• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Particle/Matrix Interface Failure in Composite Propellant

    2012-07-25 06:22:46CHANGWujun常武軍JUYutao鞠玉濤HANBo韓波HUShaoqing胡少青WANGZhengshi王政時(shí)
    Defence Technology 2012年3期
    關(guān)鍵詞:抗溫噻唑示蹤劑

    CHANG Wu-jun(常武軍),JU Yu-tao(鞠玉濤),HAN Bo(韓波),HU Shao-qing(胡少青),WANG Zheng-shi(王政時(shí))

    (School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China)

    Introduction

    The composite propellant is a kind of energetic material with very high volume fraction of particles in binder matrix,and therefore its macroscopic mechanical behavior strongly depends on its microstructure.In the microscale,it is a heterogeneous mechanical mixture,and has obvious interfaces between components.Thus,its mechanical properties depend upon the viscoelastic properties of the polymer binder,particle volume fraction and particle/matrix interface cohesive properties greatly.Under external loads,the microstructure of propellant will take place a series of changes,such as microcracks propagation,voids growth and localized stress concentration.The microstructure of cohesive interface will be damaged,leading to particle/matrix interfacial debonding,namely dewetting,thereby affecting the macroscopic mechanical properties.However,due to the complexity of micromechanics behavior and the limitations of experiment equipment and test method,it is difficult to quantitatively analyze the microstructure failure and damage evolution laws experimentally.Therefore,the numerical simulation based on microstructure model has a great significance.However,it is confronted with some difficulties,such as the modeling of microstructure,the mechanical model and constitutive parameters of components and the simulation scheme.The complexity of numerical simulation is associated with the coupled of competing physical processes in large scale:finite deformation of quasi-incompressible polymeric matrix,large stiffness mismatch between energetic particles and the matrix,particle debonding,matrix tearing,void growth and coalescence,particles interaction[1],etc.

    In order to illustrate the composite propellant damage characteristics and failure process,LIU[2]and YUAN[3]analyzed the micro-mechanical failure mechanisms of composite propellant.Zhong[4],Matous[1,5]and Inglis’s[6]studied the cohesive theory and particles interface debonding damage evolution.HAN[7]used a cohesive model to simulate the crack propagation process.But,the microscopic damage evolution law and the essential reasons on the development of macroscopic behavior have not yet been clear,thus,we need to further reveal the correlation between microstructure and macroscopic mechanical properties.

    In this paper,the particle/matrix interface damage is simulated using cohesive elements;the mechanical response is governed by using the bilinear constitutive relation.The influences of the interface cohesive properties on the mechanical characteristics are analyzed.The damage evolution of the composite propellant subjected to uniaxial tension load is simulated in finite deformation.The damage nucleation,propagation mechanism and non-uniform distribution of microstructural stress-strain field are obtained.It provides a theoretical basis for damage and failure assessment methods based on the cohesive zone model.

    1 Analysisfor Interface Cohesive Failure

    The particle/matrix interface of composite propellant is formed in complex chemical and physical processes while the solidfication and cross-linking reactions between binder matrix and particles.The interface chemical bond forces at chemical cross-linking points and the interface physical adsorption forces at physical cross-linking points exist in two-phase interface.The composite propellant has very large specific surface area,i.e.the interface area per unit volume,because of high volume fraction of energetic particles.Therefore,the mechanical behavior of particle/matrix interface significantly influences the macroscopic behavior greatly.

    The experimental studies[8]show that the microcracks appear in tension process at some large particles,with opening normal to the applied loading direction.As the deformation continues,the original and new cracks propagate along interfaces,making the large amount of particles dewetting.The bridge stress in zones of large particles results in the stress concentration and more serious debonding.The debonding leads to a decline of macroscopic elastic modulus,the nonlinear stress-strain curves and also the volume expansion,so that Poisson's ratio gradually decreases.It ultimately makes the propellant materials fracture.Fig.1 presents the dewetting morphology before the fracture of propellant specimen.It can be seen that the volume fraction of solid particles is higher and the majority of large particles are fully debonding.Therefore,the interface debonding in the microstructure is one of the principal forms of damage and failure of these materials.

    Fig.1 Propellant microscopic morphology at strain of 42%(×50)

    2 Microstructure and Finite Element Simulation

    2.1 Computational Model

    To achieve high energy content,the composite propellant is typically characterized by a wide distribution of particle sizes.Larger particles are 100-300 μm in diameter,while the small particles have a mean diameter of about 20 μm.As mentioned earlier,the interface damage starts from the larger particles.The small particles serve merely to stiffen the binder matrix.Therefore,the volume fraction of ammonium perchlorate(AP)particles can be assumed as 64%,with large particles of 34%.The remaining small particles of 30%are combined with binder and other constituents to create a composite matrix.Thus,an ideal solid propellant can be considered as the composition of AP particles randomly embedded in a matrix.The particulate composite system can be modeled as three models,i.e.2D cubic cell model,four-particles model and random particles stacking model generated by the random algorithm[9],as shown in Fig.2.To simulate the mechanical behavior under uniaxial tension with constant speed,the boundary should remain straight deformation[2-3,10].Namely,σx= ∫σxdy=0.The microstructure is calculated under plane strain assumption,by means of loading displacement.

    Fig.2 FEM models of propellant

    2.2 Material Constitutive Model

    AP particles can be approximately considered as rigid,because of its huge elastic modulus compared with polymer binder,while the small particles and binder can be considered as uniform hyperelastic composite matrix and its nearly incompressible mechanical behavior can be described by using Neo-Hookean constitutive model.The strain energy function can be written as

    whereWis the strain energy per unit of reference volume,C10andD1are the material parameters,is the first deviatory strain invariant defined as,the deviatory stretches,Jis the total volume ratio,The initial shear modulusμ0and bulk modulusK0are

    To describe the mechanical behavior of the nearly incompressible matrix under plane strain assumption,slight compressibility is introduced.The ratio ofK0/μ0can be also expressed in terms of Poisson's ratio,since

    Other parameters of composite matrix are obtained from Eq.(2)and(3),as shown in Tab.1,andK0/μ0=555.2,D1=0.001 461.

    Tab.1 Mechanical properties of individual constituents[1]

    2.3 Mechanical Model of Interface

    To exactly describe the interface mechanical behavior and damage evolution,the cohesive zone model is used to simulate the nucleation and propagation of interface damage.A phenomenological relation between normal or shearing stress and opening or sliding displacement is used to define the particle/matrix constitutive behavior.Moreover,the bilinear constitutive model[2,5-6,11]is widely used because of relatively simple expression and can be written as

    whereTmaxdenotes the interface strength,Kis the interface modulus,is the softening modulus,δ0andδfare the critical opening displacement of damage initiation and interfacial failure,respectively.

    黃永超[18]發(fā)明了一種熒光微球示蹤劑。該示蹤劑以丙烯酰胺和N-苯并噻唑馬來亞酰胺為主要原料,采用反相乳液聚合法制成。為納米級(jí)顆粒,具有分散性好、抗溫抗鹽能力強(qiáng)、用量少、檢測(cè)靈敏度高和熒光強(qiáng)度高等優(yōu)點(diǎn)。

    The determination of interface parameters is the key in numerical calculation,which are predicted by references and experience at present.The interface strength represents initiation of damage,and has a great influence on the numerical results.Tan[12]considered that the interface strength differed from the macroscopic strength a litter for the materials with high particles volume fraction.Thus,the interface strength can be taken as 0.5-1.0 MPa,according to the performance of HTPB propellant at normal temperature.The interface modulus has little effect on the results,but it affects the convergence greatly.The small initial stiffness of interface will cause an extra deformation,while too large one results in the parasitic oscillation of interface stress[11].Due to the large stiffness mismatch between particles and matrix,the interface modulus should be determined by repeat numerical attempts.TakeK=500 MPa/mm.The opening displacement of failure is related to fracture energy,thusGc=2-8 J/m2.

    Fig.3 Bilinear constitution

    The deformation in the bilinear model interface before damage is assumed as linear elastic deformation.The damage process begins when the interface bears a critical load as shown in Fig.3.Thus,the elastic behavior can be written as

    For the arc interface of AP spherical particles,the states of stress-strain are more complex.In the mixed mode of shearing and normal stresses together,The damage may initially occur when the stress is less than the interface strength.Therefore,a quadratic stress criterion is used to predict the damage initiation.Its expression can be written as

    2.4 Meshing Method

    Under the planar strain assumption,the hybrid element has to be chosen to simulate the mechanical response of incompressible hyperelastic matrix.When the large deformation occurs in the matrix,the penetration across particles/matrix often happens.Thus,the general contact algorithm is used by defining friction penalty function.

    Embed a layer of cohesive element with zero thickness in the interface to analog the mechanical response of particle/matrix interface.The sweep meshing technology has to be used to partition the cohesive elements.In addition,the appropriate viscosity can be introduced to cohesive elements,and a smaller load step can be set to ensure a perfect convergence.

    whereσaveandGcare the average interface strengths and fracture energy,respectively.The minimum size of cohesive zone can be obtained by substituting the material properties of composite matrix and interface.

    3 Results and Analyses

    3.1 Effects of Interface Properties on Mechanical Behavior

    The macroscopic stress-strain curves of single particle model at different interface strength are shown in Fig.4.The elastic deformation and stress increase linearly in stageⅠ.The overall modulus is obviously larger than that of the pure matrix,and the particles have great enhancement effect.The stress-strain curves coincide essentially before reaching the critical strength.In stageⅡ,when reaching the critical strength,the stress appears to soften.The interface damage evolution happens sharply,and the load capacity drops rapidly.The maximum stress firstly occurs near the polar region of particles,and leads to the damage initiation.With the development of crack propagation along the particle/matrix interface,the macroscopic mechanical behavior changes gradually.Then,in stageⅢ,the stress-strain curves rise gradually because of the large deformation of composite matrix,and the complete failures are similar.

    With the increase of interface strength,the propellant deforms elastically to greater tensile strength before the interface damage begins,and the decline of stress is steeper.Thus,the interface damage evolution and material failure process takes place quickly,because the improvement of interface strength makes the higher stress threshold and gathers more strain energy before the material damage.Therefore,more energy will release rapidly once the failure happens.

    Fig.4 Stress-strain curve at different interface strengthes

    Figure 5 shows the distribution of Mises and axial stresses at the interfacial strength of 1 MPa and strain of 10%,when the interface de-bonds to 45°.The stress distribution of composite propellant is highly heterogeneous,and the maximum value occurs near the tip of cohesive zone,prior to the crack.The particles can hinder the matrix deformation,so the compressive stress occurs in the equatorial plane of particle.The interface damage fraction,i.e.the ratio of damage interface length to total interface length,can be considered as a criterion to judge the damage extent.The damage evolution law is shown in Fig.6.It is clear that the damaged interface has reached to 80%or more,when the crack tip is in the position of 45°,so the interface has a longer cohesive zone length.

    Fig.5 Stress contours of unit cell at strain of 10%

    Fig.6 Particle interface damage evolution law

    Figure 7 illustrates the influence of interface fracture energy on the macroscopic stress-strain law in the same critical strength.There are only little influence on the linear stage and complete failure stage.With the increase of fracture energy increases,the macroscopic tensile strength improves also,and the interface damage evolution will slow down.After the complete interface damage,the interface does not bear the load and the matrix becomes the only subject to bear the load.It can be seen that,for larger fracture energy,the material can achieve a greater elongation at the moment of failure.The fracture energy is a measure of energy dissipation in the failure process.The improvement of interface toughness will result in a larger cohesive zone,thus the interface can bear the load for longer time before the failure occurrence.

    Fig.7 Stress-strain curve for different fracture energies

    3.2 Multi-scale Damage Characteristics and Failure Mechanism

    It can be known from the damage evolution of four-particles model,as shown in Fig.8 and 9,that the macroscopic stress-strain curve becomes more complex,and the damage evolution has the critical points corresponding to the damage initiation and complete failure of large and small particles,respectively.The damage starts around the larger particles as observed in experiments,and is closely related to the particle interaction and sizes.The stress concentration appears at the stress bridging zone and cohesive tip of large particles,likely leading to the matrix tearing and void gathering,then the small particles will gradually produce larger stress after the unloading of large particles.Therefore,the micromechanical failure process of composite propellant can be divided into four stages,as shown in Fig.9.The stage I is an overall elastic deformation stage.In the stage II,the damage evolution of particle/matrix interface happens,and the stress decrease gradually with the increasing strain.This is the microscopic reasons of strain softening in propellants.The large deformation of matrix occurs in the stage III.The stress increases along with the strain,because the matrix is the only subject to bear the load after complete interface damage,i.e.the matrix tensile deformation is the main reason for the strain enhancement of propellant.Then,the matrix will tear and fracture in the stage IV,with the particle debonding and the large deformation of matrix,the fibrils of binder matrix and microvoids surrounding the particles form and grow,then,the fibrils rupture and micro-voids coalesce,finally leading to the fracture of composite propellant.

    Fig.8 Von Mises stress in matrix at strain of 7%

    3.3 Simulation on Microscopic Damage Evolution

    Fig.9 Stress-strain curve of four-particle model

    In fact,the high volume fractions in real composite propellant are achieved by using a wide distribution of particle sizes.The Mises stress contour for random packing propellant is shown in Fig.10.The damage starts mainly around the large particles and local particle-intensive zone,and accelerates the local damage process.The direction of interface opening displacement coincides with the loading direction.Fig.11 shows the macroscopic stress-strain law based on microstructure model.The particle/matrix interface damage is still the key factor to the propellant mechanical properties.The dewetting leads to the nonlinear stressstrain and a stress platform,also makes the macroscopic modulus decrease.The volume expansion happens in propellant,so Poisson's ratio will decrease.

    Fig.10 Mises stress distribution at tension strain of 8%

    Fig.11 Stress-strain curve of random particle packing model

    However,there is difference between the simulation and experiment,and a real microstructure model,exact interface parameters are needed and the fracture behavior of matrix has to be considered.

    4 Conclusions

    In this paper,a microstructure model under uniaxial tension to simulate the damage evolution of composite propellant subjected to finite deformation is established.The damage nucleation,propagation mechanisms and non-uniform distribution of microstructural stress-strain fields,particularly,the effect of interface properties and particle sizes on the mechanical response,are obtained.

    1)The finite element simulation method based on the microstructure model can effectively predict the trend of macroscopic mechanical behavior and particle/matrix damage evolution process.It can be used for the damage simulation and failure assessment.The micromechanical failure process of composite propellant can be divided into four stages,i.e.elastic deformation,damage evolution of particle/matrix interface,large deformation of matrix and matrix tearing and fracture.

    2)The damage starts around the larger particles and is closely related to the particle interaction and particle sizes.The stress concentration appears at the stress bridging zone and cohesive zone tip of large particles.The dewetting significantly leads to a decline of macroscopic elastic modulus,the nonlinear stressstrain curves and also the damage of propellant.

    3)The improvement of interface strength and fracture energy can achieve a greater tensile strength and elongation of composite propellant.

    [1]Matous K,Geubelle P H.Finite element formulation for modeling particle debonding in reinforced elastomers subjected to finite deformations[J].Computer Methods in Applied Mechanics and Engineering,2006,196:620 -633.

    [2]LIU Zhu-qing,LI Gao-chun,XING Yao-guo,et al.Numerical simulation and SEM study on the microstructural damage of composite solid propellants[J].Journal of Propulsion Technology,2011,32(3):412-416.(in Chinese)

    [3]YUAN Song,TANG Wei-hong,LI Gao-chun.Analysis on micro-mechanical failure mechanisms of composite propellant[J].Journal of Solid Rocket Technology,2006,29(1):48-51.(in Chinese)

    [4]Zhong A X,Knauss W G.Analysis of interfacial failure in particle-filled elastomers[J].Journal of Engineering Materials and Technology,1997,119:198-204.

    [5]Matous K,Inglis H M,Gu X,et al.Multiscale modeling of solid propellants:from particle packing to failure[J].Composites Science and Technology,2007,67:1694 -1708.

    [6]Inglis H M,Geubelle P H,Matous K.Cohesive modeling of dewetting in particulate composites:micromechanics vs.multiscale finite element analysis[J].Mechanics of Materials,2007,39:580 -595.

    [7]HAN Bo,JU Yu-tao,XU Jin-sheng,et al.Numerical simulation of crack propagation in solid propellant based on cohesive zone model[J].Journal of Ballistics,2012,24(1):63-68.(in Chinese)

    [8]CHANG Wu-jun,JU Yu-tao,WANG Peng-bo.Research on correlation between dewetting and mechanical property of HTPB propellant[J].Acta Armamentarii,2012,33(3):261-266.(in Chinese)

    [9]Segurado J,Llorca J.A numerical approximation to the elastic properties of sphere-reinforced composites[J].Journal of the Mechanics and Physics of Solids,2002,50:2107-2121.

    [10]Ghassemieh E.Micro-mechanical analysis of bonding failure in a particle-filled composite[J].Composites Science and Technology,2002,62:67-82.

    [11]Segurado J,LLorca J.A computational micromechanics study of the effect of interface decohesion on the mechanical behavior of composites[J].Acta Materialia,2005,53:4931-4942.

    [12]Tan H,Liu C,Huang Y,et al.The cohesive law for the particle/matrix interfaces in high explosives[J].Journal of the Mechanics and Physics of Solids,2005,53:1892-1917.

    猜你喜歡
    抗溫噻唑示蹤劑
    鉆井液用納米復(fù)合封堵劑的研制
    基于苯并噻唑用作分析物檢測(cè)的小分子熒光探針
    云南化工(2021年7期)2021-12-21 07:27:22
    南海東部深水油田水平井產(chǎn)出剖面 示蹤劑監(jiān)測(cè)技術(shù)及應(yīng)用
    井間示蹤劑監(jiān)測(cè)在復(fù)雜斷塊油藏描述中的應(yīng)用
    錄井工程(2017年1期)2017-07-31 17:44:42
    抗溫耐鹽聚合物凍膠的低溫合成及性能
    多示蹤劑成像技術(shù)在腫瘤診斷方面的應(yīng)用研究
    高效液相色譜法同時(shí)測(cè)定反應(yīng)液中的苯并噻唑和2-巰基苯并噻唑
    溴化鉀型示蹤劑檢測(cè)的改進(jìn)方法
    一種抗溫抗鹽交聯(lián)聚合物堵水劑的合成及性能評(píng)價(jià)
    抗溫180℃水包油鉆井液研究及應(yīng)用
    斷塊油氣田(2013年2期)2013-03-11 15:32:53
    国产精品久久久久久精品电影| 给我免费播放毛片高清在线观看| 啦啦啦啦在线视频资源| 欧美最黄视频在线播放免费| 国产熟女欧美一区二区| 亚洲av男天堂| 春色校园在线视频观看| 亚洲第一电影网av| 亚洲国产精品合色在线| 日本色播在线视频| 嫩草影院新地址| 麻豆乱淫一区二区| 欧美日本视频| 亚洲精品日韩在线中文字幕 | 亚洲人成网站在线观看播放| 日韩一本色道免费dvd| 日韩欧美三级三区| 午夜福利视频1000在线观看| 高清毛片免费看| 欧美激情国产日韩精品一区| 日韩中字成人| 国产成人a∨麻豆精品| 美女 人体艺术 gogo| 国产日韩欧美在线精品| av在线蜜桃| 在线免费观看的www视频| 少妇猛男粗大的猛烈进出视频 | 免费不卡的大黄色大毛片视频在线观看 | 国产女主播在线喷水免费视频网站 | 波野结衣二区三区在线| 日韩欧美一区二区三区在线观看| 国模一区二区三区四区视频| 中文在线观看免费www的网站| 国内精品一区二区在线观看| 国产精品av视频在线免费观看| 综合色丁香网| 亚洲av不卡在线观看| 亚洲无线观看免费| 午夜福利在线在线| 偷拍熟女少妇极品色| 久久人人爽人人片av| 国产精品电影一区二区三区| 悠悠久久av| 日韩欧美三级三区| 99riav亚洲国产免费| 亚洲不卡免费看| 亚洲国产精品合色在线| 国产精品一及| 国产老妇伦熟女老妇高清| 级片在线观看| 国产午夜福利久久久久久| www.色视频.com| 免费人成视频x8x8入口观看| 久久久久久久久久久丰满| 亚洲色图av天堂| 国产一区二区在线观看日韩| 嫩草影院入口| 国产乱人偷精品视频| 亚洲av二区三区四区| 91aial.com中文字幕在线观看| 美女黄网站色视频| 男女边吃奶边做爰视频| 一夜夜www| 日韩高清综合在线| 麻豆成人午夜福利视频| 韩国av在线不卡| 中文字幕制服av| 国产欧美日韩精品一区二区| 精品少妇黑人巨大在线播放 | 亚洲一区二区三区色噜噜| 久久久午夜欧美精品| 少妇被粗大猛烈的视频| 亚洲av免费在线观看| av在线天堂中文字幕| 97热精品久久久久久| 成熟少妇高潮喷水视频| 美女脱内裤让男人舔精品视频 | 蜜桃久久精品国产亚洲av| 欧美激情久久久久久爽电影| av免费在线看不卡| 麻豆成人午夜福利视频| 一个人看视频在线观看www免费| 日本与韩国留学比较| 中国国产av一级| 99热6这里只有精品| 国产在线男女| 3wmmmm亚洲av在线观看| 一区二区三区四区激情视频 | 麻豆国产97在线/欧美| 乱系列少妇在线播放| 亚洲丝袜综合中文字幕| 欧美日本亚洲视频在线播放| 天天躁日日操中文字幕| 久久久久久久久久久丰满| 小说图片视频综合网站| 亚洲内射少妇av| 国产人妻一区二区三区在| 日韩一区二区视频免费看| 久久精品人妻少妇| 一区二区三区四区激情视频 | 亚洲中文字幕一区二区三区有码在线看| 久久久久久伊人网av| 日韩高清综合在线| 看黄色毛片网站| 此物有八面人人有两片| 卡戴珊不雅视频在线播放| 一卡2卡三卡四卡精品乱码亚洲| 国产白丝娇喘喷水9色精品| 国产高清激情床上av| 亚洲高清免费不卡视频| 午夜精品一区二区三区免费看| 亚洲一区二区三区色噜噜| 国产精品国产三级国产av玫瑰| 午夜精品在线福利| 久久亚洲国产成人精品v| 亚洲成人中文字幕在线播放| 亚洲aⅴ乱码一区二区在线播放| 中文字幕免费在线视频6| 国产精品.久久久| 日日撸夜夜添| 免费观看的影片在线观看| 又黄又爽又刺激的免费视频.| 亚洲欧美精品自产自拍| 免费看美女性在线毛片视频| 如何舔出高潮| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 尤物成人国产欧美一区二区三区| 22中文网久久字幕| 嫩草影院新地址| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 国产精品三级大全| 一卡2卡三卡四卡精品乱码亚洲| 在线天堂最新版资源| 亚洲精品色激情综合| 国产精品久久久久久精品电影小说 | 欧美激情国产日韩精品一区| 我的女老师完整版在线观看| 在现免费观看毛片| 91狼人影院| 欧美日韩精品成人综合77777| 好男人视频免费观看在线| 黄色欧美视频在线观看| 91aial.com中文字幕在线观看| 丝袜美腿在线中文| 成人亚洲精品av一区二区| 91狼人影院| 精品99又大又爽又粗少妇毛片| 成人鲁丝片一二三区免费| 在线播放国产精品三级| 成人综合一区亚洲| 大香蕉久久网| 久久人人精品亚洲av| 99热只有精品国产| 天美传媒精品一区二区| 午夜免费激情av| 婷婷色av中文字幕| 国产色婷婷99| 婷婷亚洲欧美| 只有这里有精品99| 欧美精品国产亚洲| 一本久久精品| 色5月婷婷丁香| 久久久久久伊人网av| 国产片特级美女逼逼视频| 国产伦理片在线播放av一区 | 一级毛片我不卡| 国产欧美日韩精品一区二区| 久久99热这里只有精品18| 国产精品嫩草影院av在线观看| 精品久久久久久久人妻蜜臀av| 美女大奶头视频| 美女内射精品一级片tv| 免费人成在线观看视频色| 欧美日韩在线观看h| 六月丁香七月| 午夜视频国产福利| 色综合亚洲欧美另类图片| 在线免费十八禁| 欧美日韩国产亚洲二区| av又黄又爽大尺度在线免费看 | 尤物成人国产欧美一区二区三区| 国产极品天堂在线| 精品欧美国产一区二区三| 亚洲精华国产精华液的使用体验 | 直男gayav资源| 岛国毛片在线播放| 高清在线视频一区二区三区 | 噜噜噜噜噜久久久久久91| 免费看av在线观看网站| 亚洲成人久久性| 美女xxoo啪啪120秒动态图| 尤物成人国产欧美一区二区三区| 久久99蜜桃精品久久| 美女内射精品一级片tv| 尾随美女入室| 亚洲av免费在线观看| 麻豆精品久久久久久蜜桃| 国产精品1区2区在线观看.| 又粗又硬又长又爽又黄的视频 | 午夜福利高清视频| 性插视频无遮挡在线免费观看| 中文在线观看免费www的网站| 亚洲精品亚洲一区二区| 最近手机中文字幕大全| 日韩国内少妇激情av| 国产私拍福利视频在线观看| 欧美3d第一页| 日韩欧美 国产精品| а√天堂www在线а√下载| 天堂网av新在线| 久久人人精品亚洲av| 18禁裸乳无遮挡免费网站照片| 免费av观看视频| www.色视频.com| 精品无人区乱码1区二区| 国产白丝娇喘喷水9色精品| 麻豆国产97在线/欧美| 国产精品蜜桃在线观看 | 中国美女看黄片| 国产精品野战在线观看| 美女国产视频在线观看| 美女高潮的动态| 亚洲中文字幕日韩| 两个人视频免费观看高清| 欧美一级a爱片免费观看看| 欧美日本亚洲视频在线播放| 成人性生交大片免费视频hd| 国产亚洲精品久久久久久毛片| 综合色av麻豆| 国产高清三级在线| 搡女人真爽免费视频火全软件| 亚洲成人久久爱视频| 天美传媒精品一区二区| 亚洲人成网站高清观看| 久久99热这里只有精品18| 欧美色欧美亚洲另类二区| 夫妻性生交免费视频一级片| 免费大片18禁| 啦啦啦韩国在线观看视频| 精品国产三级普通话版| a级毛色黄片| 亚洲国产高清在线一区二区三| 免费看美女性在线毛片视频| 青春草视频在线免费观看| 国产高清激情床上av| 最近的中文字幕免费完整| 久久久久久久久久久免费av| 亚洲七黄色美女视频| 久久久精品大字幕| 久久久成人免费电影| 麻豆乱淫一区二区| 日韩欧美 国产精品| 国产精品久久视频播放| 日本熟妇午夜| 嫩草影院精品99| 欧美一级a爱片免费观看看| eeuss影院久久| 成人性生交大片免费视频hd| 日本黄大片高清| 欧美在线一区亚洲| 色5月婷婷丁香| 99在线人妻在线中文字幕| 人妻久久中文字幕网| 中文字幕av成人在线电影| 18禁在线无遮挡免费观看视频| 欧美高清成人免费视频www| 日日撸夜夜添| 99久久成人亚洲精品观看| 最好的美女福利视频网| 人妻少妇偷人精品九色| 12—13女人毛片做爰片一| 精品久久久久久久末码| 99久久九九国产精品国产免费| 九九热线精品视视频播放| 国产在视频线在精品| 久久99蜜桃精品久久| 国产老妇伦熟女老妇高清| 国产白丝娇喘喷水9色精品| 舔av片在线| 真实男女啪啪啪动态图| 久久婷婷人人爽人人干人人爱| 亚洲成a人片在线一区二区| 亚洲欧美精品自产自拍| 亚洲精品久久国产高清桃花| 不卡视频在线观看欧美| 黄色视频,在线免费观看| 亚洲人成网站高清观看| 久久精品国产清高在天天线| 成人亚洲精品av一区二区| 亚洲精品日韩在线中文字幕 | 亚洲乱码一区二区免费版| 午夜精品在线福利| 91精品一卡2卡3卡4卡| 亚洲精品亚洲一区二区| 久久久久免费精品人妻一区二区| 亚洲真实伦在线观看| 一夜夜www| 日本在线视频免费播放| 亚洲人成网站在线播放欧美日韩| 精华霜和精华液先用哪个| 天美传媒精品一区二区| 欧洲精品卡2卡3卡4卡5卡区| av.在线天堂| 久久久久久国产a免费观看| 桃色一区二区三区在线观看| 国产精品一区二区三区四区免费观看| 热99在线观看视频| 性色avwww在线观看| 看片在线看免费视频| 97人妻精品一区二区三区麻豆| 少妇猛男粗大的猛烈进出视频 | 欧美激情国产日韩精品一区| 噜噜噜噜噜久久久久久91| 免费观看精品视频网站| 国产精品人妻久久久影院| 内地一区二区视频在线| 亚洲欧美成人综合另类久久久 | 日韩,欧美,国产一区二区三区 | 又爽又黄无遮挡网站| 午夜福利高清视频| 能在线免费观看的黄片| 欧美一区二区精品小视频在线| 最近手机中文字幕大全| 网址你懂的国产日韩在线| 一区二区三区四区激情视频 | 一级毛片我不卡| 国产毛片a区久久久久| 舔av片在线| 波多野结衣巨乳人妻| 中文精品一卡2卡3卡4更新| 亚洲图色成人| 久久99热这里只有精品18| 老司机福利观看| av在线观看视频网站免费| 国产真实乱freesex| 免费观看在线日韩| 午夜免费激情av| 三级男女做爰猛烈吃奶摸视频| 久久精品综合一区二区三区| 久久精品国产99精品国产亚洲性色| 桃色一区二区三区在线观看| 99热这里只有精品一区| 国产精品国产高清国产av| 国产高清激情床上av| 午夜福利视频1000在线观看| 午夜免费男女啪啪视频观看| avwww免费| 久久久色成人| 久久久久免费精品人妻一区二区| 久久婷婷人人爽人人干人人爱| av女优亚洲男人天堂| 国产午夜精品论理片| www.色视频.com| 51国产日韩欧美| 国产毛片a区久久久久| 国产av不卡久久| 青春草国产在线视频 | 国产av在哪里看| 观看美女的网站| 18禁在线播放成人免费| 国产精品蜜桃在线观看 | 国产真实伦视频高清在线观看| 美女cb高潮喷水在线观看| 国产 一区 欧美 日韩| 深夜a级毛片| 亚洲欧美日韩高清专用| 少妇熟女aⅴ在线视频| 床上黄色一级片| 一级av片app| 身体一侧抽搐| 国产成人a∨麻豆精品| 小蜜桃在线观看免费完整版高清| 欧美日韩在线观看h| 亚洲国产精品成人综合色| 老女人水多毛片| 日产精品乱码卡一卡2卡三| 18禁裸乳无遮挡免费网站照片| 亚洲欧美成人精品一区二区| 国产精品av视频在线免费观看| 国产精品美女特级片免费视频播放器| 国产精品乱码一区二三区的特点| 国产亚洲91精品色在线| 又爽又黄无遮挡网站| 国产极品精品免费视频能看的| 欧美日韩乱码在线| 亚洲在线自拍视频| 秋霞在线观看毛片| 麻豆成人av视频| 2022亚洲国产成人精品| 在线观看午夜福利视频| 乱码一卡2卡4卡精品| 高清午夜精品一区二区三区 | 午夜久久久久精精品| 在线观看av片永久免费下载| 欧美激情在线99| 看片在线看免费视频| 九九久久精品国产亚洲av麻豆| 午夜爱爱视频在线播放| 国语自产精品视频在线第100页| 久久久久久久午夜电影| 又爽又黄a免费视频| 波多野结衣高清无吗| 99riav亚洲国产免费| 国产免费男女视频| 久久人人爽人人爽人人片va| 九九爱精品视频在线观看| 日韩精品青青久久久久久| 亚洲五月天丁香| 免费看光身美女| 亚洲av熟女| 婷婷亚洲欧美| 国产精品久久视频播放| 成年女人看的毛片在线观看| 在现免费观看毛片| 2022亚洲国产成人精品| 国产一级毛片在线| 国产伦精品一区二区三区视频9| 99热这里只有精品一区| 我的女老师完整版在线观看| 国产av麻豆久久久久久久| 一边亲一边摸免费视频| 赤兔流量卡办理| 亚洲最大成人av| 国产亚洲精品av在线| 我要搜黄色片| 婷婷亚洲欧美| 久久久久九九精品影院| 悠悠久久av| 51国产日韩欧美| 人人妻人人澡欧美一区二区| 亚洲久久久久久中文字幕| 国产精品久久久久久精品电影| 高清在线视频一区二区三区 | 美女xxoo啪啪120秒动态图| 欧美激情国产日韩精品一区| 欧美激情在线99| 午夜精品在线福利| 不卡一级毛片| 在线免费观看不下载黄p国产| 在线观看av片永久免费下载| 午夜老司机福利剧场| 免费观看精品视频网站| 国产成人a区在线观看| 国产极品天堂在线| 搡老妇女老女人老熟妇| av黄色大香蕉| www日本黄色视频网| 秋霞在线观看毛片| 精品一区二区三区人妻视频| 亚洲高清免费不卡视频| 国产精品99久久久久久久久| 麻豆国产97在线/欧美| 中文在线观看免费www的网站| 亚洲精品成人久久久久久| 韩国av在线不卡| 91久久精品电影网| 国模一区二区三区四区视频| 久久精品国产亚洲av涩爱 | 精品99又大又爽又粗少妇毛片| 欧美日本亚洲视频在线播放| 国产美女午夜福利| 欧美日韩一区二区视频在线观看视频在线 | eeuss影院久久| 亚洲欧美精品综合久久99| 午夜a级毛片| 免费黄网站久久成人精品| av免费在线看不卡| 欧美最黄视频在线播放免费| 国产精品女同一区二区软件| 色综合色国产| 麻豆国产av国片精品| 99国产极品粉嫩在线观看| 老司机福利观看| 高清日韩中文字幕在线| 午夜视频国产福利| 两个人视频免费观看高清| 全区人妻精品视频| 亚洲成人久久爱视频| 国产精品无大码| 亚洲不卡免费看| 日韩欧美三级三区| 日日摸夜夜添夜夜添av毛片| 亚洲精品影视一区二区三区av| 日本黄大片高清| 久久精品国产亚洲网站| 麻豆久久精品国产亚洲av| 高清毛片免费观看视频网站| 国产高清三级在线| 在线a可以看的网站| or卡值多少钱| 可以在线观看毛片的网站| 丰满的人妻完整版| 国产av一区在线观看免费| 久久中文看片网| 成人美女网站在线观看视频| 国产精品免费一区二区三区在线| 高清在线视频一区二区三区 | 精品久久久久久久人妻蜜臀av| 久久久精品欧美日韩精品| 伦理电影大哥的女人| 一本久久中文字幕| 国产精品久久久久久亚洲av鲁大| 国产精品久久电影中文字幕| 国产精品三级大全| 黄色配什么色好看| 午夜免费激情av| 国产精品久久久久久亚洲av鲁大| 内地一区二区视频在线| 97在线视频观看| 岛国毛片在线播放| 精品欧美国产一区二区三| 国产三级在线视频| 国产在视频线在精品| or卡值多少钱| 在线观看66精品国产| 精品人妻熟女av久视频| 亚洲成人中文字幕在线播放| 国产成人a区在线观看| 黄色视频,在线免费观看| 国产老妇女一区| 国产美女午夜福利| 最新中文字幕久久久久| 一级毛片aaaaaa免费看小| 91在线精品国自产拍蜜月| 国产午夜福利久久久久久| 国产单亲对白刺激| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久亚洲中文字幕| 青青草视频在线视频观看| 网址你懂的国产日韩在线| 国产人妻一区二区三区在| 五月伊人婷婷丁香| 国产成人精品一,二区 | 国产极品精品免费视频能看的| 国产精品一二三区在线看| 精品一区二区免费观看| 欧美日本视频| 好男人视频免费观看在线| 久久精品人妻少妇| 久久精品国产亚洲av天美| 床上黄色一级片| 白带黄色成豆腐渣| 日韩 亚洲 欧美在线| 男女下面进入的视频免费午夜| 中文字幕久久专区| 亚洲欧美日韩卡通动漫| 天天躁夜夜躁狠狠久久av| 亚洲久久久久久中文字幕| 国产精品三级大全| 国产白丝娇喘喷水9色精品| 热99re8久久精品国产| 亚洲美女视频黄频| 亚洲精华国产精华液的使用体验 | 亚洲精品亚洲一区二区| 日本三级黄在线观看| 国产精品女同一区二区软件| 美女脱内裤让男人舔精品视频 | 寂寞人妻少妇视频99o| 国产精品蜜桃在线观看 | 男女那种视频在线观看| 国产黄片视频在线免费观看| 1000部很黄的大片| 日本三级黄在线观看| 黄色视频,在线免费观看| 免费观看在线日韩| 中文字幕制服av| 欧美性猛交黑人性爽| 免费av不卡在线播放| 亚洲成a人片在线一区二区| 国产成年人精品一区二区| 黄色配什么色好看| 午夜激情欧美在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一边亲一边摸免费视频| 一个人看的www免费观看视频| 国产日本99.免费观看| 国产精品,欧美在线| 国产精品乱码一区二三区的特点| 能在线免费观看的黄片| 亚洲av.av天堂| 两性午夜刺激爽爽歪歪视频在线观看| 简卡轻食公司| 日日撸夜夜添| 国产精品乱码一区二三区的特点| 国产美女午夜福利| 美女黄网站色视频| 国产毛片a区久久久久| 精品无人区乱码1区二区| 亚洲av免费在线观看| 99久久九九国产精品国产免费| 秋霞在线观看毛片| 五月玫瑰六月丁香| 国语自产精品视频在线第100页| 桃色一区二区三区在线观看| 长腿黑丝高跟| 国产高清不卡午夜福利| 久久草成人影院| 九九热线精品视视频播放| 久久精品91蜜桃| 亚洲av不卡在线观看| 中文字幕熟女人妻在线| 国产成人精品久久久久久| 中文字幕免费在线视频6| 黄色视频,在线免费观看| 两个人的视频大全免费| 久久精品国产亚洲av天美| 欧美日韩乱码在线| 日韩一本色道免费dvd| 十八禁国产超污无遮挡网站| 两个人视频免费观看高清| av天堂在线播放| 99精品在免费线老司机午夜|