• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EFFECTS OF LIQUID COMPRESSIBILITY ON RADIAL OSCILLATIONS OF GAS BUBBLES IN LIQUIDS*

    2012-08-22 08:31:57ZHANGYuningLIShengcai

    ZHANG Yu-ning, LI Sheng-cai

    School of Engineering, University of Warwick, Coventry, UK CV4 7AL, E-mail: Y.Zhang@warwick.ac.uk

    (Received November 10, 2011, Revised July 21, 2012)

    EFFECTS OF LIQUID COMPRESSIBILITY ON RADIAL OSCILLATIONS OF GAS BUBBLES IN LIQUIDS*

    ZHANG Yu-ning, LI Sheng-cai

    School of Engineering, University of Warwick, Coventry, UK CV4 7AL, E-mail: Y.Zhang@warwick.ac.uk

    (Received November 10, 2011, Revised July 21, 2012)

    For forced radial oscillations of gas bubbles in liquids, a more rigorous expression of the acoustic damping constant based on Keller?s equation is developed. Comparison with those in published papers is also made. The expression offered in this paper will improve the predictions of total damping constant in particular for high frequencies and large bubbles, i.e., large ωR0/cl(ω is the frequency of driving sound field,R0is the equilibrium bubble radius, clis the sound speed in the liquid). Examples in ultrasound imaging and acoustical oceanography are demonstrated.

    gas bubble, damping constant, liquid compressibility, natural frequency

    Introduction

    For forced gas bubble oscillations in liquids with liquid compressibility considered, expressions of acoustic damping constant and natural frequency were derived based on radiation pressure by Chapman and Plesset[1]and Prosperetti[2]and on Keller?s equation[3]by Prosperetti[4]. These expressions are currently cited and prevalent in the literature. They are also reviewed recently by Brenner et al.[5]and Coussios and Roy[6]. However, for high frequencies and large bubbles such as those in biomedical and oceanic applications, a more rigorous expression of acoustic damping constant has been derived by the authors based on Keller?s equation. The reasons for the improvements by using our expressions in those areas are discussed as well.

    1. Derivation based on Keller’s equation

    In this section, expressions for damping constants and natural frequency will be derived based on Keller?s equation. Prosperetti and Lezzi[7]proposed aone-parameter family of equations of bubble radius to the first order of bubble-wall Mach number, which treats Keller?s equation as a special case. For small oscillations considered in the present paper, expressions of acoustic damping constant and natural frequency will be the same for equation of bubble motion which falls into this one-parameter family (referring to Appendix). Here, a more appropriate expression of Keller?s equation was used[7,p.466]. Here, oscillations of spherical gas bubbles with small amplitude in infinite liquids are considered. Keller?s equation[3,7]can be written as

    wherehere R is the instantaneous bubble radius and the overdot denotes its time derivative, clis the speed of sound in the undisturbed liquid[7],ρlis the liquid density, t is the time,Pinis the pressure at the gas side of the bubble wall, σ is the surface tension,μlis the viscosity of the liquid, p0is the ambient pressure, ε is the non-dimensional amplitude of driving sound field, ω is the frequency of driving sound field.

    For comparison, the framework in Ref.[2] for thermal effects will be followed but the equation based on radiation pressure (Prad) replaced by Keller?s equation. Notations in Ref.[2] will also be retained the same such as

    Here R0is the equilibrium bubble radius,x is the non-dimensional perturbation of instantaneous bubble radius, p(R0,t ) the non-dimensional pressure deviation from equilibrium pressure,Pin,eqthe equilibrium pressure in the gas, μththe effective thermal viscosity, κ the polytropic exponent. When the acoustic wave is weak (εg1), the amplitude of the bubble oscillation is small (xg1). Substituting above relations into Eq.(1) and omitting the 2nd and higher orders ofx (or ε) result in an inhomogeneous equation for a harmonic oscillator i.e., the oscillating bubble being studied,

    where

    In Eq.(5), βtotis the total damping constant, ω0is the natural frequency. The total damping constant (βtot) is

    where

    represent the viscous, thermal and acoustic damping constants respectively. The natural frequency of the harmonic oscillator is

    Note that herelμ,thμ and liquid compressibility make contributions to natural frequency through M in Eq.(9) though these contributions are relatively small. Taking an air bubble oscillating in water as an example, M varies between 1 and 1.03 if10-2m≥R≥10-7mand 108s-1≥ω≥104s-1.

    0Forced oscillations of bubbles will enter stationary oscillations once the transient term (i.e., the complementary function or the solution for the corresponding homogenous equation) in the solution approaches to zero. For most cases of bubble oscillations, this contribution from the transient term decays quickly. For example, for a bubble of radius 1 μm driven by an external force at the frequencyω=107s-1with the non-dimensional amplitude ε=0.1, the ratio of amplitudes between the transient term and the stationary term (i.e., the particular integral for the inhomogeneous equation) reduces down to 0.1 att= 1.15 μs. Therefore, for many applications where the transient term approaches to zero quickly, the oscillation to be analyzed can be simplified as a stationary one such as appearing in the previous studies. Here, for the stationary forced oscillations driven by sound field of single frequency (ω),μthin Eq.(7) andκ in Eq.(9) can be determined by solving the bubble interior problem following the approach in Ref.[2]. Though Keller?s equation has been used in this paper to replace the equation based on the radiation pressure as used by Prosperetti[2], the resultant expressions for μthand κ are the same noticing that expressions of μthand κin Ref.[2] were determined by comparing solutions of two methods: one based on the polytropic model with effective thermal damping, the other based on solution of bubble interior.

    Here φ is a function relating to the solution of the bubble interior problem (Eqs.(16) and (17) of Ref.[2]). Note that the recent study by Zhang and Li[8]pointed out that the approximation of G1≈0 where G1is a non-dimensional parameter employed in Ref.[2] and reflects the length ratio between the mean free path and the wavelength in gas should be dropped off if G1≥10-2. As to the valid regions for the frame work of Prosperetti[2], readers are referred to Ref.[8] that categorized the bubble behavior into three different regions according to the ratios of the bubble radius to the wavelengths in gases and liquids.

    Thus,Eq.(5) reduces to

    Here ω0and βtotreduce to

    The expression for natural frequency is well cited, in which the contribution of compressibility (through M) disappears. However, the contribution of compressibility to the total damping constanttotβ does not disappear completely since theacβ term still remains.

    Furthermore, if cl→∞ (corresponding to/ cland R0/cl→0), i.e., for incompressible cases, Eq.(1) reduces to the Rayleigh-Plesset equation. And Eq.(12) reduces to

    identical to the cases where the Rayleigh-Plesset equation replaces the radiation pressure in Ref.[2]. Naturally, the acoustic damping disappears since liquid compressibility is not considered in the Rayleigh-Plesset equation.

    2. Comme nts on published expressions

    In order to compare with those published expressions, complex analysis is used in this section and Eqs.(3) and (5) become

    where

    Firstly, we discuss tho se published papers based on Keller?s equation. If we follow Prosperetti[4], dividing Eq.(13) by (1+ωR0/cl), neglecting all terms with order of c-2and using ˙x=iωx˙ and x˙= iωx[4,p.72], Eq.(13) becomes

    This is just the Eqs.(29)-(30) in Prosperetti[4]. The acoustic damping constant (ω2R0/2cl)shown in Eq.(14) is different from ours, i.e.,ω02R0/2clof Eq.(8), by noticing that ω≠ω0for no n-resonant oscillations. This also explains why the prediction of acoustic damping constant can be improved by using our approach for high frequencies and large bubbles because for those cases the decreasing ω0is further deviating from the increasing ω. Indeed, the approach employed in Ref.[4] as demonstrated above can be avoided. Instead, the expressions of damping and natural frequency can be determined directly from the coefficients of the harmonic oscillator based on the linearization of Keller?s equation. The term (1+ iωR0/cl) can still remain on the right hand sideof Eqs.(5) and (13), without using the relations of ˙x= iωx˙ and x˙=iωx. This is exactly the approach employed for the derivations of damping constants and natural frequency in Section 1. Furthermore, only for oscillations entering the stationary phase, the transient term disappears from the solution such that ˙x=iω x˙ and˙=iωx (referring to Section 1). Nevertheless, to bestrictly speaking, these two relations should not be used for the purpose of determining the expressionsof damping constants and natural frequency. Otherwise, they would have changed the coefficients of this inhomogeneous second-order equation that represent the damping constants and natural frequency of the harmonic oscillator defined by this equation (Eq.(5) or Eq.(13)). For demonstrating examples, readers are referred to the following parts of this paper. Consequently, the resultant expressions defined by Eq.(14) will deviate from the true damping constants and natural frequency.

    Now, we turn our attention to those expressions based on radia tion pressure, e.g., in Ref.[2], For more original studiesrelating to the use of radiation pressure, readers are referred to the list of references given in Ref.[2]. Then one can obtain as in Ref.[2],

    Substituting Eqs.(4) and (15) into Eq.( 16) yields

    In order to demonstrate how the expressions in those literatures were reached, the relations of˙x=iωx˙and x˙=iωx are to be employed, which will lead to variable expressions for “natural frequency” and “damping constants” as shown below.

    If both sides of Eq.(17) divided by (1+iωR0/ cl), it becomes

    The first term in Eq.(18) then is rearranged using˙= iωx˙as

    Substituting it into Eq.(18) leads to

    If all terms with order of c-2are neglected in Eq.(19), this will yield the acousticdamping constant as expressed by Eq.(27) in Ref.[1].For completeness, all terms with order of c-2are kept in the following derivations.

    Following Prosperetti[2], if the first term in Eq.(19) is further treated by using the relations of ˙x=iω x˙ and x˙=iωx, i.e.,

    Equation (19) will again become another inhomogeneous 2nd order equation withdifferent coefficients,

    This is just the equation used for determining the expressions of damping and natural frequency in Ref.[2].

    The above demonstration shows how the use of ˙x=iω x˙and x˙=iω xchanges the coefficients of the equation, resulting in various different expressions for the natural frequency and damping constants of theharmonic oscillator as appeared in the literatures such as the cont radiction between those two groups of published studies represented by Eqs.(19) and (20) respectively. It also explains why there is a difference between Prosperetti?s[4]and ours.

    3. Comparisons

    The expression of acoustic damping constant derived by us is different from those by Chapman and Plesset[1]and Prosperetti[2,4]. For natural frequency, our expression is almost identical to theirs except for Prosperetti[2]. Therefore, a comparison with Ref.[2] should be essential. The slight difference of acoustic damping between Eq.(19) and Eq.(20), i.e., (ωR0/ cl)2, is trivial and excluded from discussions. The assumption of spherical bubble (i.e., uniform pressure outside bubble when R0/λl<0.1, where λlis wavelength in liquids) limits the value of ωR0/cl(i.e., 2πR0/λl) up to 0.628, referring to Ref.[8]. Therefore, those bubbles within this range are to be considered in the following discussions.

    1(a) ω=104s-1

    1(b) ω=105s-1

    In this section, values predicted by Prosperetti[2]based on radiation pressure will be compared with ours. Forced oscillations of air bubbles in water will be considered with the same properties as in Ref.[2] if no t specified. The value of klandDgin Prosperetti[2,p.27]have typographical errors and sh ould be 0.59J/m·s·K and 0.2912 m2/s (5.9× 104erg/cm·s·K and 0.2912 cm2/s) respectively. Dgin Prosperetti[2,p.19]was defined using constant volume, which is correct. However, the value ofgD in Prosperetti[2,p.27]was using constant pressure, which should be Dg/γ (γ is specific heat ratio). In figures, “Prosperetti[2]” refers to Eq.(20) based onradiation pressure and “Present” refers to Eqs.(6)-(9) based on Keller?s equation deri- ved by us. To focus on liquid compressibility, natural frequency, acoustic and total damping constants are compared.

    Fig.1 Comparison of acoustic and total damping constants (βacand βtotrespectively) between Prosperetti?s[2]andours (present)

    Figures 1 and 2 show the comparisons of the acoustic and thetotal damping constants and the natural frequencies for ω=104s-1, 105s-1, 106s-1and 107s-1respectively. These comparisons demonstrate that the acoustic damping constants predicted by us are quite different from those in Ref.[2]. For the total damping constant and the natural frequency, our pre-

    dictions are much smaller than those by Prosperetti[2]in particular for large ωR0/clthat is the region where the ultrasound induced bubbles are currently widely used in oceanic and biomedical applications. For gas bubble oscillating in liquids, in order to limit the error of prediction within a reasonable range, our approach should be employed for predicting total damping constants and natural frequency if ωR0/clis large.

    Fig.2 Comparison of naturalfrequency between Prosperetti?s[2]and ours. The labeledvalues are ω (s-1)

    4. Application example s

    Acoustic damping and natural frequency are fund amental issues for gasbubbles oscillating in liquids. The findings presented in this paper are thus essential for many circumstances. Only a few of them are briefly mentioned here as examples. It should beemphasized that the present findings are only valid for the oscillations of spherical gas bubbles. For non-spherical bubble dynamics, more sophisticated model (e.g., the direct numerical simulation developed by Tryggvason and coworkers[9]) should be employed. For some recent progress in this subject, readers are referred to Chen et al.[10]and Zhang and Li[11].

    Typical cases in medical applications (e.g., contrast agent in diagnostic ultrasound imaging, gene therapy and drug delivery) are of bubble size 1 μm-10 μm and driving frequency 1.5 MHz-15 MHz[12], corresponding to ωR0/clranging between 0.00628 and 0.628. In this region, the difference between ours and published studies is noticeably large. Currently, problems with even higher frequencies (up to 30 MHz or above), e.g., ultrasonic wave propagation in dilute bubbly mixture[13], are of interest. For more examples, readers are referred to our earlier paper[8]as well as other recent publications[14].

    The other example is the absorption and extinction cross sections (aσ andeσ) of forced bubble oscillations, which were determined by Medwin and Clay[15]as

    wheresσ is the acoustical scattering cross section. Therefore, the prediction of acoustic damping will significantly affect the values of σ and σ.

    a

    e

    5. Conclusion

    For forced gas bubble oscillations in liquids, a more rigorous expression of acoustic damping has been developed based on Keller?s equation. The difference between the published literatures and ours is mainly owing to the use of the relations ˙x=iωx˙and x˙=iωx. This correction to the published papers is essential when high frequencies and large bubbles (i.e., largeωR0/cl) are involved such as those acoustic bubbles in biomedical and oceanic applications.

    Acknowledgements

    This work was supported by the UK EPSRC WIMRC (Grant No. RESCM 9219) the EPSRC WIMRCPh.D. studentship (Grant No. RESCM 9217).

    [1]CHAPMAN R. B., PLESSET M. S. Thermal effects in the free oscillations of gas bubbles[J]. Journal of Basic Engineering, 1971, 94: 142-145.

    [2] PROSPERETTI A. Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids[J]. Journal of the Acoustical Society of America, 1977, 61(1): 17-27.

    [3] KELLER J. B., MIKSIS M. Bubble oscillations of large amplitude[J]. Journal of the Acoustical Society of America, 1980, 68(2): 628-633.

    [4]PROSPERETTI A. Bubble phenomena in sound fields: Part one[J]. Ultrasonics, 1984, 22(2): 69-77.

    [5] BRENNER M. P., HILGENFELDT S. and LOHSE D. Single-bubble sonoluminescence[J]. Reviews of Modem Physics, 2002, 74(2): 425-484.

    [6] COUSSIOS C. C., ROY R. A. Applications of acoustics and cavitation to non-invasive therapy and drug delivery[J]. Annual Review of Fluid Mechanics, 2008, 40: 395-420.

    [7] PROSPERETTI A., LEZZI A. Bubble dynamics in a compressible liquid. Part 1. First-order theory[J]. Journal of Fluid Mechanics, 1986, 168: 457-478.

    [8]ZHANG Y., LI S. C. Notes on radial oscillations of gas bubbles in liquids: Thermal effects[J]. Journal of the Acoustical Society of America, 2010, 128(5): EL306-EL309.

    [9]TRYGGVASON G., SCARDOVELLI R. and ZALESKI S. Direct numerical simulations of gas-liquid multiphase flows[M]. New York: Cambridge University Press, 2011, 133-160.

    [10] CHEN Hui, LI Sheng-cai and ZUO Zhi-ga ng et al. Direct numerical simuiation of bubble-cluster?s dyna-mic characteristics[J]. Journal of Hydrodynamics, 2008, 20(6): 689-695.

    [11] ZHANG Yu-ning and LI Sheng-cai. Direct numerical simulation of collective bubble behavior[J]. Journal of Hydrodynamics, 2010, 22(5 Suppl.): 827-831.

    [12]SZABO T. L. Diagnostic ultrasound imaging: Inside out[M]. London: Elsevier Academic Press, 2004, 455-488.

    [13]ANDO K., COLONIUS T. and BRENNEN C. E. Improvement of acoustic theory of ultrasonic waves in dilute bubbly liquids[J]. Journal of the Acoustical Society of America, 2009, 126(3): EL69-EL74.

    [14]MIRI A. K., MITRI F. G. Acoustic radiation force on a spherical contrast agent shell near a vessel porous walltheory[J]. Ultrasound Medicine and Biology, 2011, 37: 301-311.

    [15] MEDWIN H., CLAY C. S. Fundamentals of acoustical oceanography[M]. San Diego, USA: Academic Press, 1998, 302-304.

    Appendix

    In this appendix, the influences of one-parameter familyequation on the expressions of damping and natural frequency for the radial oscillations of gas bubbles in liquids are discussed. Prosperetti and Lezzi[7]proposed the followingone-parameterfamily equation (general Keller-Miksis equation) if written in terms of pressure

    whereλis an arbitrary parameter which is of smaller order of1/Ma(Mais the bubble wall Machnumber)[7,p.466andEq.(4.3)], pext(R,t) andps(t) are given by Eqs.(2) and (3) respectively. If λ=0, Eq.(A1) reduces to Keller?s equation (i.e., Eq.(1)).

    The procedure of derivations of damping constants and natural frequency for linear gas bubble oscillations in liquids based on Eq.(A1) are exactly the same as those based on Keller?s equation. Here, we will only keeps terms up to second order of ε (or x). Substituting R=R0(1+x)into terms related withλ in Eq.(A1), we obtain

    From Eqs.(A2)-(A4), it is clearly seen that terms involvingλin Eq.(A1) are all of the second or higher orderof ε (orx). Therefore, for linear oscillations (up to the 1st order ofx), all the equations falling in this one-parameter family equation of bubble motion will give the same expressions for damping constants and natural frequency as those shown in this paper.

    10.1016/S1001-6058(11)60301-6

    * Biography: ZHANG Yu-ning (1983-), Male, Ph. D. Candidate

    LI Sheng-cai,

    E-mail: S.Li@warwick.ac.uk

    日本av免费视频播放| 久久青草综合色| 色婷婷久久久亚洲欧美| 久热久热在线精品观看| 久热这里只有精品99| av在线app专区| 久久久久久人妻| 亚洲综合精品二区| 国产精品福利在线免费观看| 亚洲av不卡在线观看| 天堂8中文在线网| 亚洲av中文av极速乱| 欧美变态另类bdsm刘玥| 一级毛片我不卡| 在线观看三级黄色| 免费观看在线日韩| 日韩欧美一区视频在线观看 | 插逼视频在线观看| 免费黄频网站在线观看国产| 亚洲精品日本国产第一区| 精品久久国产蜜桃| 黄片无遮挡物在线观看| 亚洲欧美日韩东京热| 嫩草影院新地址| 久久精品国产亚洲av涩爱| 国产成人a区在线观看| 亚洲精品一二三| h视频一区二区三区| 久久毛片免费看一区二区三区| 久久久欧美国产精品| 国产在线男女| 岛国毛片在线播放| 少妇的逼水好多| 中文资源天堂在线| 在线精品无人区一区二区三 | 高清日韩中文字幕在线| 免费不卡的大黄色大毛片视频在线观看| 大码成人一级视频| 国产亚洲欧美精品永久| 激情 狠狠 欧美| 国产综合精华液| 国产淫片久久久久久久久| 美女高潮的动态| 国产黄色视频一区二区在线观看| 国产久久久一区二区三区| 久久av网站| 永久免费av网站大全| 高清日韩中文字幕在线| 日本欧美国产在线视频| 亚洲丝袜综合中文字幕| 日韩av不卡免费在线播放| 爱豆传媒免费全集在线观看| 在现免费观看毛片| 久久婷婷青草| 国产精品国产三级专区第一集| 高清av免费在线| 日本一二三区视频观看| 纯流量卡能插随身wifi吗| 97精品久久久久久久久久精品| 国产免费福利视频在线观看| 国产女主播在线喷水免费视频网站| 一个人看的www免费观看视频| 亚洲成色77777| 欧美激情国产日韩精品一区| 少妇的逼水好多| 大又大粗又爽又黄少妇毛片口| av视频免费观看在线观看| 人人妻人人爽人人添夜夜欢视频 | 国产精品99久久99久久久不卡 | 亚洲久久久国产精品| .国产精品久久| 高清黄色对白视频在线免费看 | 黑人高潮一二区| 欧美性感艳星| 91在线精品国自产拍蜜月| 久久韩国三级中文字幕| 大香蕉97超碰在线| 性色av一级| 欧美 日韩 精品 国产| 成年av动漫网址| 高清在线视频一区二区三区| 亚洲成人一二三区av| 一区二区三区乱码不卡18| 黄色怎么调成土黄色| 国产一区亚洲一区在线观看| 五月伊人婷婷丁香| 男女啪啪激烈高潮av片| 日韩av不卡免费在线播放| 欧美激情极品国产一区二区三区 | 免费观看性生交大片5| 一级毛片久久久久久久久女| 久久韩国三级中文字幕| 18禁裸乳无遮挡免费网站照片| 亚洲欧美中文字幕日韩二区| 精品人妻熟女av久视频| 性色av一级| 亚洲国产成人一精品久久久| 精品人妻一区二区三区麻豆| 亚洲av成人精品一区久久| 男女无遮挡免费网站观看| 免费看不卡的av| 日韩,欧美,国产一区二区三区| 成人免费观看视频高清| 九九在线视频观看精品| 亚洲精品乱码久久久久久按摩| 亚洲精品日韩在线中文字幕| av免费观看日本| 国产精品秋霞免费鲁丝片| 国产成人91sexporn| 国产精品国产三级国产av玫瑰| 精品午夜福利在线看| 久久人人爽人人爽人人片va| 国产高清国产精品国产三级 | 精品亚洲成国产av| 久久久久久久亚洲中文字幕| 久久毛片免费看一区二区三区| 亚洲欧美日韩东京热| 成人亚洲欧美一区二区av| 在线天堂最新版资源| 国产黄色免费在线视频| 精品人妻视频免费看| 十分钟在线观看高清视频www | 日韩av不卡免费在线播放| 久久99蜜桃精品久久| 精品国产三级普通话版| 亚州av有码| 久久久精品94久久精品| 狠狠精品人妻久久久久久综合| 久久精品夜色国产| 91精品国产九色| 久久久久久久国产电影| 大又大粗又爽又黄少妇毛片口| 国产在线男女| www.av在线官网国产| 亚洲成人av在线免费| 三级国产精品欧美在线观看| 午夜日本视频在线| 哪个播放器可以免费观看大片| 成人国产av品久久久| 黄色欧美视频在线观看| 91精品一卡2卡3卡4卡| 波野结衣二区三区在线| 欧美精品一区二区大全| 日本午夜av视频| 七月丁香在线播放| 狂野欧美激情性xxxx在线观看| 久久青草综合色| 亚洲欧美中文字幕日韩二区| 中文字幕制服av| 欧美一级a爱片免费观看看| 亚洲av中文字字幕乱码综合| 看免费成人av毛片| 全区人妻精品视频| 91aial.com中文字幕在线观看| 中国三级夫妇交换| 多毛熟女@视频| 天美传媒精品一区二区| 国产在视频线精品| 色视频www国产| 日日啪夜夜爽| 新久久久久国产一级毛片| 免费看不卡的av| 国产男女超爽视频在线观看| 2022亚洲国产成人精品| 美女主播在线视频| 精品一区在线观看国产| 校园人妻丝袜中文字幕| 日韩亚洲欧美综合| 欧美xxxx性猛交bbbb| 国产精品久久久久久精品古装| 亚洲精品乱码久久久v下载方式| 青春草视频在线免费观看| 免费看光身美女| 久久久久久九九精品二区国产| 国产精品成人在线| 国产一区亚洲一区在线观看| 人人妻人人添人人爽欧美一区卜 | 青春草国产在线视频| 久久久久国产精品人妻一区二区| 高清毛片免费看| 另类亚洲欧美激情| 欧美日韩综合久久久久久| 久久精品人妻少妇| 搡女人真爽免费视频火全软件| 成人影院久久| 春色校园在线视频观看| 极品教师在线视频| 亚洲三级黄色毛片| 网址你懂的国产日韩在线| 亚洲精品自拍成人| 国产成人精品婷婷| 国产高清有码在线观看视频| 亚洲欧美日韩另类电影网站 | 青春草视频在线免费观看| 成人免费观看视频高清| 国产永久视频网站| 国产成人免费观看mmmm| 校园人妻丝袜中文字幕| 亚洲欧美一区二区三区国产| 亚洲精品一区蜜桃| 国产探花极品一区二区| 寂寞人妻少妇视频99o| 亚洲美女视频黄频| 久久人人爽av亚洲精品天堂 | 女性生殖器流出的白浆| 精品人妻偷拍中文字幕| 少妇人妻 视频| 免费观看性生交大片5| 能在线免费看毛片的网站| 亚洲人成网站在线播| 欧美老熟妇乱子伦牲交| 肉色欧美久久久久久久蜜桃| 日本色播在线视频| 我要看日韩黄色一级片| 久久久久网色| 国产深夜福利视频在线观看| 亚洲在久久综合| 亚洲一区二区三区欧美精品| 亚洲精品色激情综合| 大片免费播放器 马上看| 久久久久久久大尺度免费视频| 人人妻人人看人人澡| 在线看a的网站| 美女国产视频在线观看| 国产免费视频播放在线视频| 三级国产精品片| 欧美变态另类bdsm刘玥| 熟女电影av网| 日韩精品有码人妻一区| 卡戴珊不雅视频在线播放| 51国产日韩欧美| 午夜精品国产一区二区电影| 久久这里有精品视频免费| 日本免费在线观看一区| 亚洲国产毛片av蜜桃av| 夫妻性生交免费视频一级片| 欧美日韩精品成人综合77777| 久久综合国产亚洲精品| 青春草国产在线视频| 国产又色又爽无遮挡免| 日韩av不卡免费在线播放| 日本猛色少妇xxxxx猛交久久| 日本欧美国产在线视频| 久久久久久久久久久丰满| 国产黄片美女视频| 搡女人真爽免费视频火全软件| 嫩草影院入口| 亚洲国产精品国产精品| 99精国产麻豆久久婷婷| 精品久久久久久电影网| videossex国产| 伊人久久国产一区二区| 肉色欧美久久久久久久蜜桃| 国产男人的电影天堂91| 天堂俺去俺来也www色官网| 国产精品久久久久久久电影| 男男h啪啪无遮挡| 小蜜桃在线观看免费完整版高清| 亚洲av福利一区| 欧美 日韩 精品 国产| 22中文网久久字幕| 我要看黄色一级片免费的| 亚洲最大成人中文| 偷拍熟女少妇极品色| 日韩视频在线欧美| 久久久久久久久大av| 婷婷色av中文字幕| 亚洲精品自拍成人| a 毛片基地| 国产高清不卡午夜福利| 亚洲色图综合在线观看| 尾随美女入室| 国产视频首页在线观看| 男女无遮挡免费网站观看| 亚洲国产av新网站| 纯流量卡能插随身wifi吗| 亚洲精品日韩在线中文字幕| 能在线免费看毛片的网站| 99国产精品免费福利视频| 九色成人免费人妻av| 建设人人有责人人尽责人人享有的 | 最近2019中文字幕mv第一页| 欧美97在线视频| 男女边摸边吃奶| 青春草亚洲视频在线观看| 国产老妇伦熟女老妇高清| 久热这里只有精品99| 亚洲精品自拍成人| 国产精品欧美亚洲77777| 99热6这里只有精品| 99国产精品免费福利视频| 最新中文字幕久久久久| 毛片一级片免费看久久久久| 中文在线观看免费www的网站| 一级毛片黄色毛片免费观看视频| xxx大片免费视频| 国产黄色视频一区二区在线观看| 91精品一卡2卡3卡4卡| 国产 一区精品| 欧美zozozo另类| videos熟女内射| 全区人妻精品视频| 国产亚洲最大av| 国产精品久久久久久精品古装| 国产av一区二区精品久久 | 婷婷色av中文字幕| 亚洲,欧美,日韩| 国产成人免费观看mmmm| 亚洲av在线观看美女高潮| 日本午夜av视频| 建设人人有责人人尽责人人享有的 | 亚洲av.av天堂| 特大巨黑吊av在线直播| 亚洲美女黄色视频免费看| 精品人妻熟女av久视频| 国产女主播在线喷水免费视频网站| 成人无遮挡网站| 亚洲最大成人中文| 一区二区三区四区激情视频| 亚洲最大成人中文| av在线播放精品| 在线播放无遮挡| 九色成人免费人妻av| 丝袜喷水一区| 18禁裸乳无遮挡动漫免费视频| 18禁动态无遮挡网站| 欧美亚洲 丝袜 人妻 在线| 男人爽女人下面视频在线观看| 国产av码专区亚洲av| 啦啦啦视频在线资源免费观看| 欧美+日韩+精品| av一本久久久久| h视频一区二区三区| 亚洲自偷自拍三级| 成人综合一区亚洲| 自拍欧美九色日韩亚洲蝌蚪91 | 一级毛片黄色毛片免费观看视频| 天天躁日日操中文字幕| 波野结衣二区三区在线| 国产免费一区二区三区四区乱码| 黄色日韩在线| 亚洲婷婷狠狠爱综合网| 久久国产精品大桥未久av | 欧美成人午夜免费资源| 国产一区二区在线观看日韩| 欧美极品一区二区三区四区| 3wmmmm亚洲av在线观看| 亚洲精品中文字幕在线视频 | 精品久久久久久电影网| 高清在线视频一区二区三区| 高清日韩中文字幕在线| tube8黄色片| av免费在线看不卡| av在线老鸭窝| 午夜激情久久久久久久| 成人一区二区视频在线观看| 一级a做视频免费观看| 国产色婷婷99| 免费久久久久久久精品成人欧美视频 | 免费av不卡在线播放| 在线观看免费高清a一片| 九草在线视频观看| av卡一久久| 国产黄片美女视频| 最后的刺客免费高清国语| .国产精品久久| 99久久综合免费| 亚洲成色77777| 亚洲成人手机| 全区人妻精品视频| 久久久久网色| 日韩一本色道免费dvd| 水蜜桃什么品种好| 久久热精品热| 国产乱来视频区| 免费人妻精品一区二区三区视频| 亚洲av综合色区一区| 欧美精品一区二区免费开放| 如何舔出高潮| 亚洲国产av新网站| av在线老鸭窝| 国产男女内射视频| 亚洲精华国产精华液的使用体验| 一级二级三级毛片免费看| 日韩在线高清观看一区二区三区| 少妇裸体淫交视频免费看高清| 日韩在线高清观看一区二区三区| 观看美女的网站| 99国产精品免费福利视频| 午夜免费鲁丝| 五月开心婷婷网| 青青草视频在线视频观看| 亚洲人成网站高清观看| 亚洲内射少妇av| 日韩一区二区视频免费看| 97在线视频观看| 人人妻人人看人人澡| 国产高清国产精品国产三级 | 国产免费一区二区三区四区乱码| 夜夜看夜夜爽夜夜摸| 最近手机中文字幕大全| 两个人的视频大全免费| 亚洲人与动物交配视频| 亚洲欧美精品专区久久| 中文字幕免费在线视频6| 精品国产乱码久久久久久小说| 精品99又大又爽又粗少妇毛片| 少妇人妻 视频| 国产乱人偷精品视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲熟女精品中文字幕| 亚洲美女搞黄在线观看| 99久久中文字幕三级久久日本| 免费黄频网站在线观看国产| 国产精品免费大片| 日日摸夜夜添夜夜添av毛片| 国精品久久久久久国模美| 欧美激情极品国产一区二区三区 | 身体一侧抽搐| 午夜激情福利司机影院| 黄片无遮挡物在线观看| 蜜桃久久精品国产亚洲av| 亚洲综合色惰| 美女中出高潮动态图| 夫妻午夜视频| 在线精品无人区一区二区三 | 身体一侧抽搐| 秋霞在线观看毛片| 美女主播在线视频| 中文在线观看免费www的网站| 国产精品人妻久久久影院| 一级毛片aaaaaa免费看小| 国产视频首页在线观看| 国产精品久久久久久精品古装| 91aial.com中文字幕在线观看| 如何舔出高潮| 亚洲av男天堂| 久久这里有精品视频免费| 久久影院123| 亚洲国产日韩一区二区| 一级毛片我不卡| 高清黄色对白视频在线免费看 | 午夜免费男女啪啪视频观看| 国产黄片视频在线免费观看| 大陆偷拍与自拍| 在线 av 中文字幕| 自拍偷自拍亚洲精品老妇| 18禁动态无遮挡网站| www.色视频.com| 黄色欧美视频在线观看| 亚洲av电影在线观看一区二区三区| 国产一区二区三区综合在线观看 | 亚洲精品aⅴ在线观看| 少妇 在线观看| 国产 一区精品| 亚洲图色成人| 自拍欧美九色日韩亚洲蝌蚪91 | 国产极品天堂在线| 亚洲国产成人一精品久久久| 亚洲精品乱久久久久久| 免费看不卡的av| 啦啦啦中文免费视频观看日本| 国产黄片美女视频| 久久久久网色| 亚洲欧美日韩无卡精品| av在线app专区| 亚洲内射少妇av| 国产毛片在线视频| 国产爱豆传媒在线观看| 麻豆乱淫一区二区| 26uuu在线亚洲综合色| 免费黄频网站在线观看国产| 男女国产视频网站| 少妇高潮的动态图| 女性被躁到高潮视频| 2022亚洲国产成人精品| 精品99又大又爽又粗少妇毛片| 最近最新中文字幕免费大全7| 男人添女人高潮全过程视频| 欧美性感艳星| 欧美日韩综合久久久久久| 亚洲欧美中文字幕日韩二区| 街头女战士在线观看网站| 国产91av在线免费观看| 又粗又硬又长又爽又黄的视频| 欧美日本视频| 在线观看免费高清a一片| 亚洲欧美精品自产自拍| 色视频www国产| 亚洲伊人久久精品综合| a级一级毛片免费在线观看| 校园人妻丝袜中文字幕| 日本免费在线观看一区| 久久久久性生活片| 国产伦精品一区二区三区视频9| 亚洲三级黄色毛片| 日本av手机在线免费观看| 夫妻性生交免费视频一级片| 国产黄色视频一区二区在线观看| 少妇被粗大猛烈的视频| 精品一区二区三卡| 一级毛片久久久久久久久女| 国产av码专区亚洲av| 免费黄色在线免费观看| 一区二区av电影网| 人妻 亚洲 视频| 久久6这里有精品| 精品熟女少妇av免费看| 国产69精品久久久久777片| 亚洲国产精品专区欧美| 人人妻人人看人人澡| 午夜福利视频精品| 国内少妇人妻偷人精品xxx网站| 久热久热在线精品观看| 在线观看三级黄色| 十八禁网站网址无遮挡 | 国产日韩欧美在线精品| 欧美一区二区亚洲| 一级毛片黄色毛片免费观看视频| 久久久久性生活片| 国产成人免费观看mmmm| 日韩在线高清观看一区二区三区| 欧美成人一区二区免费高清观看| 亚洲精品乱码久久久久久按摩| 成年av动漫网址| 国产精品免费大片| 亚洲中文av在线| 下体分泌物呈黄色| 精品久久久久久久久亚洲| 一级爰片在线观看| 精品少妇久久久久久888优播| 免费观看av网站的网址| 亚洲成人一二三区av| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美成人精品一区二区| 午夜老司机福利剧场| freevideosex欧美| 国产日韩欧美亚洲二区| 久久ye,这里只有精品| 欧美最新免费一区二区三区| 秋霞在线观看毛片| 日日撸夜夜添| 91狼人影院| 高清欧美精品videossex| 亚洲美女黄色视频免费看| 少妇精品久久久久久久| 久久综合国产亚洲精品| 亚洲第一区二区三区不卡| 国产精品久久久久久精品古装| 黑人高潮一二区| 精品少妇黑人巨大在线播放| 男人和女人高潮做爰伦理| 亚洲精品日韩av片在线观看| 男人添女人高潮全过程视频| 日日摸夜夜添夜夜爱| 中文天堂在线官网| 成年av动漫网址| 欧美另类一区| 成人亚洲欧美一区二区av| 国产乱来视频区| 一本—道久久a久久精品蜜桃钙片| 国产毛片在线视频| 一本一本综合久久| 日韩中字成人| 80岁老熟妇乱子伦牲交| 欧美日韩国产mv在线观看视频 | 亚洲美女搞黄在线观看| 91久久精品国产一区二区三区| 色网站视频免费| 色视频www国产| 亚洲国产欧美在线一区| 大香蕉久久网| 日韩 亚洲 欧美在线| 亚洲欧洲国产日韩| 亚洲精华国产精华液的使用体验| 国产在视频线精品| 日本色播在线视频| a级一级毛片免费在线观看| 久久午夜福利片| 久久99精品国语久久久| 99热这里只有是精品50| 国精品久久久久久国模美| 久久久亚洲精品成人影院| 亚洲精品乱码久久久v下载方式| 久久ye,这里只有精品| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品中文字幕在线视频 | 天美传媒精品一区二区| 午夜福利网站1000一区二区三区| 内地一区二区视频在线| 噜噜噜噜噜久久久久久91| 亚洲电影在线观看av| 国产精品伦人一区二区| 2018国产大陆天天弄谢| 夫妻性生交免费视频一级片| 啦啦啦啦在线视频资源| 亚洲性久久影院| 国产精品久久久久久av不卡| 久久99精品国语久久久| 夜夜爽夜夜爽视频| 天天躁日日操中文字幕| 国产精品偷伦视频观看了| 欧美97在线视频| 亚洲高清免费不卡视频| av播播在线观看一区| 精品视频人人做人人爽| 天天躁日日操中文字幕| 一区二区三区精品91| 联通29元200g的流量卡| 王馨瑶露胸无遮挡在线观看| 欧美日韩在线观看h| h视频一区二区三区| 一级毛片我不卡| 精品久久久久久久久亚洲| 免费看不卡的av|