3/s(50年一遇)后為2 850 m3/s,最后提出2個文家壩堰塞湖應(yīng)急排險可行方案(表2,表3)。

      表1 文家壩堰塞湖基本情況

      表2 文家壩堰塞湖應(yīng)急排險可行方案

      表3 文家壩堰塞湖應(yīng)急排險可行方案

      2.2.2權(quán)重及評價準(zhǔn)則

      通過對專家的篩選,最終由3位專家E=(e1,e2,e3)組成群決策團(tuán)體,并按熵值法求出3位專家的權(quán)重向量wk=(0.46,0.20,0.34),通過對備選方案C=(c1,c2)眾多評價準(zhǔn)則的比較,最終確定4個關(guān)鍵評價指標(biāo)α=(α1,α2,α3,α4),并按Delphi法確定各準(zhǔn)則權(quán)重(表4)。

      表4 文家壩堰塞湖施工方案評價準(zhǔn)則及權(quán)重

      2.2.3 方案選優(yōu)

      根據(jù)評價準(zhǔn)則,3位專家對備選方案C=(c1,c2)的直覺模糊評價偏好矩陣分別如下:

      根據(jù)三位專家對備選方案的直覺模糊評價矩陣,計(jì)算專家兩兩(k.t)對方案C=(c1,c2)的直覺模糊距離lk,t1,lk,t2為:

      則專家E=(e1,e2,e3)對備選方案的一致度矩陣分別為:對方案c1,每位專家的平均一致度分別為:

      每位專家的相對一致度分別為:

      三位專家評價的綜合一致度為:

      同理,可得方案c2的綜合一致度為e2=0.08。

      2.3 方案的敏感度

      根據(jù)上面計(jì)算的綜合一致度e1,e2,由式(16)計(jì)算本文算法的敏感度:

      同時,計(jì)算文獻(xiàn)[3,13]所述算法的敏感度(表5)。從表5可以看出,本文所采取的直覺模糊距離

      表5 模型算法的敏感度比較

      [1]周宏偉,楊興國.地震堰塞湖排險技術(shù)與治理保護(hù)[J].四川大學(xué)學(xué)報,2009(3):97-101.

      [2]譚春橋,張強(qiáng).基于直覺模糊距離的群決策專家意見聚合分析[J].?dāng)?shù)學(xué)的實(shí)踐與認(rèn)識,2009(2):119-124.

      [3]Cui Peng,Zhu Yingyan,Han Yongshun,et al.The 12 May Wenchuan earthquake-induced landslide lakes:distribution and prelinary risk evaluation[J].Landslides,2009(6):209-223.

      [4]劉寧.唐家山堰塞湖應(yīng)急處置與減災(zāi)管理工程[J].中國工程科學(xué),2008(10):67-72.

      [5]Choo E U,Wedley W C.A common framework for deriving preference values from pair wise comparison matrices[J].Computer&Operations Research,2004,1:893-908.

      [6]Fan ZP,Xiao SH,Hu GF.An optimization method for in-tegrating two kinds of preference information in group decision-making[J].Computers&Industrial Engineering,2004,46:329-335.

      [7]胡強(qiáng),佘成學(xué).仙嶺水庫土壩滲流穩(wěn)定分析及除險加固措施[J].巖土力學(xué),2004,25(3):168-171.

      [8]Ghobadi MH,Khanlari GR.Seepaproblems in the right abutment of the Shahid Abbaspour dasouthern Iran[J].Engineering Geology,2005,82(2):119-12

      [9]Chai JR,Li SY.Analysis of seepage through dam foundation with closed system of grouting curtain,drainage and pump measures[C]//Wieland M,Ren Q W,Tan JS Y.Proceeing of the 4th International Conference on Dam Engineering-Developments in Dam Engineering.London:Taylor&Franc Group,2004:171-175.

      [10]Sedat T.Treatment of the seepage problems at the Kalecik Da (Turkey)[J].Engineering Geology,2003,68(3/4):159-169.

      [11]Chen SJ,Chen SM,A new method for handing fuzzy decision making problems using FN-IOWA operators[J].Cyernetics and Systems,2003(34):109-137.

      [12]王國全,李鵬.水利工程施工方案選擇的改進(jìn)灰色關(guān)聯(lián)分析法[J].人民長江,2010(1):46-48.

      算法,大大提高了模型的敏感度,從而保證備選方案決策結(jié)果的準(zhǔn)確和安全。

      3 結(jié)論

      本文根據(jù)堰塞湖應(yīng)急處置的緊迫性特點(diǎn),同時考慮堰塞湖決策方案評價指標(biāo)信息的不完全性以及施工現(xiàn)場的復(fù)雜性,綜合運(yùn)用直覺模糊距離法、評價準(zhǔn)則權(quán)重確定的Delphi法以及專家權(quán)重確定的熵值法,通過模型敏感性分析,該模型提高了堰塞湖應(yīng)急處置方案決策的準(zhǔn)確性。

      (1)在信息缺失條件下,采用直覺模糊距離群決策模型,能在緊急情況下迅速集結(jié)專家個體意見為群體的一致性意見,擺脫在數(shù)據(jù)嚴(yán)重缺乏情況下方案選優(yōu)結(jié)果的不準(zhǔn)確性。

      (2)提出區(qū)分最優(yōu)方案區(qū)分度敏感性分析方法。綜合了決策方案與評價結(jié)果綜合一致度量值之間的相互關(guān)系,較準(zhǔn)確反映出各決策方案之間的差異,使決策結(jié)果更加真實(shí)可信。

      (3)實(shí)例應(yīng)用結(jié)果表明,本文所采用直覺模糊距離模型能成功地應(yīng)用于類似堰塞湖應(yīng)急方案的優(yōu)選,決策靈敏度高,實(shí)現(xiàn)簡便且易于計(jì)算機(jī)程序化決策,具有較強(qiáng)的應(yīng)用價值。

      Excellent Selection for Barrier Lakes Disaster Relief Schemes Based on Intuitionist Fuzzy Method

      Wang Shaoyu1,2and Huang Xing1
      (1.School of Management,Harbin Institute of Technology University,Harbin 150001,China;2.School of Architecture,Harbin Institute of Technology University,Harbin 150001,China)

      According to the uncertainty and fuzzy of group decision information of barrier lake disaster relief,and in order to solve the correlation between the indicators and group decision experts under the condition of incomplete information,intuitionist fuzzy sets theory,Harming distance principle and entropy theory are comprehensively applied to solve the problems of barrier lake disaster relief decision in the decision-making process.Cases show that intuitionist fuzzy distance methods have a higher degree of differentiation and sensitivity and enhance the objectivity,science of the decision-making,the model can provide reliable bases for the barrier lake disaster relief decision-making and has a strong practical value.

      intuitionist fuzzy distances;barrier lake disaster relief;group decision;sensitivity analysis

      TU47

      A

      1000-811X(2012)04-0051-05

      2012-04-25

      2012-05-29

      國家自然科學(xué)基金資助項(xiàng)目(70671033)

      王紹玉(1956-),男,河北唐山人,教授,博士生導(dǎo)師,主要從事城市公共安全規(guī)劃與風(fēng)險管理、區(qū)域發(fā)展戰(zhàn)略規(guī)劃研究.E-mail:wsy@heut.edu.cn

      黃星(1979-),男,四川南充人,博士研究生,主要從事應(yīng)急供應(yīng)鏈管理研究.E-mail:huangxing6213@126.com

      猜你喜歡
      文家堰塞湖直覺
      堰塞湖形成與致災(zāi)機(jī)理及風(fēng)險評估關(guān)鍵技術(shù)
      “好一個裝不下”直覺引起的創(chuàng)新解法
      堰塞湖
      英語文摘(2020年8期)2020-09-21 08:50:52
      林文月 “人生是一場直覺”
      海峽姐妹(2020年7期)2020-08-13 07:49:22
      一個“數(shù)學(xué)直覺”結(jié)論的思考
      堰塞湖多源信息及其感知技術(shù)
      數(shù)學(xué)直覺謅議
      變味的母愛
      滑坡堰塞湖潰壩波影響因素數(shù)值模擬
      參觀秋收起義文家市會師紀(jì)念館感懷
      凭祥市| 元谋县| 太白县| 延吉市| 常熟市| 东明县| 巨野县| 遂溪县| 津市市| 岳西县| 南阳市| 宜兴市| 温州市| 琼中| 郧西县| 迭部县| 时尚| 昌吉市| 卢氏县| 秦安县| 平和县| 乌兰浩特市| 始兴县| 垦利县| 阳信县| 民勤县| 崇信县| 达日县| 澄迈县| 曲阳县| 桐柏县| 永德县| 韩城市| 武乡县| 黎城县| 桃源县| 德庆县| 大英县| 长兴县| 华阴市| 淮滨县|