• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lift Enhancement and Oscillatory Suppression of Vortex-induced Vibration in Shear Flow by Loentz Force

    2012-07-25 06:20:54ZHANGHui張輝FANBaochun范寶春LIHongzhi李鴻志
    Defence Technology 2012年3期
    關(guān)鍵詞:張輝

    ZHANG Hui(張輝),F(xiàn)AN Bao-chun(范寶春),LI Hong-zhi(李鴻志)

    (Science and Technology on Transient Physics Laboratory,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China)

    Introduction

    The fluid-structure interaction occurring in the motion of ordnance gives rise to the complicated vibration of structure,and even causes the structural damage.In addition,a negative lift force generated in shear flow,similar to the stall phenomenon encountered in airfoils at high attack angle,is also undesired generally from the practical point of view.Therefore,the investigation on the control of vortex-induced vibration(VIV)phenomenon in shear flow is necessary due to the practical and theoretical importance.

    VIV phenomenon of a circular cylinder in shear flow is one of the most basic and revealing problems.Much experimental work has been done to the flow over elastic structure.Griffin[1]has compiled many experiment results to demonstrate the relationship between the cross-flow vibration amplitude and the mass-damping product.Gharib[2],Khala and Williamson[3]exhibited the examples of significant flow-induced vibrations without lock-in.On the other hand,a classic lock-in was observed in the experiments[4-5].Techet and Triantafyllou[6]showed that the free-vibration tests of a uniform cylinder with low equivalent structural damping yield the amplitude response curve as a function of the nominal reduced velocity which is in agreement with previous results[7].

    Numerical work has been also done.With the use of a spectral element spatial discretization,Blackburn and Henderson[8]investigated the vortex-induced vibration problem by solving the two-dimensional Navier-Stokes equations in an accelerating frame of reference attached to the cylinder for the Reynolds number valueRe=250.Zhou,So and Lam[9]studied a two-dimensional flow passed through an elastic circular cylinder using the VIC(vortex-in-cell) discrete vortex method to investigate the responses of the cylinder,the induced forces on the cylinder and the vortex structure in the wake.Anagnostopoulos[10]discussed the relationship between the oscillation frequency of cylinder and the natural shedding frequency.The variations of flow field and hydrodynamic force under the different conditions are also discussed.

    The control of the blunt-body wake by means of Lorentz force is considered as one of the most practical methods developed,in which the Lorentz force is generated by the electro-magnetic actuators[11-14].The electro-magnetic wake control of a fixed or VIV cylinder in uniform flow has been performed experimentally and numerically in our research group,in which the closed-loop control and optimal control methods were developed to improve its control efficiency[15-17].However,no work has been done for the Lorentz force control of VIV in shear flow.

    In this paper,the Lorentz force control of VIV in shear flow is investigated numerically for lift enhancement and oscillatory suppression.The problems discussed are described by the stream function-vorticity equations in coordinates attached on the moving cylinder,coupled with the cylinder motion equation.The hydrodynamic forces on the cylinder surface are directly derived mathematically from the governing equations.In order to show our understanding of the fluidstructure interaction of VIV in the shear flow,the effects of the instantaneous wake geometries and the corresponding cylinder motion on the pressure forces distributed on the cylinder surface are described in one entire period of vortex shed.Moreover,the mechanism of the vibration cylinder control and the increase in lift by Lorentz force in the shear flow are examined,where the Lorentz force is classified into the field Lorentz force and the wall Lorentz force[18].

    1 Governing Equations

    1.1 Stream Function-Vorticity Equations

    The sketch of shear flow with a linear velocity profileU=U∞+Gyover a cylinder in two-dimensional approach is shown in Fig.1,whereu∞is the freestream velocity at the center-lineθ=0,yis the coordinate in the lateral direction withy=0 at the center of cylinder,andGis the lateral velocity gradient.

    Fig.1 Sketch of shear flow over circular cylinder

    The shear rateKis defined asK=2Ga/U∞,ais the cylinder radius.Only the case of a positive shear rate(K>0)is discussed in the paper,which implies that the flow velocity on the upper side is faster than that on the lower side.

    The coordinates are attached on the moving cylinder,then the stream function-vorticity equations in the exponential-polar coordinates system(ξ,η),r=e2πξ,θ=2πη,for the incompressible electrically conducting fluid becomes

    The Lorentz forceFis defined as[11-12]

    where the valueαdescribes the electromagnetic penetration into the fluid.

    1.2 Initial and Boundary Conditions

    The flow is considered to be inviscid initially.If the cylinder is constrained to move only in cross flow direction,the initial flow field in the moving frame of reference can be described by

    and

    Att> 0,in the far fieldξ→∞,regarded as an inviscid flow,e2πξ→2sh(2πξ),then we have

    which are dependent on the shear rateKand the cylinder vibration,and

    On the cylinder surfaceξ=0,the no-slip boundary condition is used instead of the slip boundary condition,then

    1.3 Cylinder Response

    The effective mass including the cylinder mass plus the added mass due to the acceleration of the cylinder in the moving frame of reference should be considered,and thus the cylinder motion is governed by the equation

    1.4 Hydrodynamic Force

    The Lorentz force is divided into the field Lorentz forceFθ|ξ>0and the wall Lorentz forceFθ|ξ=0.The field Lorentz force affects the flow field in the boundary layer and in turn changes the hydrodynamic force on the cylinder surface.Whereas,the wall Lorentz force does not have any relationships with the flow field in spite of the increase in pressure due to its action on the cylinder surface.Hence pressureconsists ofinduced by the field Lorentz force,induced by the wall Lorentz force andinduced by the inertial force.

    where

    The calculation has been performed numerically.The equation of vorticity transport is solved by using the alternative-direction implicit(ADI)algorithm,and the equation of stream function is integrated by means of a fast fourier transform(FFT)algorithm.The cylinder motion is calculated by solving Eq.(10)using the Runge-Kutta method.The numerical results in the paper were obtained forRe=150 with the computational step size Δξ=0.004,Δη=0.002 and Δt=0.005.More details about the numerical method,grid consistency and validation of the code can be found in Ref.[15-18].

    2 Results and Discussions

    2.1 VIV of Circular Cylinder in Shear Flow

    A sequence of calculated VIV cylinder wake forK=0.2 in a shedding cycle are exhibited by the shaded vorticity contours in Fig.2,where the upper side refers to the negative vortex,and lower side to positive.The cross-hairs mark the equilibrium cylinder position.Since the vortex is shed at a different positions related to the cylinder,the vortex street formed is composed of two parallel rows with an opposite sign of the vortices.The vortex street inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex due to the background vorticity.

    In order to further understand the effect of the flow pattern over the cylinder on the hydrodynamic force,it is essential to know exactly the pressure distribution on the cylinder surface since the pressure is an order of magnitude larger than the shear stress[19-20].The distribution of pressure coefficient on the cylinder surface at different typical timesA-Dare shown in Fig.3,which is composed ofandbased on Eq.(11)whereis generated by the flow field,andis related with the inertial force.The cylinder displacement will strengthen the shear layer on the side where the fluid is pushed by the cylinder and weaken the shear layer on the other side.Hence the pressure on the strengthened side decreases,whereas the pressure on the weakened side increases.Subsequently,the lift directing to the strengthened side is generated,which is in contrast with that due to the effect of the vortex shedding.With the background vorticity,the shift of the stagnation point causes the shift of the positive pressure area to the same side,and the maximum vibrating amplitude of cylinder at timeBis larger than that at the timeD.

    Fig.2 A sequence of snapshots of vortex-induced vibration at typical times for K=0.2

    Fig.3 Distribution of pressure coefficientalong the surface of the vibrating cylinder at the typical times for K=0.2

    The inertial force due to the acceleration of the cylinder also affects the distribution of pressure on the vibrating cylinder,denoted as.Fig.4 shows thedistributions at different stages of one cycle.At the timesAandC,the accelerationis equal to zero,and then increases to reach the values at the timeBandDwhere the value at the timeBis larger than that at the timeD.It is obvious that the lift increases with the increase in the inertial force in the accelerating direction,whereas the drag is independent of the inertial force.

    Fig.4 Distribution of pressure coefficientalong the surface of the vibrating cylinder at the typical times for K=0.2

    The variation of lift force coefficientClwith timetwithout Lorentz force control att<650 is shown in Fig.5,which vibrates periodically with the effect of vortexes shedding and the mean value is negative due to the background vorticity.

    Fig.5 Variation of lift coefficient Cl with time t before and after asymmetric Lorentz force control for K=0.2

    2.2 Control of VIV in Shear Flow by Asymmetric Lorentz Force

    The vibration amplitude has a strong relationship with Lorentz force.The variation of amplitude of controlled VIV with the interaction parameterNforK=0.2 is shown in Fig.6.The limiting amplitude decreases with the increase inN,and the cylinder is fixed finally,ifNis large enough.

    Fig.6 Limiting amplitude of oscillating cylinder displacement after control versus the interaction parameter N for K=0.2

    With the application of Lorentz force(N=3 on the upper side andN=2 on the lower side)att=650,the vibration of lift is suppressed gradually and the value of lift tends to 0 att>650,as shown in Fig.5.Att=760,the lift is stable and the value is 0 which corresponding flow field is shown in Fig.7.

    Fig.7 Snapshot of vortex-induced vibration controlled with asymmetric Lorentz force(N=3 on the upper side and N=2 on the lower side)for K=0.2

    The distribution of pressure coefficientgenerated by wall Lorentz force is shown in Fig.8.The curve is positive and the pressure on the lower side is larger than that on the upper side with the application of asymmetric Lorentz force.Therefore,the lift is increased by wall Lorentz force.

    Fig.8 Distribution of pressure coefficientwith asymmetric Lorentz force control(N=3 on the upper side and N=2 on the lower side)for K=0.2

    Fig.9 Distribution of pressure coefficient with asymmetric Lorentz force control(N=3 on the upper side and N=2 on the lower side)for K=0.2

    The displacement time history of the vibrating cylinderwith the shear incoming flow before and after control of asymmetric Lorentz force(N=3 on the upper side andN=2 on the lower side)is shown in Fig.10.The vibration amplitude of the cylinder decreases considerably,and the displacement tends to 0 gradually.Att=760,the displacement is stable.

    3 Conclusions

    The electro-magnetic control of vortex-induced vibration of a circular cylinder in shear flow has been investigated numerically.To solve the coupled system,the coordinates are attached on the moving cylinder.

    Fig.10 Displacement of VIV cylinder before and after control(N=3 on the upper side and N=2 on the lower side)for K=0.2

    The initial and boundary conditions and the pressure distribution are deduced on the exponential-polar coordinates system.The conclusions drawn are summarized below.

    1)For VIV cylinder in shear flow,the vortex street is composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex.The lift force vibrates periodically with the effect of vortexes shedding and the mean value is negative due to the background vorticity.

    2)The Lorentz force for controlling the VIV cylinder is classified into the field Lorentz force and the wall Lorentz force.The field Lorentz force can be applied to suppress the oscillation of lift,and in turn to suppress VIV.Moreover,the asymmetric wall Lorentz forces can be applied to increase the lift.Therefore,the lift amplification and oscillatory suppression can be obtained by suitable asymmetric Lorentz forces.

    [1]Griffin J H.The mechanics of the formation region of vortices behind bluff bodies[J].Journal of Fluid Mechanics,1966,25:401 -413.

    [2]Gharib M R.Vortex-induced vibration absence of lock-in and fluid force deduction[D].Pasadena,CA:California Institute of Technology,1999.

    [3]Khalak A,Williamson C H K.Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J].Journal of Fluids Structure,1997,11:973 -982.

    [4]Brika D,Laneville A.Vortex-induced vibration of a long flexible circular cylinder[J].Journalof Fluid Mechanics,1993,250:481-508.

    [5]Hover F S,Miller S N,Triantafyllou M S.Vortex-induced vibration of marine cables:experiments using force feedback[J].Journal of Fluids Structure,1997,11:307-326.

    [6]Techet A H,Triantafyllou M S.The evolution of a‘Hybrid’shedding mode[C]//Proceedings of the 1998 ASME Fluids Engineering Division Summer Meeting,Washington DC:1998,21-23.

    [7]Williamson C H K,Roshko A.Vortex formation in the wake of an oscillating cylinder[J].Journal of Fluids Structure,1988,2:355-381.

    [8]Blackburn H,Henderson R.Lock-in behavior in simulated vortex-induced vibration[J].Experimental Thermal and Fluid Science,1996,12:184 -189.

    [9]Zhou C Y,So R M C,Lam K.Vortex-induced vibrations of an elastic circular cylinder[J].Journal of Fluid Structure,1999,13:165 -189.

    [10]Anagnostopoulos P.Numerical study of the flow past a cylinder excited transversely to the incident stream Part 2[J].Journal of Fluid Structure,2000,14:853-882.

    [11]Weier T,Gerbeth G,Mutschke G,et al.Experiments on cylinder wake stabilization in an electrolyte solution by means of electromagnetic forces localized on the cylinder surface[J].Experimental Thermal and Fluid Science,1998,16:84-91.

    [12]Posdziech O,Grundmann R.Electromagnetic control of seawater flow around circular cylinders[J].Eur J Mech B-Fluids,2001,20(2):255 -274.

    [13]Mutschke G,Gerbeth G,Albrecht T,et al.Separation control at hydrofoils using Lorentz forces[J].Eur J Mech B-Fluids,2006,25(2):137-152.

    [14]Braun E M,Lu F K,Wilson D R.Experimental research in aerodynamic control with electric and electromagnetic fields[J].Progress in Aerospace Sciences,2009,45(1):30-49.

    [15]ZHANG Hui,F(xiàn)AN Bao-chun,CHEN Zhi-hua.Computations of optimal cylinder flow control in weakly conductive fluids[J].Computers and Fluids,2010,39(8):1261 -1266.

    [16]ZHANG Hui,F(xiàn)AN Bao-chun,LI Hong-zhi.Suppression of vortex-induced vibration of a circular cylinder by Lorentz force[J].Science China Physics Mechanics and Astronomy,2011,54(12),2248-2259.

    [17]ZHANG Hui,F(xiàn)AN Bao-chun,CHEN Zhi-hua.Optimal control of cylinder wake by electromagnetic force based on the adjoint flow field[J].European Journal of Mechanics B/Fluids,2010,29(1),53-60.

    [18]ZHANG Hui,F(xiàn)AN Bao-chun,CHEN Zhi-hua,et al.Effect of the Lorentz force on cylinder drag reduction and its optimal location[J].Fluid Dynamics Research,2011,43(1):015506.

    [19]Fey U,Konig M,Eckelmann H.A new Strouhal-Reynolds-number relationship for circular cylinder in the range47< Re <2 ×105[J].Phys Fluids,1998,10:1547-1549.

    [20]Mittal S,Kumar B.Flow past a rotating cylinder[J].Journal of Fluid Mechanics,2003,476:303-334.

    猜你喜歡
    張輝
    讓學(xué)生的科學(xué)素養(yǎng)在學(xué)科的交叉滲透教學(xué)中得到提高
    張輝名師工作室
    Estimation of biophysical properties of cell exposed to electric field
    張輝作品選
    張輝
    Lamb waves topological imaging combining with Green's function retrieval theory to detect near filed defects in isotropic plates?
    張輝
    張輝版畫(huà)作品
    吃醋
    金山(2016年9期)2016-10-12 14:14:48
    實(shí)對(duì)稱(chēng)矩陣正交相似對(duì)角化的探討
    高清午夜精品一区二区三区| 性插视频无遮挡在线免费观看| videossex国产| 成人鲁丝片一二三区免费| 可以在线观看毛片的网站| 看免费成人av毛片| 黄片wwwwww| 美女xxoo啪啪120秒动态图| 亚洲欧美一区二区三区国产| 男女那种视频在线观看| 身体一侧抽搐| 久久人人爽人人爽人人片va| 六月丁香七月| 欧美成人午夜免费资源| 国产毛片a区久久久久| 久久99蜜桃精品久久| 大片电影免费在线观看免费| 亚洲精品国产av成人精品| 欧美高清性xxxxhd video| 欧美人与善性xxx| 亚洲精品乱码久久久久久按摩| 午夜激情久久久久久久| 亚洲综合精品二区| 在线观看人妻少妇| av.在线天堂| 亚洲怡红院男人天堂| 啦啦啦中文免费视频观看日本| 国产精品国产三级国产专区5o| 可以在线观看毛片的网站| 日本黄大片高清| 国产成人91sexporn| 国产免费视频播放在线视频| 久久精品国产亚洲av天美| 亚洲欧美日韩东京热| 国产真实伦视频高清在线观看| 中国国产av一级| 久久精品夜色国产| 日韩成人伦理影院| 精华霜和精华液先用哪个| 久久综合国产亚洲精品| 免费看av在线观看网站| 人妻制服诱惑在线中文字幕| 精品国产三级普通话版| 亚洲综合精品二区| 大又大粗又爽又黄少妇毛片口| 亚洲电影在线观看av| 精品国产三级普通话版| 插阴视频在线观看视频| 国产精品麻豆人妻色哟哟久久| av天堂中文字幕网| 国产精品一及| 好男人在线观看高清免费视频| 老女人水多毛片| 99精国产麻豆久久婷婷| 99久久精品热视频| 色吧在线观看| 国内揄拍国产精品人妻在线| 少妇被粗大猛烈的视频| 亚洲美女视频黄频| 国产成人精品婷婷| 美女xxoo啪啪120秒动态图| 日日摸夜夜添夜夜爱| 少妇裸体淫交视频免费看高清| 91久久精品国产一区二区成人| 91在线精品国自产拍蜜月| 日韩免费高清中文字幕av| 男人爽女人下面视频在线观看| a级毛色黄片| 99热这里只有精品一区| 午夜精品一区二区三区免费看| 亚洲精华国产精华液的使用体验| 亚洲国产日韩一区二区| 欧美三级亚洲精品| 日韩精品有码人妻一区| 男女边吃奶边做爰视频| 色视频www国产| 尾随美女入室| 3wmmmm亚洲av在线观看| 亚洲精品国产av成人精品| 国产成人精品一,二区| 欧美xxⅹ黑人| 欧美一区二区亚洲| 熟妇人妻不卡中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 国产老妇女一区| 美女国产视频在线观看| 在线免费十八禁| 可以在线观看毛片的网站| 男女边摸边吃奶| 国产欧美另类精品又又久久亚洲欧美| 少妇熟女欧美另类| 伦精品一区二区三区| 欧美bdsm另类| 国产精品久久久久久av不卡| tube8黄色片| 国产成人精品久久久久久| 亚洲国产欧美在线一区| 免费在线观看成人毛片| 99久久九九国产精品国产免费| 亚洲av成人精品一二三区| 王馨瑶露胸无遮挡在线观看| 日韩电影二区| 日本色播在线视频| 插阴视频在线观看视频| 联通29元200g的流量卡| 国产精品成人在线| 嫩草影院入口| 精品视频人人做人人爽| 国产黄色免费在线视频| 久久久精品欧美日韩精品| 久久99热6这里只有精品| 亚洲最大成人中文| 99热网站在线观看| 久久国内精品自在自线图片| 国产精品国产av在线观看| 免费高清在线观看视频在线观看| 在线观看免费高清a一片| 久久精品国产鲁丝片午夜精品| 大码成人一级视频| 2021少妇久久久久久久久久久| 国产色婷婷99| 亚洲真实伦在线观看| 91在线精品国自产拍蜜月| 亚洲av在线观看美女高潮| 夜夜看夜夜爽夜夜摸| 高清av免费在线| 国产精品国产三级国产专区5o| 国产毛片在线视频| 日韩欧美 国产精品| 五月伊人婷婷丁香| a级毛片免费高清观看在线播放| 亚洲色图综合在线观看| 免费黄色在线免费观看| 亚洲成人一二三区av| 人人妻人人看人人澡| 日本熟妇午夜| 午夜福利在线观看免费完整高清在| 亚洲av欧美aⅴ国产| 国产伦精品一区二区三区视频9| 2018国产大陆天天弄谢| 久久人人爽av亚洲精品天堂 | 成年人午夜在线观看视频| 亚洲不卡免费看| 18+在线观看网站| 国产精品一区二区在线观看99| 国产亚洲5aaaaa淫片| 最近最新中文字幕免费大全7| 一级二级三级毛片免费看| videossex国产| av线在线观看网站| 男女边摸边吃奶| 久久97久久精品| 国产日韩欧美亚洲二区| av网站免费在线观看视频| 听说在线观看完整版免费高清| 国产v大片淫在线免费观看| 99精国产麻豆久久婷婷| 18禁在线播放成人免费| 丝瓜视频免费看黄片| 国产成人精品久久久久久| 舔av片在线| 中文字幕亚洲精品专区| 亚洲欧美一区二区三区黑人 | 国产av不卡久久| 丝袜脚勾引网站| 99re6热这里在线精品视频| 国产精品av视频在线免费观看| 男插女下体视频免费在线播放| 国产午夜精品一二区理论片| 亚洲综合色惰| 水蜜桃什么品种好| 人体艺术视频欧美日本| 日本爱情动作片www.在线观看| 97在线人人人人妻| 亚洲精品日韩在线中文字幕| 丰满少妇做爰视频| 另类亚洲欧美激情| 亚洲美女视频黄频| 韩国高清视频一区二区三区| 成人亚洲精品一区在线观看 | 久久6这里有精品| 亚洲天堂国产精品一区在线| 亚洲自拍偷在线| 亚洲综合精品二区| 人妻制服诱惑在线中文字幕| av一本久久久久| 亚洲精品乱码久久久v下载方式| 大话2 男鬼变身卡| 精品久久久久久久末码| 秋霞伦理黄片| 26uuu在线亚洲综合色| 成人无遮挡网站| 少妇的逼水好多| 又大又黄又爽视频免费| 韩国高清视频一区二区三区| 边亲边吃奶的免费视频| 亚洲精品影视一区二区三区av| 夜夜爽夜夜爽视频| 亚洲欧洲国产日韩| 99热全是精品| 国产精品一区二区性色av| 黄色怎么调成土黄色| 国产一区有黄有色的免费视频| 自拍偷自拍亚洲精品老妇| 国精品久久久久久国模美| 亚洲三级黄色毛片| 亚洲国产精品专区欧美| 亚洲精品456在线播放app| 日本黄大片高清| 日本爱情动作片www.在线观看| 免费少妇av软件| 精华霜和精华液先用哪个| 老司机影院成人| 搞女人的毛片| 国产精品爽爽va在线观看网站| 尤物成人国产欧美一区二区三区| 亚洲欧美日韩无卡精品| 午夜激情福利司机影院| 在线看a的网站| 久久97久久精品| 午夜免费观看性视频| 久久久久精品久久久久真实原创| 韩国av在线不卡| 美女脱内裤让男人舔精品视频| 美女xxoo啪啪120秒动态图| 真实男女啪啪啪动态图| 成人黄色视频免费在线看| 久久久久网色| 三级男女做爰猛烈吃奶摸视频| 青春草亚洲视频在线观看| 涩涩av久久男人的天堂| 美女主播在线视频| 99热全是精品| 午夜福利高清视频| 亚洲四区av| 岛国毛片在线播放| 亚洲av一区综合| 在线观看一区二区三区激情| 亚洲伊人久久精品综合| 亚洲国产成人一精品久久久| 中文欧美无线码| 五月天丁香电影| 看免费成人av毛片| 青青草视频在线视频观看| 一级爰片在线观看| 99久久精品热视频| 午夜精品国产一区二区电影 | 亚洲四区av| 大香蕉久久网| 日本爱情动作片www.在线观看| 国产淫语在线视频| 国产精品人妻久久久影院| 女人被狂操c到高潮| 国产午夜福利久久久久久| av国产精品久久久久影院| 秋霞伦理黄片| 国产成人免费观看mmmm| 国产91av在线免费观看| 亚洲欧美日韩无卡精品| 建设人人有责人人尽责人人享有的 | 国产精品人妻久久久久久| 久久久久久伊人网av| 色视频www国产| 亚洲精品aⅴ在线观看| 18禁在线播放成人免费| 少妇的逼水好多| 亚洲国产精品专区欧美| 成年av动漫网址| 神马国产精品三级电影在线观看| 国产人妻一区二区三区在| 久久久久久久久久久免费av| 一级毛片久久久久久久久女| 另类亚洲欧美激情| 亚洲国产欧美人成| 成年女人在线观看亚洲视频 | 在线观看一区二区三区激情| 久久久久久久久大av| 极品教师在线视频| 日本与韩国留学比较| 简卡轻食公司| 国产精品一区二区性色av| 好男人视频免费观看在线| 久久久久久久久久成人| 国产高清国产精品国产三级 | 在线观看av片永久免费下载| 久久99热这里只频精品6学生| 亚洲久久久久久中文字幕| 国产欧美亚洲国产| 黄片无遮挡物在线观看| 国产综合精华液| 日日啪夜夜爽| 男人舔奶头视频| 少妇猛男粗大的猛烈进出视频 | 搡女人真爽免费视频火全软件| 男人和女人高潮做爰伦理| 亚洲性久久影院| 国内少妇人妻偷人精品xxx网站| 嫩草影院精品99| 亚洲成人一二三区av| 特级一级黄色大片| 亚洲精品,欧美精品| 女人十人毛片免费观看3o分钟| 91精品国产九色| av在线亚洲专区| 国产精品偷伦视频观看了| 日日摸夜夜添夜夜爱| 建设人人有责人人尽责人人享有的 | 日韩免费高清中文字幕av| 国产成人精品一,二区| 亚洲色图av天堂| av免费观看日本| 嫩草影院入口| 男女无遮挡免费网站观看| 深夜a级毛片| 少妇 在线观看| 边亲边吃奶的免费视频| 国产精品久久久久久精品电影小说 | av在线蜜桃| 最近手机中文字幕大全| 夜夜看夜夜爽夜夜摸| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区三区四区免费观看| 久久精品久久精品一区二区三区| 日本熟妇午夜| 女人十人毛片免费观看3o分钟| 久久久久久久久久成人| 嫩草影院新地址| 日韩成人伦理影院| 亚洲av一区综合| 中文资源天堂在线| 久久人人爽av亚洲精品天堂 | 久久99蜜桃精品久久| 免费黄色在线免费观看| 国产精品国产三级专区第一集| 狂野欧美激情性bbbbbb| 中文字幕av成人在线电影| 国产精品熟女久久久久浪| 在线天堂最新版资源| 六月丁香七月| 国产av码专区亚洲av| 美女内射精品一级片tv| 网址你懂的国产日韩在线| 国产黄片视频在线免费观看| 国产精品一区二区三区四区免费观看| 一个人观看的视频www高清免费观看| 在线精品无人区一区二区三 | 欧美丝袜亚洲另类| 久久99精品国语久久久| 国产精品久久久久久精品古装| 国产精品福利在线免费观看| 一级av片app| 久久99精品国语久久久| 亚洲成人一二三区av| 黄片无遮挡物在线观看| 国产精品久久久久久久久免| 美女主播在线视频| 中文字幕亚洲精品专区| 日本wwww免费看| 久久久久久久国产电影| 精品久久久久久电影网| 精品人妻一区二区三区麻豆| 亚洲av免费在线观看| 又黄又爽又刺激的免费视频.| 日日撸夜夜添| 观看免费一级毛片| 一级片'在线观看视频| 精品一区二区三卡| 久久久精品94久久精品| 欧美高清成人免费视频www| 国产亚洲最大av| 97超碰精品成人国产| 男女国产视频网站| 欧美老熟妇乱子伦牲交| 少妇裸体淫交视频免费看高清| 欧美+日韩+精品| 午夜免费鲁丝| 久久久久久久久久久免费av| 一本久久精品| 永久免费av网站大全| 国产 精品1| 男女啪啪激烈高潮av片| 麻豆乱淫一区二区| 精品人妻视频免费看| 亚洲精品456在线播放app| 97人妻精品一区二区三区麻豆| 晚上一个人看的免费电影| 在线观看一区二区三区| 亚洲精品一区蜜桃| 成人国产av品久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 最近最新中文字幕大全电影3| 免费av毛片视频| 伊人久久国产一区二区| 国产成年人精品一区二区| 99热这里只有是精品50| 97在线视频观看| 免费看不卡的av| 美女xxoo啪啪120秒动态图| 内射极品少妇av片p| 日韩成人av中文字幕在线观看| 内射极品少妇av片p| 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线| 禁无遮挡网站| 日韩av不卡免费在线播放| 99热全是精品| 黄片wwwwww| 久久久久久久久久久丰满| 美女国产视频在线观看| 精品一区二区三卡| 搡老乐熟女国产| 欧美激情国产日韩精品一区| 丝袜美腿在线中文| 你懂的网址亚洲精品在线观看| 亚洲精品日本国产第一区| 欧美精品一区二区大全| 少妇熟女欧美另类| 黄片wwwwww| 直男gayav资源| 丰满人妻一区二区三区视频av| 欧美97在线视频| 国产亚洲午夜精品一区二区久久 | 王馨瑶露胸无遮挡在线观看| 大话2 男鬼变身卡| 少妇熟女欧美另类| 日韩伦理黄色片| 97在线人人人人妻| 日本猛色少妇xxxxx猛交久久| 国产精品人妻久久久久久| 综合色丁香网| 国产白丝娇喘喷水9色精品| 六月丁香七月| 成人毛片60女人毛片免费| 午夜爱爱视频在线播放| 日韩欧美精品v在线| 国产v大片淫在线免费观看| 亚洲精品视频女| 日本黄色片子视频| 日韩制服骚丝袜av| 在线观看一区二区三区激情| 国产精品爽爽va在线观看网站| 搞女人的毛片| 精品久久久精品久久久| 国产女主播在线喷水免费视频网站| 97精品久久久久久久久久精品| 只有这里有精品99| 欧美极品一区二区三区四区| 亚洲av免费在线观看| 精品久久久久久久人妻蜜臀av| 欧美日韩视频高清一区二区三区二| 亚洲最大成人中文| 美女cb高潮喷水在线观看| 日韩欧美 国产精品| 国产视频内射| 国产伦精品一区二区三区视频9| 国产一区有黄有色的免费视频| 国国产精品蜜臀av免费| 秋霞伦理黄片| 嫩草影院新地址| 99精国产麻豆久久婷婷| 日韩 亚洲 欧美在线| 日韩欧美精品v在线| 别揉我奶头 嗯啊视频| av又黄又爽大尺度在线免费看| 国产欧美日韩精品一区二区| 精品少妇久久久久久888优播| 色网站视频免费| 亚洲欧美中文字幕日韩二区| 国产精品无大码| 亚洲av不卡在线观看| 亚洲欧美精品专区久久| 国产美女午夜福利| 99视频精品全部免费 在线| 久久99热这里只频精品6学生| 日韩电影二区| 99热网站在线观看| 亚洲国产精品国产精品| 国产精品无大码| 建设人人有责人人尽责人人享有的 | 乱系列少妇在线播放| av在线蜜桃| 国产亚洲精品久久久com| 欧美xxⅹ黑人| 国产 精品1| 国产精品国产三级专区第一集| 啦啦啦啦在线视频资源| 亚洲熟女精品中文字幕| 国产精品伦人一区二区| 亚洲成人中文字幕在线播放| 亚洲国产成人一精品久久久| 精品久久久久久电影网| 国产色爽女视频免费观看| 2018国产大陆天天弄谢| 久热这里只有精品99| 国产一区亚洲一区在线观看| 丝袜喷水一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 大陆偷拍与自拍| 天天躁日日操中文字幕| 99re6热这里在线精品视频| 国国产精品蜜臀av免费| 男人添女人高潮全过程视频| 有码 亚洲区| 久热这里只有精品99| 亚洲最大成人av| 欧美日本视频| 听说在线观看完整版免费高清| 亚洲欧美日韩东京热| av在线播放精品| 日韩在线高清观看一区二区三区| 色哟哟·www| 日韩电影二区| 大片电影免费在线观看免费| 夜夜爽夜夜爽视频| 国产成人精品婷婷| 国产淫语在线视频| 国产亚洲午夜精品一区二区久久 | 国产av不卡久久| 亚洲丝袜综合中文字幕| 亚洲av福利一区| 久久精品熟女亚洲av麻豆精品| 啦啦啦在线观看免费高清www| 国产亚洲av片在线观看秒播厂| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 夫妻性生交免费视频一级片| 国产免费视频播放在线视频| 黄色日韩在线| 亚洲va在线va天堂va国产| 大陆偷拍与自拍| 日本欧美国产在线视频| 在线观看av片永久免费下载| 干丝袜人妻中文字幕| 最新中文字幕久久久久| 午夜精品国产一区二区电影 | 日韩亚洲欧美综合| 天天躁夜夜躁狠狠久久av| 人妻系列 视频| 自拍偷自拍亚洲精品老妇| 美女视频免费永久观看网站| 久久精品国产自在天天线| 丝瓜视频免费看黄片| 成人国产av品久久久| 97精品久久久久久久久久精品| 国产精品偷伦视频观看了| 亚洲国产成人一精品久久久| 国产精品av视频在线免费观看| 观看免费一级毛片| 国产成年人精品一区二区| 日韩国内少妇激情av| 国产片特级美女逼逼视频| 欧美bdsm另类| 亚洲人成网站在线观看播放| 能在线免费看毛片的网站| 自拍偷自拍亚洲精品老妇| 日本一本二区三区精品| 啦啦啦中文免费视频观看日本| 欧美精品一区二区大全| 国产久久久一区二区三区| 国产高清国产精品国产三级 | 亚洲自偷自拍三级| 亚洲欧美日韩东京热| 国产 精品1| 菩萨蛮人人尽说江南好唐韦庄| 在线播放无遮挡| 久久久久九九精品影院| av播播在线观看一区| 国产色婷婷99| 一个人观看的视频www高清免费观看| 91午夜精品亚洲一区二区三区| 尤物成人国产欧美一区二区三区| 久久综合国产亚洲精品| 人妻夜夜爽99麻豆av| 久热久热在线精品观看| 一级片'在线观看视频| 白带黄色成豆腐渣| 麻豆乱淫一区二区| 菩萨蛮人人尽说江南好唐韦庄| 中国美白少妇内射xxxbb| 好男人视频免费观看在线| 2021天堂中文幕一二区在线观| 天堂网av新在线| 久久韩国三级中文字幕| 午夜日本视频在线| 中文在线观看免费www的网站| 午夜亚洲福利在线播放| 亚洲av欧美aⅴ国产| 国产乱人偷精品视频| 青春草亚洲视频在线观看| 大话2 男鬼变身卡| 亚洲不卡免费看| 欧美一区二区亚洲| 国产高潮美女av| 97在线人人人人妻| 校园人妻丝袜中文字幕| 精品人妻偷拍中文字幕| 乱码一卡2卡4卡精品| 亚洲精品久久午夜乱码| 日韩一本色道免费dvd| 国产综合懂色| 日本av手机在线免费观看| 午夜福利高清视频| 国产大屁股一区二区在线视频| 啦啦啦中文免费视频观看日本| 男女边摸边吃奶| 亚洲人成网站高清观看| 国产免费视频播放在线视频| 免费看a级黄色片| 黄色欧美视频在线观看| 亚洲婷婷狠狠爱综合网| 欧美日韩视频精品一区| 久久久精品免费免费高清| 春色校园在线视频观看| 最新中文字幕久久久久| 亚洲性久久影院| 水蜜桃什么品种好|