朱恩龍,楊 昭,尹海蛟,朱宗升,陳愛(ài)強(qiáng)
青豆種子等溫線及平衡含水率模型
朱恩龍1,2,楊 昭1,尹海蛟1,朱宗升1,陳愛(ài)強(qiáng)1
(1. 天津大學(xué)機(jī)械工程學(xué)院,天津 300072;2. 天津科技大學(xué)機(jī)械工程學(xué)院,天津 300222 )
為研究青豆種子的熱動(dòng)力學(xué)特性,深入理解青豆吸附過(guò)程的水分特性和所需能量變化,利用飽和鹽溶液,采用靜態(tài)稱重法測(cè)定了青豆種子在 20~40,℃和水分活度在 0.112~0.946范圍的等溫線;采用非線性回歸方法確定了BET多分子層吸附理論模型的系數(shù),并判定了青豆的吸附與解吸模型的擬合優(yōu)度;應(yīng)用Clausius-Clapeyron方程計(jì)算了青豆的凈等量吸附熱.結(jié)果表明:吸附與解吸相比存在明顯的滯后現(xiàn)象;解吸時(shí)單分子層飽和吸附量大于吸附時(shí)的數(shù)值,隨著溫度升高青豆的單分子層飽和吸附量下降;吸附層數(shù)的變化趨勢(shì)與單分子層飽和吸附量的相反;在Henderson、修正的 Henderson、修正的 Chung-Pfost、Halsey、修正的 Halsey、修正的 Oswin、修正的 GAB模型中,Halsey 模型擬合優(yōu)度最佳;凈等量吸附熱隨平衡含水率的增加而減少.
青豆;等溫線;平衡含水率;擬合優(yōu)度;凈等量吸附熱
青豆作為大豆品種之一可分為青皮青仁和青皮黃仁大豆,富含蛋白質(zhì)、膳食纖維、異黃酮[1]和礦物質(zhì)K、Zn、Ca、Fe[2]等有益健康的成分,具有預(yù)防癌癥和心血管等疾病的作用.
恒定溫度下的平衡含水率和水分活度之間的關(guān)系即等溫線,對(duì)確定合理的干燥工藝,保證干燥品質(zhì)、延長(zhǎng)貯藏后的種子壽命十分有用.水分活度 aw是表明含水食品質(zhì)量的重要指標(biāo),可以描述水分的結(jié)合程度及其參與物理、化學(xué)和微生物反應(yīng)的可用程度[3].平衡含水率不僅能表明農(nóng)產(chǎn)品物料的物理、化學(xué)和微生物的穩(wěn)定性而且是干燥模型研究中的一個(gè)輸入?yún)?shù),是研究種子干燥動(dòng)力學(xué)、水分?jǐn)U散特性、干燥特性曲線和傳熱傳質(zhì)的基礎(chǔ)數(shù)據(jù),對(duì)于設(shè)計(jì)和優(yōu)化采后操作如干燥處理和貯藏都十分必要.很多學(xué)者對(duì)農(nóng)產(chǎn)品的等溫線進(jìn)行了研究[4-7],但是對(duì)于日常生活中大量食用的青豆的研究很少,國(guó)內(nèi)文獻(xiàn)幾乎是空白.筆者主要目的在于測(cè)定 20,℃、30,℃,和 40,℃下青豆等溫線,尋求描述青豆等溫線最優(yōu)模型,計(jì)算青豆在 20~40,℃的凈等量吸附熱,為利用熱泵干燥青豆種子的研究奠定必要的基礎(chǔ).
1.1 材料
實(shí)驗(yàn)樣品為青皮青仁大豆,由天津市竹林農(nóng)貿(mào)市場(chǎng)提供,種子初始含水率為 11%(干基,下同),吸附實(shí)驗(yàn)的青豆含水率為 5%,通過(guò)電熱鼓風(fēng)干燥箱,采用 40,℃熱風(fēng)干燥至要求水分.解吸實(shí)驗(yàn)的青豆含水率為 22%,通過(guò)加水調(diào)制處理后,放在密封塑料袋中,在冰箱中(3~4,℃)平衡 2周以確保種子水分均勻一致.
青豆的等溫線測(cè)定采用靜態(tài)稱重法,此法是基于飽和鹽溶液在固定的溫度下可以維持一個(gè)恒定的相對(duì)濕度.采用 11種分析純配制的飽和鹽溶液:LiCl,CH3COOK,MgCl2,K2CO3,Mg(NO3)2,NaBr,CuCl2,NaCl,(NH4)2SO4,KCl,KNO3[7-11]在 20,℃、30,℃和 40,℃能提供的水分活度范圍為 0.112~0.946.平衡相對(duì)濕度(equilibrium relative humidity, ERH)和水分活度之間的關(guān)系為.將調(diào)制的樣品放在物料籃內(nèi),吊在盛有飽和鹽溶液的標(biāo)準(zhǔn)瓶中,使之與溶液不接觸,標(biāo)準(zhǔn)瓶放在可控溫的環(huán)境中(溫度精度為±0.5,℃).每2,d稱量1次試樣,前后2次質(zhì)量差在0.001,g時(shí),吸附或解吸達(dá)到平衡,結(jié)束實(shí)驗(yàn),測(cè)量過(guò)程重復(fù)3次.采用105,℃烘箱法[12]測(cè)定樣品平衡含水率.
1.3 數(shù)學(xué)模型
BET多分子層吸附模型能深入分析多層吸附等溫線,該模型可估算吸附表面水分的單分子層數(shù),對(duì)于許多農(nóng)產(chǎn)品,單分子層飽和吸附量與干燥品質(zhì)的物理和化學(xué)特性的穩(wěn)定性有關(guān),BET模型的一般表達(dá)式為
式中:Me為平衡含水率,%;Mm為單分子層飽和吸附量;C為模型系數(shù).
對(duì)于多孔性農(nóng)業(yè)物料,吸附層數(shù)n會(huì)有具體的數(shù)值,而且吸附層每層有規(guī)則的形式,1986年Rounsley最終將BET模型修正[13]為
在眾多的吸附等溫線的模型中,以下模型在描述平衡含水率Me、水分活度aw和溫度T的關(guān)系中擬合精度較高[5,10,14-15],如表 1所示,其中 A、B、為模型系數(shù),R為氣體常數(shù),kJ·kg/K.
表1 吸附等溫線模型Tab.1 Sorption isotherm models
1.4 統(tǒng)計(jì)分析
采用非線性回歸方法計(jì)算修正的 BET模型系數(shù),并用相關(guān)系數(shù)法判斷可靠性;青豆的吸附與解吸模型的擬合優(yōu)度采用誤差平方和、調(diào)整的判定系數(shù)和均方根誤差判定;采用MATLAB軟件調(diào)用nlinfit函數(shù)和曲線擬合工具cftool作非線性回歸分析[16].
具體過(guò)程如下:①首先在管道上畫出需要加熱的區(qū)域,如圖1為法蘭俯視圖,在B-C-D區(qū)域的管道上畫出曲線(拋物線),D點(diǎn)的加熱范圍最寬,B、C點(diǎn)為加熱范圍最窄。②由兩個(gè)人用氣割工具在兩側(cè)同時(shí)進(jìn)行火焰上下加熱,加熱溫度在500~600℃(鋼管表面為暗紅色,可參見(jiàn)圖2)。③隨空氣冷卻,待冷卻至室溫后再進(jìn)行法蘭間隙的測(cè)量。④圖3、圖4為矯形結(jié)束冷卻后測(cè)量結(jié)果及實(shí)物圖,在偏差范圍內(nèi),矯形成功。
2.1 青豆吸附等溫線
青豆在 20,℃、30,℃和 40,℃的吸附與解吸等溫線如圖1和圖2所示,實(shí)驗(yàn)材料的平衡含水率范圍是5%~32%,兩圖表明青豆的等溫線與文獻(xiàn)[4-11]中很多農(nóng)產(chǎn)品有相似的趨勢(shì),在恒定的水分活度范圍內(nèi),吸附與解吸的平衡含水率隨溫度的降低而增加且有相近的變化速率.
圖1 溫度對(duì)青豆吸附等溫線的影響Fig.1 Influence of temperature on adsorption isotherm of green soybean
圖2 溫度對(duì)青豆解吸等溫線的影響Fig.2 Influence of temperature on desorption isotherm of green soybean
圖3~圖5分別為20,℃、30,℃和40,℃下的青豆吸附與解吸等溫線,3個(gè)圖表明青豆的等溫線類型屬于Ⅲ型[3],在 20,℃、30,℃和 40,℃下青豆吸附過(guò)程明顯滯后于解吸過(guò)程.
圖3 青豆在20,℃的吸附與解吸等溫線Fig.3 Adsorption and desorption isotherms of green soybean at 20 ℃
圖4 青豆在30,℃的吸附與解吸等溫線Fig.4 Adsorption and desorption isotherms of green soybean at 30 ℃
圖5 青豆在40,℃的吸附與解吸等溫線Fig.5 Adsorption and desorption isotherms of green soybean at 40 ℃
一般認(rèn)為產(chǎn)生滯后效應(yīng)是因?yàn)樵谖胶徒馕^(guò)程發(fā)生了熱動(dòng)力學(xué)的不可逆過(guò)程[6,17]:在潮濕條件下被吸附的水分沒(méi)有完全到達(dá)極性位點(diǎn);在干燥條件下,隨著收縮過(guò)程束縛水分位點(diǎn)逐漸接近極性位點(diǎn)以保持彼此平衡,結(jié)果導(dǎo)致吸附過(guò)程對(duì)水分束縛能力的下降;水分子的遷移率,水蒸氣和吸附相(谷物)之間的動(dòng)態(tài)平衡受溫度的影響,在同一水分活度和溫度條件下,谷物解吸過(guò)程較吸附過(guò)程產(chǎn)生較高的平衡水分含率,是產(chǎn)生水分吸附滯后現(xiàn)象的主要原因.
2.2 BET多分子層吸附模型
BET多分子層吸附理論認(rèn)為在發(fā)生單分子層吸附后,由于氣體分子間范德華力引力的存在還會(huì)發(fā)生多分子層吸附.BET模型可確定最佳含水率,對(duì)保持干燥或貯藏品質(zhì)穩(wěn)定性十分有用,適用于Ⅱ和Ⅲ型等溫線[4].修正的BET模型[13]中有2個(gè)重要的參數(shù)即單分子層飽和吸附量和水分活度,對(duì)農(nóng)產(chǎn)品干燥或貯藏品質(zhì)有重要影響.利用非線性回歸方法計(jì)算修正的BET模型中系數(shù)如表 2所示,結(jié)果表明單分子層飽和吸附量在同一溫度和不同溫度條件下解吸值都大于吸附值,吸附時(shí)的多分子層數(shù)大于解吸的,隨著溫度升高多分子層數(shù)增加,單分子層飽和吸附量下降.
表2 多分子層吸附等溫線數(shù)據(jù)Tab.2 Multilayer sorption isotherms data
2.3 吸附與解吸模型擬合優(yōu)度的比較
利用MATLAB的曲線擬合工具cftool作一元非線性擬合.各模型系數(shù)及擬合優(yōu)度判據(jù):誤差平方和、調(diào)整的判定系數(shù)和均方根誤差見(jiàn)表3和表4.?dāng)?shù)據(jù)表明在水分活度為0.112~0.946范圍內(nèi),Halsey模型對(duì)吸附及解吸試驗(yàn)數(shù)據(jù)的適用性最佳,模型擬合優(yōu)度最好,因?yàn)檎`差平方和、均方根誤差最小,而調(diào)整的判定系數(shù)最大,吸附和解吸模型的誤差平方和分別為0.005,4和 0.007,2;調(diào)整的判定系數(shù)分別為 0.991,1、0.988,2;均方根誤差分別為 0.024,6和 0.028,3.因此,Halsey 模型最適用于青豆的吸附與解吸等溫線,可以利用 Halsey模型預(yù)測(cè)青豆吸附與解吸等溫線的平衡含水率.各模型對(duì)青豆吸附等溫線的擬合優(yōu)度排序?yàn)椋篐alsey>Henderson>修正的 Henderson>修正的Chung-Pfost>修正的Oswin>修正的GAB>修正的 Halsey模型;各模型對(duì)青豆的解吸等溫線的擬合優(yōu)度的排序?yàn)椋篐alsey>Henderson>修正的Henderson>修正的 Chung-Pfost>修正的 GAB>修正的Oswin>修正的Halsey模型.
表3 青豆7種吸附等溫線模型參數(shù)Tab.3 Parameters of seven models for adsorption isotherms of green soybean
表4 青豆7種解吸等溫線模型參數(shù)Tab.4 Parameters of seven models for desorption isotherms of green soybean
因此,青豆在水分活度為0.112~0.946和溫度為20~40,℃范圍內(nèi)的吸附與解吸最優(yōu)模型如下:
吸附模型為
解吸模型為
2.4 凈等量吸附熱
研究農(nóng)產(chǎn)品物料的熱動(dòng)力學(xué)特性可深入理解吸附過(guò)程水的特性和所需能量.吸附熱的差值通常指凈等量吸附熱,用作水被固體吸附過(guò)程的指標(biāo),吸附熱的知識(shí)對(duì)于設(shè)計(jì)干燥設(shè)備非常重要.物質(zhì)的在某一能級(jí)水平下的焓差與其可吸附點(diǎn)的數(shù)量成正比[6].
根據(jù)熱動(dòng)力學(xué)原理,凈等量吸附熱可由Clasusius-Clapeyron方程[14]得出一般表達(dá)式為
式中:pv為物料蒸汽壓,kPa;T為絕對(duì)溫度,K;snq為凈等量吸附熱,kJ/kg.
通過(guò)對(duì)上式積分得出 2種溫度下的凈等量吸附熱的計(jì)算公式為
根據(jù)上述分析結(jié)果,Halsey模型對(duì)實(shí)驗(yàn)數(shù)據(jù)的適用性最好,因此采用此模型計(jì)算 20~40,℃的凈等量吸附熱,其變化范圍是 197.0~3,493.4,kJ/kg.平衡含水率和凈等量吸附熱的關(guān)系如圖6所示,可以看出凈等量吸附熱隨平衡含水率的增加逐漸減少.
圖6 青豆凈等量吸附熱Fig.6 Net isosteric heat of desorption for green soybean
(1) 青豆的等溫線類型屬于Ⅲ型等溫線,青豆吸附過(guò)程存在明顯的滯后現(xiàn)象;在同一水分活度和溫度條件下,吸附過(guò)程對(duì)水分束縛能力小于解吸過(guò)程,使得解吸過(guò)程較吸附過(guò)程產(chǎn)生較高的平衡水分含量是造成吸附滯后的主要原因.單分子層飽和吸附量在同一溫度和不同溫度條件下解吸值都大于吸附值,吸附時(shí)的多分子層數(shù)大于解吸的,隨著溫度升高多分子層數(shù)增加,單分子層飽和吸附量下降.
(2) 利用非線性回歸方法確定了青豆 7種等溫線模型的系數(shù)和等溫線模型的擬合優(yōu)度的排序,青豆的吸附與解吸等溫線最優(yōu)模型均為 Halsey模型,其表達(dá)式如下:
吸附模型
解吸模型
(3) 根據(jù) Clasusius-Clapeyron方程確定了青豆最優(yōu)模型在20~40,℃,平衡含水率在5%~32%之間的凈等量吸附熱,變化范圍是 197.0~3,493.4,kJ/kg,凈等量吸附熱隨平衡含水率的增加而減少.
[1] Redondo-Cuenca A,Villanueva-Suárez M J,Rodríguez-Sevilla,et al. Chemical composition and dietary fibre of yellow and green soybeans(Glycine max) [J]. Food Chemistry,2006,101(3):1216-1222.
[2] Chel-Guerrero Luis,Scilingo A A,TintoréS G,et al. Physicochemical and structural characterization of lima bean(Phaseolus lunatus)globulins[J]. Food Science and Technology,2007,40(9):1537-1544.
[3] Al-Muhtaseb A H,Mcminn W A M,Mgee T R A. Moisture sorption isotherm of characteristics of food products:a review[J]. Tansitional Institution of Chemical Engineers,2002,80(2):118-128.
[4] Moraes M A,Rosa G S,Pinto L A A. Moisture sorption isotherms and thermodynamic properties of apple fuji and garlic[J]. International Journal of Food Science and Technology,2008,43(10):1824-1831.
[5] Goula A M,Karapantsios T D,Achilias D S,et al. Water sorption isotherms and glass transition temperature of spray dried tomato pulp[J]. Journal of Food Engineering,2008,85(1):73-83.
[6] Samapundo S,Devlieghere F,de Meulenaer B,et al. Sorption isotherms and isosreric heats of sorption of whole dent corn[J]. Journal of Food Engineering,2007,79(1):168-175.
[7] Corey M E,Kerr W L,Mulligan J H. Phytochemical
stability in dried apple and green tea functional products as related to moisture properties[J]. Food Science and Technology,2011,44(1):67-74.
[8] Moreira R,Chenlo F,Torres M D,et al. Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits[J]. Journal of Food Engineering,2008,88(4):514-521.
[9] Ethmane K C S,Kouhila M,Lamharrar A,et al. Moisture sorption isotherms and thermodynamic properties of two mints:Mentha pulegium and mentha rotundifolia[J]. Revue des Energies Renouvelables,2008,11 (2):181-195.
[10] Roberta Cruz Silveira Thys,Caciano Pelayo Zapata Nore?a,Ligia Damasceno Ferrrira Marczak,et al. Adsorption isotherms of pinh?o(Araucaria angustifolia seeds)starch and thermodynamic analysis[J]. Journal of Food Engineering,2010,100(3):468-473.
[11] Brett B,F(xiàn)igueroa M,Sandoval A J,et al. Moisture sorption characteristics of starchy products:Oat flour and rice flour[J]. Food Biophysics,2009,4(3):151-157.
[12] 國(guó)家技術(shù)監(jiān)督局. GB/T 3543. 6—1995農(nóng)作物種子檢驗(yàn)規(guī)程:水分測(cè)定[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,1995.
State Bureau of Technical Supervision. GB/T 3543. 6-1995 Rules for Agricultural Seed Testing:Determination of Moisture Content[S]. Beijing:Standards Press of China,1995(in Chinese).
[13] 張 旭. 枸杞吸附與解吸等溫線試驗(yàn)研究及計(jì)算機(jī)模擬[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué)機(jī)械電子工程學(xué)院,2005.
Zhang Xu. An Experimental Research on the Adsorption and Desorption Isotherms of Lycium and Their Computer Simulation[D]. Hohhot:College of Mechanical and Electrical Engineering,Inner Mongolia Agricultural University,2005(in Chinese).
[14] Chen Chiachung. Obtaining the isosteric sorption heat directly by sorption isotherm equations[J]. Journal of Food Engineering,2006,74(3):178-185.
[15] To?rul H,Arslan N. Moisture sorption isotherms and thermodynamic properties of walnut kernels [J]. Journal of Stored Products Research,2007,43(3):252-264.
[16] 謝中華. MATLAB統(tǒng)計(jì)分析與應(yīng)用:40個(gè)案例分析[M]. 北京:北京航空航天大學(xué)出版社,2010.
Xie Zhonghua. MATLAB Statistical Analysis and Application:40 Cases Analysis [M]. Beijing:Beihang University Press,2010(in Chinese).
[17] 李興軍,王雙林,王金水. 谷物平衡水分研究概況[J]. 中國(guó)糧油學(xué)報(bào),2009,24(11):137-145.
Li Xingjun,Wang Shuanglin,Wang Jinshui. Progress of research on grain equilibrium moisture[J]. Journal of the Chinese Cereals and Oils Association,2009,24(11):137-145(in Chinese).
Water Sorption Isotherms and Equilibrium Moisture Content Models for Green Soybean Seeds
ZHU En-long1,2,YANG Zhao1,YIN Hai-jiao1,ZHU Zong-sheng1,CHEN Ai-qiang1
(1. School of Mechanical Engineering,Tianjin University,Tianjin 300072,China;2. College of Mechanical Engineering,Tianjin University of Science and Technology,Tianjin 300222,China)
In order to investigate thermodynamic properties of green soybean seeds and undersand water properties and energy requierment change associated with the sorption behavior,sorption isotherms of green soybean seeds were determined using the gravimetric static method of saturated salt solution at temperatures in a range of 20—40,℃and water activity from 0.112 to 0.946. BET multilayer sorption theory model coefficients and goodness of fit of adsorption and desorption models for green soybean were estimated using nonlinear regression method. The net isosteric heat of sorption was estimated by applying Clasusius-Clapeyron equation to sorption isotherms between 20 and 40,℃.Results indicated that there is a notable hysteresis effect between the adsorption and desorption curves and green soybean monolayer saturated adsorptive capacity was greater in desorption process than that in adsorption process. The monolayer saturated adsorptive capacity decreased with the temperature increment,while the number of multilayer had a reverse trend with the monolayer saturated adsorptive capacity. In the flowing models such as Henderson,modified Henderson,modified Chung-Pfost,Halsey,modified Halsey,modified Oswin and modified GAB,Halsey model had a favorable fitting agreement with experiment data and the net isosteric heat of sorption decreased with the increase of equilibrium moisture content.
green soybean;isotherm;equilibrium moisture content;goodness of fit;net isosteric heat of sorption
S375
A
0493-2137(2012)05-0400-05
2010-11-22;
2011-03-14.
國(guó)家自然科學(xué)基金資助項(xiàng)目(51076112).
朱恩龍(1970— ),男,博士研究生,副教授,eelong@126.com.
楊 昭,zhaoyang@tju.edu.cn.