朱學貴,付志紅,蘇向豐,張 謙
(重慶大學電氣工程學院,重慶 400044)
脈寬調(diào)制(PWM)整流器網(wǎng)側電流為正弦波,有較快的動態(tài)響應,可實現(xiàn)電能雙向傳輸,可用于取代常規(guī)的全控整流環(huán)節(jié)。其中空間電壓矢量PWM(SVPWM)控制技術動態(tài)響應快,直流電壓利用率高,可實現(xiàn)單位功率因數(shù)[1]。為此,國內(nèi)外學者對SVPWM控制技術進行了大量的研究,并撰寫了專著[2-5],為“電力電子技術”的教學和研究工作提供了有益幫助。但是,由于SVPWM控制技術涉及電能變換、坐標變換、矢量變換和解耦控制等多個領域,對數(shù)學理論和實踐經(jīng)驗的要求都很高,至今還未見針對SVPWM控制技術的完整論述。
SVPWM控制主要包括數(shù)學模型的構建、坐標變換、解耦控制和控制算法實現(xiàn)等多個難點。筆者在SVPWM控制技術的研究和應用中,總結出了三個容易被忽略的三角恒等式,對于三相整流器數(shù)學模型構建、d-q坐標變換及空間電壓矢量合成的理解和實現(xiàn)提供幫助。
本文首先給出這三個恒等式,因正弦與余弦有對偶關系,本文只證明余弦恒等式,即
這里,恒等式(4)容易證明,本文直接引用。
Park變換時,可以利用恒等式(1)可以實現(xiàn)三相靜止分量到兩相旋轉分量的變換。
根據(jù)積化和差公式:
因此,恒等式(1)得證。
設三相電壓源的表達式為
根據(jù)廣泛采用的恒磁勢變換原則,將三相電壓按圖1所示投影到d-q坐標上,可得到
圖1 Park變換坐標系
由恒等式(1),得到
現(xiàn)設 θ=ωt+θ0,α =ωt+α0,并將 Park變換列于表1。
由表1發(fā)現(xiàn),當三相系統(tǒng)中的對稱倍頻(2倍頻)交流和直流經(jīng)過Park變換后,得到的d軸和q軸分量為基頻交流;當三相系統(tǒng)中的基頻交流經(jīng)Park變換后,得到的d軸和q軸分量為直流。因此,d-q變換的目的是把一個時變系統(tǒng)變?yōu)闀r不變系統(tǒng),從而簡化控制系統(tǒng)的設計。當期望整流器的高功率因數(shù)整流時,也就是說將有功和無功區(qū)分開來,可以采用d-q變換。這里的d軸代表有功分類,而q軸代表無功分量。
表1 Park變換表
構建整流器數(shù)學模型時利用恒等式(2)可將開關函數(shù)由三相靜止分量轉換為兩相旋轉分量。
以三相交流側電感電流和直流側電容電壓為狀態(tài)變量,可以得到三相整流器的數(shù)學模型:
下面考慮狀態(tài)變量uDC的狀態(tài)方程的右邊。
由于d-q兩軸垂直,所以這兩個正交軸的量相乘時為0,于是有
利用恒等式(3)可將空間向量中的三相正弦電壓合成為等效的旋轉電壓。
將a=exp(j2π/3)代入恒等式(3)左邊,并根據(jù)歐拉公式exp(jA)=cosA+jsinA,則恒等式(3)左邊(略去因子2/3),便得
SVPWM控制策略是依據(jù)變流器空間電壓(電流)矢量切換來控制變流器的一種思路新穎的控制策略。SVPWM技術最初是應用在電機調(diào)速領域的,后來擴展成為一種在整流/逆變領域應用廣泛的PWM 方法[5]。
上式Umexp(jωt)即代表一個旋轉相量,對應于復平面上以等角速度ω按逆時針方向旋轉的一個旋轉矢量。因此,利用式(17)可以將三相正弦波電壓在電壓空間向量中合成一個等效的旋轉電壓,其旋轉速度是輸入電源角頻率。
定義網(wǎng)側空間電壓矢量是SVPWM控制的一個重要步驟,對于等效合成后的任意一個空間電壓矢量Uref可進一步用相應扇區(qū)邊界兩個相鄰的非零矢量和兩個零矢量來表示,使三相橋的輸入為等效的正弦波[6]。因此,采用SVPWM控制策略時經(jīng)歷了空間電壓矢量的合成和再分解兩個過程。
本文給出了SVPWM控制中采用的三個三角恒等式,并進行了證明和應用說明。為“電力電子技術”課程的師生在教學中對于三相整流器數(shù)學模型構建、Park坐標變換及空間電壓矢量合成等方面的概念理解、公式推導和控制策略的實現(xiàn)提供幫助。
[1]付志紅,董玉璽,朱學貴等.數(shù)字鎖相環(huán)與濾波技術在PWM整流器中的應用[J].重慶:重慶大學學報,2010,33(7):35-41
[2]王萬寶,付志紅,蘇向豐等.三相電壓型 SVPWM整流器離散域控制模型的構建[J].北京:系統(tǒng)仿真學報,2010,22(1):222-226
[3]袁登科,徐國卿,張舟云.一種新型空間電壓矢量脈寬調(diào)制方法[J].上海:同濟大學學報(自然科學版),2008,36(12):1702-1706
[4]Mirafzal,B.;Saghaleini,M.;Kaviani,A.K.;An SVPWMBased Switching Pattern for Stand-Alone and Grid-Connected Three-Phase Single-Stage Boost Inverters IEEE Transactions on Power Electronics,2011,26(4):1102-1111
[5]張崇巍,張興.PWM整流器及其控制[M].北京:機械工業(yè)出版社,2003
[6]王萬寶.三相電壓型SVPWM整流器仿真研究[D].重慶,重慶大學,2009