• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NUMERICAL STUDY OF FLOW AROUND AN OSCILLATING DIAMOND PRISM AND CIRCULAR CYLINDER AT LOW KEULEGAN-CARPENTER NUMBER*

    2012-08-22 08:31:57GHOZLANIBelgacemHAFSIAZouhaierMAALELKhlifa

    GHOZLANI Belgacem, HAFSIA Zouhaier, MAALEL Khlifa

    Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Modélisation en’Hydraulique et Environnement, B.P. 37. Le Belvédère, 1002 Tunis, Tunisia, E-mail: ghozlanib@yahoo.fr

    (Received October 29, 2011, Revised April 23, 2012)

    NUMERICAL STUDY OF FLOW AROUND AN OSCILLATING DIAMOND PRISM AND CIRCULAR CYLINDER AT LOW KEULEGAN-CARPENTER NUMBER*

    GHOZLANI Belgacem, HAFSIA Zouhaier, MAALEL Khlifa

    Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Modélisation en’Hydraulique et Environnement, B.P. 37. Le Belvédère, 1002 Tunis, Tunisia, E-mail: ghozlanib@yahoo.fr

    (Received October 29, 2011, Revised April 23, 2012)

    In order to identify the influence of shape corners on the instantaneous forces in the case of oscillating bodies, the simulated flow field is compared for two kinds of cross sections: diamond prism and circular cylinder. For these two flow configurations, the same Reynolds number and a Keulegan-Carpenter are considered. To compute the dynamic flow field surrounding the body, the Navier-Stokes transport equations in a non-inertial reference frame attached to the body are considered. Hence, a source term is added locally to the momentum equation to take into account the body acceleration. The proposed model is solved using the PHOENICS code. For the oscillating circular cylinder, the simulated results are in good agreement with the experimental data available in the litterature. After validation of this proposed model, flow field for diamond prism is determined. For both bodies, the process of the vortex formation is similar, with the formation of a recirculation zone in the near-wake containing a symmetric pair of vortices of equal strength and opposite rotation. The length of recirculation zone varies approximately linearly with time. However, the in-line force coefficient of the oscillating diamond prism is found to be greatest, since the recirculation zone is longer compared with that of the oscillating circular cylinder.

    oscillating cylinder, diamond prism, body shape, non-inertial frame, numerical simulation, in-line and transverse force coefficient

    Introduction

    The motion of bluff bodies such as circular and square cylinders in fluid at rest is a fluid-structure interaction problem which has a practical and theoretical interest in the fields of naval hydrodynamics, aerospace and civil engineering. Moreover, the determination of the in-line and transverse variations of forces acting on the oscillating body is very important for designing offshore structures.

    The flow field induced by a moving body can be determined by considering that the body is fixed in a moving fluid with the same magnitude of the body velocity but in the opposite direction. The disturbed flow field around smooth-edged or sharp-edged cylinders has some similarities. The main distinction between these two flow configurations is that theseparation point is not fixed in the first case[1].

    Historically, the problem of flow around fixed circular cylinders has attracted a great deal of research interest experimentally and numerically. Results are presented for a single circular cylinder[2,3]and for arrangements of cylinders[4-6]. The flow field, force coefficients, pressure distributions and intensification or suppression of vortex shedding depend strongly on the Reynolds number, configuration, shape and the gap spacing between cylinders.

    In practice, the flow around an oscillating cylinder is more important than that around a fixed one because of its more complicated nature, depending on the cylinder forcing frequency and the amplitude and direction of oscillation, in addition to the Reynolds number of the flow. Based on flow visualizations at low Stokes numbers ()β, Tatsuno and Bearman[7]made an extensive study of the types of vortical motions produced when a cylinder oscillates in the fluid at rest. The flow field was grouped into eight regimes defined by the values of the Keulegan-Carpenternumber (KC) and the Stokes number (β). This classification made by Tatsuno and Bearman[7]becomes the standard description of the associated flow regimes.

    Recent advances in flow field measuring techniques and Computational Fluid Dynamics (CFD) for time varying flows have led to more comprehension of flow regimes around an oscillating cylinder. Lin and Rockwell[8]studied the vortex patterns at KC= 10 with a sequence of instantaneous Particle Image Velocimetry (PIV). Dütsch et al.[9]measured the velocity fields around an oscillating circular cylinder at KC =5, 6 and 10 with a Laser Doppler Anemometry (LDA). Due to the succession of the shedding vortex mode, measurement of the instantaneous transverse force is difficult. Hence, several numerical studies of the oscillating circular cylinder have been conducted to overcome this difficulty[10,11]. In addition, some work has been performed for the rotational oscillations of single[12]or two circular cylinders in side by side arrangement[13]to compute the hydrodynamic loads on it. They suggested that the reduction of the wake instability depending on the frequency and amplitude of oscillation. Also, they observed that the unsteady lift and drag components reach their maxima when the forced frequency is that of the natural vortex shedding frequency of the cylinder.

    So far, there have been relatively few studies of the flow around a diamond prism and other sharpedged bluff bodies. Zheng and Dalton[14]presented a numerical model to simulate an oscillating flow around a diamond cylinder and a square cylinder. The time variation of the in-line force coefficients presents an irregular wave forms when vortex shedding became asymmetric. Bearman et al.[15]conducted flow visualization of oscillating flow past a square cylinder. In this case, the inlet angles of the oscillating flow affect the time histories of in-line and transverse force coefficients.

    The flow field features around an oscillating diamond prism are not yet considered for a detailed analysis. The present study attempts to understand and to present the effects of the body shape on the flow fields and the instantaneous force signals acting on the body. A numerical investigation is conducted of the flow around oscillating circular cylinder and diamond prisms for Re =100 and KC=5.

    1. Mathematical formulation and numerical method

    1.1 Problem description

    The aim of this study is to predict two-dimensional fluid motion induced by the oscillation of a circular cylinder (Case 1) and a diamond prism (Case 2) of the same cross-stream dimension D=0.01m in water at rest (see Fig.1). The body is allowed to oscillate only in the longitudinal direction and the body vibrating velocity is given by The considered oscillating flow is controlled by the Reynolds number (Re) and Keulegan-Carpenter number (KC). KC is defined byKC=U∞T/D = 5 (or KC=2πA/D) , whereD is the cylinder diameter, A the oscillation amplitude, T the period of oscillation and U∞the maximum velocity in the oscillation. The Reynolds number for this flow is usually defined as Re=U∞D(zhuǎn)/v =100, v being the kinematic viscosity of the fluid. The flow is affected additionally by the Stokes number which is defined by β=D2/vT[7]where Re is the product of KC and β.

    Fig.1 Schematic of the problem domain in-line in a fluid

    The body is initially located at the center of the domain so its center has coordinates 15D and 10D. The domain has a length of 30D and a width of 20D. These dimensions were chosen similar to the experiment carried out by Dütsch et al.[9]at the same conditions for an oscillating cylinder to validate the proposed model.

    1.2 Governing equations and boundaries conditions

    To handle a moving object, there are generally two categories of treatments depending on the chosen frame of reference: inertial or moving frames.

    The Navier-Stokes equations governing an incompressible Newtonian fluid flow in an inertial frame connected to the stationary fluid are written as

    where ui(u,w) are the velocity components in the directions along the axes coordinatesxi(x,z), p is the pressure, ρ is the density of the fluid, which was fixed to 998.2 Kg·m–3and μ is the dynamic viscosity taken equal to 10–3Kg·(ms)–1for all computations.

    Fig.2 Rectangular meshes refined near the surfaces

    In applying these transport equations in the inertial system, the numerical grid has to be moved and adjusted from time step to time step according to the cylinder motion. However, a long distance moving object, the remeshing of the computational fluid domain is difficult[16]. For this reason, the proposed model is based on the Navier-Stokes equations written in an accelerated reference system. The inertialix and accelerated framesare connected by the relationship

    Fig.3 Effect of grid refinement on the velocity components at section x =0.144m at phase timet=T/2+nt

    Fig.4 The effect of time step Δt/T on the velocity components at section x=0.144m at phase timet=T/2+nt

    Fig.5 Comparison of the velocity components at four cross sections at timet=T/2+nt

    Hence, the fundamental equations for the accelerated system are heredenotes the fluid velocity in the accelerated reference system. The added source termtakes into account the oscillating body acceleration. With this formulation, the grid remainsfixed during the computation. The boundary conditions are changed from the flow induced by the motion of a body to oscillating flow around a body at rest (see Fig.1).The fluid velocities at the inlet, outlet and body surface boundaries,,iBu~, is related to oscillating flow around a fixed body by

    The initial values ofthe velocity and the pressure in the whole domain are zero. The computed velocity inaccelerated frameis transformed in the inertial velocity field by velocity of the moving body Ui,c(t).

    The instantaneous in-line and transverse force coefficients (non-dimensionalized by 0.5ρU∞2D) are defined as follows

    1.3 Numerical method

    In this study, the PHOENICS code has been applied to the simulation oftheflow around an oscillating body. The transport equations are discretized by the finite volume method numerical in which the conservation equations are written in an integral form. The solution domain is subdivided into a finite number of control volume and conservation equations are applied to each control volume. The convection term was approximated by a hybrid difference scheme. This code used staggered Cartesian grid arrangement. In the PHOENICS code, the body shape is approximated by the cutting cell approach in a Cartesian grid (see Fig.2(a)).

    2. Results an d discussions

    2.1 Grid and timeinde pendence

    Four grids sizes were tested for the case of an oscillating circular cylinderand three time steps were used to test the grid and time independence (see Figs.1(a) and 2(a)). Non-uniform grid dimensions were used in the x-z plane with the minimum grid size being employed near the body shape. The grid is refined near the surface body to resolve the fine flow structures in the viscous layer (see Fig.2). The effects of different grids on the velocity profiles at x= 0.144 m are shown in Fig.3. For a grid with 180× 140 cells in the x and z directions, the computed results are grid independent. For this grid the time independence study is carried out, and it is observed that the results become time step independent for =TΔ 0.049 s (see Fig.4).

    2.2 In-line oscillation of a circular cylinder

    The flow field induced by an oscillating cylinder were first simulated in order to validate the proposed model. The predicted velocity componentsat four sections x=0.144 m, 0.150 m, 0.156 m and 0.162 m at phase time t=T/2+nT are shown in Fig.5. The experimental measurements as well as numerical data reported byDütsch et al.[9]are provided in these figures for comparison. The cylinder motion velocity of -U∞cos(2π/Tt ) is also shown in these figures for comparison (at x=0.150 m ). For all velocity profiles, a good agreement is achieved.

    Fig.6 In-line force coefficient as function of the non-dimensional time

    Fig.7 In-line and transverse forces coefficients during one period of oscillation

    Fig.8Pressure and vorticity isolines for an oscillating circular cylinder at Re=100 and KC =5

    Figure 6 shows the in-line force coefficient as function of the non-dimensional time. The present res ults are in very good agreement with the numerical results obtained by Dütsch et al.[9]and Shen et al.[12]. It is found that the instantaneous in-line force signal is highly sinusoidal and periodic, due to the domination of the inertia forces at low KC. Figure 7 shows the in-line and transverse force coefficients and the cylinder velocity (non-dimensionalized by U∞) for one period of cylinder oscillation. There is about 54ophase shift when comparing the in-line force coefficient with the cylinder velocity. Both maximum in-line force coefficient and phase shift agree very well with the numerical results from Dütsch et al.[9]. Hence, the transverse coefficient is equal to zero, indicating a symmetrical flow patterns at low KC. By following Tatsuno and Bearman[7], the parameter set of the present investigation (Re=100 andKC=5) correspond to regime A. This flow regime is stable, symmetric and is characterized by a periodic vortex shedding. Therefore, the transverse coefficient as function of the non-dimensional time is equal to zero, reflected a symmetric pattern of vortical flow formation (see Fig.7). The process of the vortex formation is illustrated by the pressure and vorticity isolines in Fig.8 during the forward and backward motion of the oscillating cylinder. As the-oscillating cylinder moved in the forward direction, at the front of the cylinder an upper and lower boundary layer flows are developed, which are separated at the same upper and lower positions on the cylinder wall. The separating flow produces two counter rotating vortices of apparently the same magnitude of strength, and hence resulting in the same vortex shape. On the upper side of the cylinder a clockwise rotating vortex r emains attached to the cylinder and on the lower side, there is a counterclockwise vortex. In addition, the backward motion of the cylinder caused a splitting of the vortex pair, which was produced by the forward motion and there is inversing in the vorticity sign. The symmetrical flow is also indicated by the velocity fields and streamlines for three times of the cylinder motion, shown in Fig.9.

    2.3 In-line oscillation of diamond prism

    In this section, the flow induced by an oscillating diamond prism in fluid at rest is considered. The numerical simulation was conducted in the same computational domain shown in Fig.1(b) and the grid refinement, used for this case, near the body surface is shown in Fig.2(b). The diamond prism of diameter D=0.01 m is allowed to oscillate only in the longitudinal direction with the same cylinder vibrating velocity.

    Fig.9 Velocity vectors and streamlines in the vicinty of the circu lar cylinder atRe=100 and KC=5

    Fig.10 Length of the separation bubble of the flow aroundat Re=100 and KC=5

    To get a quantitative check of the flow field property, the length of the recirculation zone for the oscillating diamond prism and cylinder, defined by the dista nce from its basis to th e saddle point related to the two contra rotating vortex zone in the near wake, is plotted in Fig.10 as a function of time. This figure shows that the length of the recirculation of the two bodies shape increase almost linearly. However, for a fixed time, it can be seen that the diamond prism increases slightly the length of the recirculation, as compared with that due to the cylinder.

    Fig.11 In-line force coefficient as function of the non-dimensional time

    The in-line force coefficient on the oscillating diamond prism and the cylinder is shown in Fig.11. The two in-line force coefficient curves are similar and nearly sinusoidal because of the domination of the inertia forces. However, the maximum in-line force coefficient on the oscillating diamond prism is greater than the oscillating cylinder. In fact, for a cylindrical shape the length of recirculation zone is smaller (see Fig.10) and streamlines remains attached to the body for longer distance. Moreover, there is about 5ophase shift when comparing the in-line force coefficient on the oscillating diamond prism with that of the oscillating cylinder.

    The numerical predictions of vorticity isolines around the oscillating diamond prism during the forward and backward motion of the oscillating diamond prism are shown in Fig.12. This figure shows a symmetric pair of vortices are formed from the movement of the diamond prism and they remain attached to the leeward face of the diamond prism indicate a symmetrical flow about the line of diamond prism motion.

    3. Conclusions

    In this study, the flow around an oscillating circular cylinder and diamond prism has been simulated by solving the incompressible Navier-Stokes equations with the PHOENICS code. For both body shapes, the parameter set of the present investigation is Re=100 and KC=5. For oscillating cylinder, good agreement is obtained between the predicted results, experimental and numerical results available in litterature. The periodic vortex consisting of vortices withsymmetric locations around the oscillating cylinder has been well predicted. Moreover, comparison between cylinder and diamond prism show that forin the latter the maximum in-line force and the separation length increase.

    Fig.12 Vorticity isolines for an oscillating diamond prism at Re=100 and KC=5

    Finally, it has to be emphasized that the present results have proved the applicability and accuracy of the fixed-grid approach to simulate flow around an oscillating body. From the viewpoint of computational cost, this approach has an attractive advantage as it is well known that the remeshing process requires a great amount of computational time since the movinggrid was adopted.

    Also, results have shown that the hydrodynamic characteristic of oscillating bodies depend strongly on the shape of the bluff body. This work would help bette r understand the physics of the flow around sharp-edged cylinders. Also, the presented results can be a good basis for reduction of the wake instability in the sharp-edged cylinders case. Further research should be investigated the flow around an oscillating square prism at different attack angles to determine the optimum body configuration.

    [1] SWAROOP A. Design of vortex flow meter[D]. Master Thesis, Delhi, India: Indian Institute of Technology Delhi, 1990.

    [2] NORBERG C. Fluctuating lift on a circular cylinder: Review and new measurements[J]. Journal of Fluids and Structures, 2003, 17(1): 57-96.

    [3] WANG Jia-song. Flow around a circular cylinder using a finite-volume TVD scheme based on a vector transformation approach[J]. Journal of Hydrodynamics, 2010, 22(2): 221-228.

    [4] KU X., LIN J. Numerical simulation of the flows over two tandem cylinders by lattice Boltzmann method[J]. Modern Physics Letters B, 2005, 19(28-29): 1551- 1554.

    [5] ZOU Lin, LIN Yu-feng and LU Hong. Flow patterns and force characteristics of laminar flow past four cylinders in diamond arrangement[J]. Journal of Hydrodynamics, 2011, 23(1): 55-64.

    [6] GHADIRI-DEHKORDI Behzad, SARVGHADMOGHADDAM Hesam and HOURI JAFARI Hamed. Numerical simulation of flow over two circular cylinders in tandem arrangement[J]. Journal of Hydrodynamics, 2011, 23(1): 114-126.

    [7]TATSUNO M., BEARMAN P. W. A visual study of the flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers and low Stokes numbers[J]. Journal of Fluid Mechanics, 1990, 211: 157-182.

    [8]LIN J.-C., ROCKWELL D. Quantitative interpretation of vortices from a cylinder oscillating in quiescent fluid[J]. Experiments in Fluids, 1997, 23(2): 99-104.

    [9] DüTSCHH., DURST F. and BECKER S. et al. Low-Reynolds-number flow around an oscillating cylinder at low Keulegan-Carpenter numbers[J]. Journal of Fluid Mechanics, 1998, 360: 249-271.

    [10] ZHENG Z. C., ZHANG N. Frequency effects on lift and drag for flow past an oscillating cylinder[J]. Journal of Fluids and Structures, 2008, 24(3): 382-399.

    [12] SHEN L., CHAN E.-S. and LIN P. Calculation of hydrodynamic forces acting on a submerged moving

    object using immersed boundary method[J]. Compu- ters and Fluids, 2009, 38(3): 691-702.

    [13] LU X.-Y., SATO J. A numerical study of flow past a rotationally oscillating circular cylinder[J]. Journal of Fluids and Structures, 1996, 10(8): 829-849.

    [14] ZHENG W., DALTON C. Numerical prediction of force on rectangular cylinders in oscillating viscous flow[J]. Journal of Fluids and Structures, 1999, 13(2): 225-249.

    [15] BEARMAN P. W., GRAHAM J. M. R. and OBASAJU E. D. et al. The influence of corner radius on the forces experienced by cylindrical bluff bodies in oscillatory flow[J]. Applied Ocean Research, 1984, 6(2): 83-89.

    [16] TEZDUYAR T. E., BEHR M. and LIOU J. A new strategy for finite element computations involving moving boundaries and interfaces–The deforming-spatialdomain/space-time procedure[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 339-351.

    10.1016/S1001-6058(11)60302-8

    * Biography: GHOZLANI Belgacem (1982-), Male, Ph. D. Candidate, Physics Instructor

    18禁观看日本| 美女视频免费永久观看网站| 中文字幕最新亚洲高清| 国产免费视频播放在线视频| av天堂久久9| 99精品在免费线老司机午夜| 50天的宝宝边吃奶边哭怎么回事| 咕卡用的链子| 日韩中文字幕欧美一区二区| 日本五十路高清| 美女午夜性视频免费| 国产伦理片在线播放av一区| 日韩视频一区二区在线观看| 最新的欧美精品一区二区| 亚洲人成伊人成综合网2020| 久久久国产一区二区| 制服诱惑二区| 国产三级黄色录像| 午夜福利,免费看| 国产在线免费精品| 午夜福利在线观看吧| 国产av又大| 亚洲成国产人片在线观看| 国产高清videossex| 热re99久久国产66热| 亚洲自偷自拍图片 自拍| 在线十欧美十亚洲十日本专区| 亚洲欧美精品综合一区二区三区| 老司机在亚洲福利影院| 一个人免费看片子| 国产欧美亚洲国产| av有码第一页| 99riav亚洲国产免费| 亚洲国产av新网站| 久久久久久久久免费视频了| 美女国产高潮福利片在线看| 少妇 在线观看| 日韩制服丝袜自拍偷拍| av欧美777| 啦啦啦 在线观看视频| 亚洲七黄色美女视频| av超薄肉色丝袜交足视频| 欧美日韩福利视频一区二区| 欧美大码av| 欧美乱码精品一区二区三区| 精品国产亚洲在线| 天堂动漫精品| 这个男人来自地球电影免费观看| 亚洲国产中文字幕在线视频| 久久精品亚洲精品国产色婷小说| 18禁观看日本| 日本黄色日本黄色录像| 国产精品成人在线| 在线播放国产精品三级| 中文字幕高清在线视频| 一级黄色大片毛片| 9191精品国产免费久久| 精品国产乱码久久久久久男人| 色婷婷av一区二区三区视频| 国产无遮挡羞羞视频在线观看| 成人18禁高潮啪啪吃奶动态图| 午夜日韩欧美国产| 亚洲精品中文字幕在线视频| 他把我摸到了高潮在线观看 | 婷婷成人精品国产| 欧美+亚洲+日韩+国产| √禁漫天堂资源中文www| 91麻豆精品激情在线观看国产 | 国产成人欧美| 三上悠亚av全集在线观看| 国产精品香港三级国产av潘金莲| 精品国产乱码久久久久久男人| 男女边摸边吃奶| 精品亚洲成a人片在线观看| 国产麻豆69| 叶爱在线成人免费视频播放| 大香蕉久久成人网| 两人在一起打扑克的视频| 国产aⅴ精品一区二区三区波| 亚洲欧美日韩高清在线视频 | 我的亚洲天堂| 天堂俺去俺来也www色官网| 国产精品一区二区在线不卡| 亚洲熟女精品中文字幕| 老司机靠b影院| 午夜视频精品福利| 亚洲av美国av| 1024视频免费在线观看| 午夜激情久久久久久久| 一区二区三区国产精品乱码| 丰满少妇做爰视频| 中文字幕制服av| 久久亚洲精品不卡| 国产不卡av网站在线观看| 极品教师在线免费播放| 亚洲伊人久久精品综合| 两个人看的免费小视频| xxxhd国产人妻xxx| a级毛片黄视频| 夜夜骑夜夜射夜夜干| 夜夜爽天天搞| 国产男靠女视频免费网站| avwww免费| 视频区欧美日本亚洲| 天天操日日干夜夜撸| 操出白浆在线播放| 久久99热这里只频精品6学生| 50天的宝宝边吃奶边哭怎么回事| 热re99久久精品国产66热6| 欧美av亚洲av综合av国产av| 性高湖久久久久久久久免费观看| 麻豆国产av国片精品| 午夜激情久久久久久久| 桃红色精品国产亚洲av| 国产黄频视频在线观看| 久久久久精品国产欧美久久久| 精品卡一卡二卡四卡免费| 一区二区三区激情视频| 国产精品二区激情视频| 男人操女人黄网站| 91大片在线观看| 亚洲午夜精品一区,二区,三区| 嫩草影视91久久| 人人妻人人爽人人添夜夜欢视频| 高清毛片免费观看视频网站 | 国产午夜精品久久久久久| 肉色欧美久久久久久久蜜桃| 在线十欧美十亚洲十日本专区| 看免费av毛片| 成人18禁高潮啪啪吃奶动态图| 国产在线精品亚洲第一网站| 妹子高潮喷水视频| 亚洲欧美日韩另类电影网站| 日韩精品免费视频一区二区三区| 免费观看av网站的网址| 久久久久久亚洲精品国产蜜桃av| 亚洲av成人一区二区三| 三上悠亚av全集在线观看| 国产精品香港三级国产av潘金莲| 一级毛片女人18水好多| 90打野战视频偷拍视频| 啦啦啦 在线观看视频| 亚洲一区二区三区欧美精品| 夜夜夜夜夜久久久久| 一夜夜www| 一区二区av电影网| 免费高清在线观看日韩| 电影成人av| 国产午夜精品久久久久久| 最近最新中文字幕大全免费视频| 国产精品免费大片| 老司机影院毛片| 两个人免费观看高清视频| 久久狼人影院| 久久精品人人爽人人爽视色| 亚洲性夜色夜夜综合| 视频在线观看一区二区三区| 免费看十八禁软件| 国产男女内射视频| 色老头精品视频在线观看| 国产精品久久久av美女十八| av超薄肉色丝袜交足视频| 熟女少妇亚洲综合色aaa.| 又黄又粗又硬又大视频| 波多野结衣av一区二区av| 俄罗斯特黄特色一大片| 亚洲国产欧美在线一区| 王馨瑶露胸无遮挡在线观看| 大型黄色视频在线免费观看| 色94色欧美一区二区| 国产熟女午夜一区二区三区| 久久99热这里只频精品6学生| 欧美日韩黄片免| 亚洲男人天堂网一区| 国产精品偷伦视频观看了| 色尼玛亚洲综合影院| 手机成人av网站| 日韩视频在线欧美| 久久精品91无色码中文字幕| 国产成人av激情在线播放| 热re99久久精品国产66热6| 深夜精品福利| 人人妻人人澡人人看| 亚洲精品av麻豆狂野| 蜜桃国产av成人99| 国产在线视频一区二区| 亚洲五月婷婷丁香| 欧美日韩福利视频一区二区| 宅男免费午夜| 搡老岳熟女国产| 欧美人与性动交α欧美软件| 午夜两性在线视频| 国产精品免费一区二区三区在线 | 国精品久久久久久国模美| 亚洲精品在线美女| 亚洲精品一二三| 久久天躁狠狠躁夜夜2o2o| 亚洲欧洲日产国产| 精品国产亚洲在线| 岛国毛片在线播放| 日本vs欧美在线观看视频| 成年版毛片免费区| 黑丝袜美女国产一区| av一本久久久久| 亚洲 国产 在线| 男女下面插进去视频免费观看| 午夜免费鲁丝| 久久亚洲精品不卡| 国产成人欧美在线观看 | 久久精品国产亚洲av香蕉五月 | 操美女的视频在线观看| 高清视频免费观看一区二区| 午夜精品国产一区二区电影| 亚洲少妇的诱惑av| 91麻豆精品激情在线观看国产 | 国产主播在线观看一区二区| 天天影视国产精品| 天天添夜夜摸| 久久久久国产一级毛片高清牌| 亚洲va日本ⅴa欧美va伊人久久| 国产精品影院久久| av网站免费在线观看视频| 少妇的丰满在线观看| 久久精品亚洲熟妇少妇任你| 精品一区二区三卡| 香蕉丝袜av| 亚洲免费av在线视频| 色播在线永久视频| 亚洲五月色婷婷综合| 久久国产精品大桥未久av| 国产在视频线精品| 精品欧美一区二区三区在线| 人人妻人人添人人爽欧美一区卜| 亚洲欧美一区二区三区久久| 午夜激情av网站| 精品亚洲成国产av| 久久精品国产亚洲av高清一级| 黑人猛操日本美女一级片| 国产精品久久久久久精品电影小说| 久久亚洲精品不卡| 男人操女人黄网站| 久久精品亚洲精品国产色婷小说| 日韩视频在线欧美| 亚洲熟女精品中文字幕| 久久精品亚洲精品国产色婷小说| 深夜精品福利| 黄色片一级片一级黄色片| 天天躁日日躁夜夜躁夜夜| 精品一区二区三卡| 欧美乱妇无乱码| 国产精品 欧美亚洲| 久久久久视频综合| 伊人久久大香线蕉亚洲五| 亚洲三区欧美一区| 91精品国产国语对白视频| 高清欧美精品videossex| 欧美性长视频在线观看| 新久久久久国产一级毛片| a级片在线免费高清观看视频| 男女床上黄色一级片免费看| 亚洲中文av在线| 久久天躁狠狠躁夜夜2o2o| 亚洲免费av在线视频| 国产亚洲精品一区二区www | 免费不卡黄色视频| av国产精品久久久久影院| 中文亚洲av片在线观看爽 | 一本—道久久a久久精品蜜桃钙片| 波多野结衣一区麻豆| 亚洲精品久久成人aⅴ小说| 丁香六月欧美| 啦啦啦在线免费观看视频4| 国产精品99久久99久久久不卡| 大型黄色视频在线免费观看| 亚洲成人国产一区在线观看| 亚洲七黄色美女视频| 国产精品免费大片| 999精品在线视频| 性高湖久久久久久久久免费观看| 免费不卡黄色视频| a级毛片黄视频| 99精品欧美一区二区三区四区| 一进一出抽搐动态| 精品国产国语对白av| 丁香六月天网| 中文欧美无线码| 午夜福利视频精品| 一区二区日韩欧美中文字幕| 免费观看a级毛片全部| 丰满少妇做爰视频| 精品一区二区三卡| 美女主播在线视频| 香蕉久久夜色| www.999成人在线观看| 99香蕉大伊视频| av不卡在线播放| 亚洲伊人色综图| 美女午夜性视频免费| 法律面前人人平等表现在哪些方面| 两性夫妻黄色片| 国产男女超爽视频在线观看| avwww免费| 丝袜美腿诱惑在线| 亚洲色图 男人天堂 中文字幕| 国产成人啪精品午夜网站| 精品国产国语对白av| 精品少妇一区二区三区视频日本电影| 国产精品二区激情视频| 国产单亲对白刺激| 国产精品一区二区精品视频观看| 成年动漫av网址| 亚洲色图 男人天堂 中文字幕| 午夜福利视频精品| 成年动漫av网址| 波多野结衣一区麻豆| 咕卡用的链子| 精品一品国产午夜福利视频| 99久久国产精品久久久| 热99国产精品久久久久久7| 黄片小视频在线播放| 欧美日韩福利视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 9热在线视频观看99| 亚洲男人天堂网一区| 操美女的视频在线观看| 欧美精品亚洲一区二区| 久久亚洲真实| 一进一出好大好爽视频| 国产成人欧美在线观看 | 亚洲中文av在线| xxxhd国产人妻xxx| 黄色视频不卡| 91精品国产国语对白视频| 精品人妻熟女毛片av久久网站| 亚洲欧洲精品一区二区精品久久久| 国产淫语在线视频| 亚洲avbb在线观看| 国产av一区二区精品久久| 亚洲精品乱久久久久久| 少妇精品久久久久久久| 精品久久蜜臀av无| av在线播放免费不卡| 一本色道久久久久久精品综合| 天天躁夜夜躁狠狠躁躁| 热99re8久久精品国产| 国产欧美日韩一区二区三区在线| 三级毛片av免费| 午夜精品国产一区二区电影| 久久久精品国产亚洲av高清涩受| 亚洲伊人色综图| 亚洲一卡2卡3卡4卡5卡精品中文| 一本大道久久a久久精品| 在线永久观看黄色视频| 免费看十八禁软件| 亚洲免费av在线视频| 久久精品亚洲熟妇少妇任你| 亚洲熟女毛片儿| avwww免费| 18禁黄网站禁片午夜丰满| 国产精品99久久99久久久不卡| av视频免费观看在线观看| 水蜜桃什么品种好| 亚洲欧美激情在线| 1024香蕉在线观看| 99精品久久久久人妻精品| 9191精品国产免费久久| 91麻豆精品激情在线观看国产 | 亚洲国产欧美网| 在线永久观看黄色视频| 黄色丝袜av网址大全| 国产精品久久久人人做人人爽| 成人国语在线视频| 中文亚洲av片在线观看爽 | 国产男女内射视频| 国产99久久九九免费精品| 老熟妇仑乱视频hdxx| 老司机影院毛片| av片东京热男人的天堂| 国产精品影院久久| 国产免费现黄频在线看| 这个男人来自地球电影免费观看| 国产精品一区二区免费欧美| 天堂8中文在线网| 亚洲专区国产一区二区| 捣出白浆h1v1| 国产单亲对白刺激| 精品一区二区三区视频在线观看免费 | 日日夜夜操网爽| 午夜免费成人在线视频| av福利片在线| av免费在线观看网站| 曰老女人黄片| 国产av精品麻豆| av国产精品久久久久影院| 国产真人三级小视频在线观看| 免费观看a级毛片全部| 国产精品熟女久久久久浪| 黄色视频不卡| 国产片内射在线| 丁香六月天网| 中文欧美无线码| 免费在线观看视频国产中文字幕亚洲| 人人妻人人爽人人添夜夜欢视频| 可以免费在线观看a视频的电影网站| 久久久久网色| 美女高潮到喷水免费观看| 午夜久久久在线观看| 亚洲av成人不卡在线观看播放网| 久久九九热精品免费| 久久精品亚洲精品国产色婷小说| 啦啦啦 在线观看视频| 亚洲国产欧美在线一区| 亚洲专区中文字幕在线| 国产精品偷伦视频观看了| 欧美国产精品va在线观看不卡| 成年人免费黄色播放视频| 多毛熟女@视频| 丝袜喷水一区| 亚洲天堂av无毛| 老熟妇乱子伦视频在线观看| 午夜福利免费观看在线| 国产精品一区二区在线不卡| 亚洲第一av免费看| 老司机午夜十八禁免费视频| 国产精品1区2区在线观看. | 精品一品国产午夜福利视频| 亚洲国产av新网站| av免费在线观看网站| 日韩视频一区二区在线观看| 久久人妻av系列| 免费少妇av软件| 国产一区二区在线观看av| 波多野结衣一区麻豆| 又紧又爽又黄一区二区| 日韩熟女老妇一区二区性免费视频| svipshipincom国产片| 精品国产亚洲在线| 90打野战视频偷拍视频| 国产精品一区二区在线不卡| 丁香欧美五月| 最近最新中文字幕大全免费视频| 亚洲精品国产色婷婷电影| 亚洲美女黄片视频| 99精品久久久久人妻精品| 曰老女人黄片| 亚洲人成77777在线视频| 亚洲欧美日韩高清在线视频 | 丝袜人妻中文字幕| 真人做人爱边吃奶动态| 国产xxxxx性猛交| 欧美日韩福利视频一区二区| 热99国产精品久久久久久7| 国产一区二区三区在线臀色熟女 | 亚洲天堂av无毛| 亚洲中文字幕日韩| 久久人妻熟女aⅴ| 黄色丝袜av网址大全| 午夜福利视频在线观看免费| 最新的欧美精品一区二区| 欧美日韩国产mv在线观看视频| 热99久久久久精品小说推荐| netflix在线观看网站| 久久久久国内视频| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av香蕉五月 | 电影成人av| 色综合婷婷激情| 久久天堂一区二区三区四区| 亚洲成a人片在线一区二区| 妹子高潮喷水视频| av网站免费在线观看视频| 精品卡一卡二卡四卡免费| 热99久久久久精品小说推荐| 日本vs欧美在线观看视频| 下体分泌物呈黄色| 精品国产乱码久久久久久男人| 91大片在线观看| 涩涩av久久男人的天堂| 免费人妻精品一区二区三区视频| 久久 成人 亚洲| 国产精品免费一区二区三区在线 | 黄频高清免费视频| 国产一区二区 视频在线| 巨乳人妻的诱惑在线观看| 最新在线观看一区二区三区| 亚洲精品在线美女| 在线看a的网站| 国产av国产精品国产| 国产欧美日韩一区二区三| 中文字幕色久视频| 飞空精品影院首页| 国产精品 国内视频| 欧美 亚洲 国产 日韩一| a级片在线免费高清观看视频| av片东京热男人的天堂| 美女视频免费永久观看网站| 男女免费视频国产| 国产人伦9x9x在线观看| 国产日韩欧美在线精品| 国产麻豆69| 亚洲熟女毛片儿| 狠狠狠狠99中文字幕| 午夜91福利影院| 岛国毛片在线播放| 久久人妻av系列| 国产精品麻豆人妻色哟哟久久| 中文欧美无线码| 777久久人妻少妇嫩草av网站| 天堂中文最新版在线下载| 高潮久久久久久久久久久不卡| 在线观看免费视频网站a站| 日韩大片免费观看网站| 极品少妇高潮喷水抽搐| 国产精品美女特级片免费视频播放器 | 国产免费现黄频在线看| 成人影院久久| 一区二区日韩欧美中文字幕| 少妇的丰满在线观看| 国产精品影院久久| bbb黄色大片| 久久久久久久国产电影| 69精品国产乱码久久久| 欧美成人午夜精品| 男女下面插进去视频免费观看| 色婷婷久久久亚洲欧美| 中文字幕另类日韩欧美亚洲嫩草| 脱女人内裤的视频| 人妻一区二区av| 久久人人爽av亚洲精品天堂| 宅男免费午夜| 法律面前人人平等表现在哪些方面| 国产精品香港三级国产av潘金莲| 婷婷丁香在线五月| 国产xxxxx性猛交| 成年女人毛片免费观看观看9 | 怎么达到女性高潮| 国产精品免费一区二区三区在线 | 1024视频免费在线观看| 国产精品免费视频内射| 亚洲欧美一区二区三区黑人| 一本久久精品| 精品久久久久久久毛片微露脸| 99久久99久久久精品蜜桃| 人人妻人人澡人人爽人人夜夜| 窝窝影院91人妻| 性高湖久久久久久久久免费观看| 久久 成人 亚洲| 成人亚洲精品一区在线观看| 国精品久久久久久国模美| 国产三级黄色录像| 精品国内亚洲2022精品成人 | 变态另类成人亚洲欧美熟女 | 国产极品粉嫩免费观看在线| 久久久久久久国产电影| tocl精华| 婷婷成人精品国产| 免费人妻精品一区二区三区视频| 久热爱精品视频在线9| 日韩大码丰满熟妇| 亚洲欧美日韩另类电影网站| 男女之事视频高清在线观看| 精品少妇内射三级| 亚洲精品粉嫩美女一区| 国产日韩一区二区三区精品不卡| 免费在线观看完整版高清| 伦理电影免费视频| 午夜福利乱码中文字幕| 国产亚洲欧美精品永久| 色在线成人网| 国产区一区二久久| av线在线观看网站| 久久这里只有精品19| 超碰97精品在线观看| 一区在线观看完整版| 蜜桃国产av成人99| 亚洲一卡2卡3卡4卡5卡精品中文| 又紧又爽又黄一区二区| 桃红色精品国产亚洲av| 精品一区二区三区视频在线观看免费 | 十八禁人妻一区二区| 亚洲精品在线美女| 午夜福利在线观看吧| 成人永久免费在线观看视频 | av国产精品久久久久影院| 80岁老熟妇乱子伦牲交| 大码成人一级视频| 啦啦啦免费观看视频1| 色综合欧美亚洲国产小说| 久久精品熟女亚洲av麻豆精品| 法律面前人人平等表现在哪些方面| 另类亚洲欧美激情| 丰满人妻熟妇乱又伦精品不卡| 蜜桃在线观看..| 欧美大码av| 国产一卡二卡三卡精品| 91老司机精品| 日韩熟女老妇一区二区性免费视频| 大片免费播放器 马上看| 免费女性裸体啪啪无遮挡网站| 美国免费a级毛片| 男女之事视频高清在线观看| 老司机在亚洲福利影院| 三级毛片av免费| 老熟女久久久| 少妇的丰满在线观看| 国产真人三级小视频在线观看| 欧美成人免费av一区二区三区 | 热99国产精品久久久久久7| 男女下面插进去视频免费观看| 下体分泌物呈黄色| 汤姆久久久久久久影院中文字幕| 动漫黄色视频在线观看| 久久香蕉激情| 久久精品国产a三级三级三级| 99香蕉大伊视频|