• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微米橄欖石型LiFePO4的水熱合成優(yōu)化

    2012-03-06 04:43:18孫孝飛徐友龍劉養(yǎng)浩
    物理化學(xué)學(xué)報(bào) 2012年12期
    關(guān)鍵詞:橄欖石西安交通大學(xué)水熱

    孫孝飛 徐友龍,* 劉養(yǎng)浩 李 璐

    (1西安交通大學(xué),電子陶瓷與器件教育部重點(diǎn)實(shí)驗(yàn)室,西安710049;2西安交通大學(xué),國(guó)際電介質(zhì)研究中心,西安710049; 3西安交通大學(xué)化學(xué)系,西安710061)

    1 Introduction

    Rechargeable lithium-ion batteries(LIBs)are now widely used in laptops,cell phones,cameras,and other portable electronic devices.At the same time,they are also considered to have broad applications in energy storage systems for high efficiency energy transmission and distribution as the fossil fuels have limited resources and severe environmental pollutions.1,2For instance,lithium-ion battery is the most hopeful energy storage technology for electric vehicles(EVs)including hybrid electric vehicles(HEVs)and plug-in hybrid electric vehicles (PHEVs).Since the successful commercialization of carbon as the anode by Sony Corporation in 1992,3world-wide research has been dedicated to develop high-performance cathode materials.

    Olivine lithium iron phosphate(LiFePO4)is one of the most promising cathode materials for LIBs because of its intrinsic thermal stability,high theoretical capacity(170 mAh·g-1),environmental benignity,and cost effectiveness.1,4Since first studied by Padhi et al.5in 1997,a lot of effort has been put on this material to find new synthesis routes6,7and to understand the relationship between the physicochemical properties and the crystal structures,8-13so as to improve its electrochemical performance.14The main obstacle hindering the large-scale commercialization of LiFePO4in EVs/HEVs/PHEVs is the low conductivity that constrains its high-rate performance.From ab-initio calculation,Morgan et al.15proposed that Li+diffuses preferentially via a one-dimensional channel along[010]direction,which was further confirmed computationally by Islam et al.16and experimentally by Nishimura et al.17Therefore,particle size plays an important role and nanoparticles are no doubt beneficial for lithium migration.14It has been found that during electrochemical charge/discharge,the solid-solution phase increases with the reduction of particle size.18,19Recently,Malik?s computation revealed the particle size dependence of Li+diffusivity which can be easily blocked in large particle LiFePO4.20Therefore,nano-sized LiFePO4is intentionally made to shorten Li+diffusion path.21,22Besides,surface coating23and bulk doping24are employed to improve the electrical conductivity and ultimately the battery performance of LiFePO4.

    However,the tap density of nano materials is lower comparing with that of micro-sized counterparts.Therefore,the volumetric capacity as well as the energy density and power density are decreased.25An ideal case would be having good performance while still keeping particle size in micro scale.Unfortunately,there is no such material reported yet due to the above assumptions.Furthermore,the pathological underneath mechanism that large particle LiFePO4has poorer electrochemical performance is still unclear.We think a reliable groundwork of preparing a representative LiFePO4with single olivine phase, appropriate particle size,uniform morphology,and homogeneous particle distribution is of great importance to start investigation on such fundamental mechanism.Hydrothermal synthesis has been successfully used to prepare olivine LiMPO4(M=Fe,Mn,Co,etc.)family compounds as an effective and low cost method.26,27Its specialty in easy control of particle size and morphology makes it facile in studying the structure and property of LiFePO4.28But a systematic investigation is still needed to fully understand the influence of synthesis condition on the structure and property of the final product.29

    2 Experimental

    2.1 Material preparation

    A series of LiFePO4with different particle sizes and morphologies were prepared hydrothermally by adjusting the synthesis parameters.The starting materials of LiOH·H2O(>98%, Alfa Aesar),FeSO4·7H2O(>99%,Alfa Aesar),and H3PO4(>99%,Aldrich)were mixed together in de-ionized water by a molar ratio of 3:1:1,a little citric acid(>99.5%,Aldrich)was added to prevent oxidation of Fe2+.The pH value was controlled by LiOH or citric acid.The mixture was then transferred into a Teflon-lined stainless steel autoclave which was sealed into an oven.Different temperatures and heating times were implemented to modify the particle size and morphology of LiFePO4.After heat treatment,the products were washed and filtered for several times.The final samples were collected by drying at 80°C under vacuum for 12 h.

    2.2 Characterization

    Powder X-ray diffraction(XRD)was conducted to identify the phase structures on a Rigaku diffactometer with Cu Kαradiation at the 2θ range of 10°-80°.The particle morphology was observed by a JEOL 6320FV field emission scanning electron microscopy(FE-SEM)with an accelerating voltage of 5 kV.

    2.3 Battery performance

    Swagelok half cells using lithium metal as the anodes were assembled in an Argon filled glove box.The cathodes were consisted of LiFePO4,super P,and polytetrafluoroethylene(PTFE) in a mass ratio of 80:15:5.The electrolyte was 1 mol·L-1LiPF6in ethylene carbonate/dimethyl carbonate(EC/DMC,1:1)and the separator was Celgard 2500.The batteries were cycled with constant currents on anArbin BT2000 at room temperature.

    3 Results and discussion

    3.1 Hydrothermal synthesis

    In this work,the influences of precursor concentration,pH value,hydrothermal temperature,and heating time on the particle size and morphology of LiFePO4were investigated.

    3.1.1 Precursor concentration

    The concentration of FeSO4·7H2O was altered to 0.16,0.32, 0.48,and 0.60 mol·L-1while the molar ratio of Li+:Fe2+:PO34-was kept stoichiometrically at[Li+]:[Fe2+]:[PO34-]=3:1:1.The pH value was not changed intentionally,and was 7.87,6.93, 6.85,and 6.89 respectively after mixing.The mixture was heated at 190°C for 60 h.No detective impurities can be found by X-ray diffraction in Fig.1 for all the 4 samples.The difference of peak intensities among these samples is attributed to different atom ordering and preferred orientation in the crystals as can be seen by SEM images in Fig.2.The particle grows bigger when the precursor concentration is increased.At low concentration of[Fe2+]=0.16 mol·L-1,the primary particles are about 200-300 nm and aggregate to flower-like secondary particles with a typical size of~0.7 μm.When the concentration is increased to[Fe2+]=0.32 mol·L-1,the particle size is~1.8 μm with platelet-like morphology.Larger particles with sizes of~2.6 and~3.0 μm are prepared respectively when the concentration is further increased to[Fe2+]=0.48 mol·L-1and[Fe2+]= 0.60 mol·L-1.Moreover,the platelets are grown thicker to form diamond shapes,and the particle distribution gets more homogeneous.According to first principle calculation,the growing particles exhibit(010),(100),and(101)faces.30As identified by Chen et al.,31the large diamond surface corresponds to ac plane that is perpendicular to(010).When the diamond-shaped platelets grow thicker and bigger at higher concentrations,such preferred orientation generates higher(020) intensity on XRD patterns.Since Li+diffuses in a one-dimension channel along(010)direction,the thick profiles along (010)will increase the Li+diffusion path,and eventually degrade the electrochemical performance of LiFePO4.In case of [Fe2+]=0.48 mol·L-1,it shows slightly different relative peak intensity in X-ray diffraction because of partial morphology distortion to elongated hexagonal-prisms as shown in Fig.2(c).30It is also interesting to see small pores on the particle surface of some samples.The detailed mechanism is still unclear and needs further investigation.

    Fig.1 XRD patterns of LiFePO4synthesized at different concentrations

    3.1.2 pH value

    The starting materials were kept at[Fe2+]=0.60 mol·L-1with a molar ratio of[Li+]:[Fe2+]:[PO3-4]=3:1:1.LiOH and citric acid were used to control the pH values at 10.05,7.05,and 4.50,respectively.The mixtures were heated at 190°C for 60 h.The initial pH value was about 6.50 when the precursors were mixed together.The XRD patterns and SEM images are shown in Fig.1([Fe2+]=0.60 mol·L-1)and Fig.2(d),respectively.The particle size is~3.0 μm and the morphology looks like a thick diamond.In the basic solution(pH=10.05),impurities of Li3PO4and Fe3O4are observed by X-ray diffraction in Fig.3.In order to adjust the pH value,large amount of LiOH is added and there is much lithium excess in the precursors.It is then possible to produce Li3PO4during hydrothermal synthesis,and the residual iron can also be oxidized.The typical particle size is about 0.5 μm as shown in Fig.4(a).Yu et al.32also found Li3PO4as an impurity in hydrothermally synthesized LiFePO4with extra lithium in the precursors,which was removed by washing the sample in a neutral buffer solution.When the synthesis solution is adjusted to neutral at pH=7.05,it results in pure-phase LiFePO4with a diamond shape,and the particle size is about 2.3 μm.It is noteworthy that the particles grow dramatically larger to~16.5 μm without any detectable impurities when the pH value is decreased to 4.50.The morphology is not homogeneous either(Fig.4(c)).Some are large bulks while others are agglomerates of needle-like particles.Therefore,the particles are grown bigger at lower pH which is consistent with ab-initio calculation by Wang et al.33that LiFePO4particles can be modified to large plates at lower pH value during solvent synthesis.One should also note that the large content citric acid might play a certain role as well during the particle formation of Fig.4(c).

    Fig.2 SEM images of LiFePO4synthesized at different concentrations[Fe2+]/(mol·L-1):(a)0.16,(b)0.32,(c)0.48,(d)0.60

    Fig.3 XRD patterns of LiFePO4synthesized at different pH values (●)Li3PO4(JCPDS 74-0358),(?)Fe3O4(JCPDS 75-0033)

    Fig.4 SEM images of LiFePO4synthesized at different pH values pH:(a)10.05,(b)7.05,(c)4.50

    3.1.3 Hydrothermal temperature

    In this group of experiments,the concentration was kept constant at[Fe2+]=0.60 mol·L-1with a molar ratio of[Li+]:[Fe2+]: []=3:1:1.The pH value was not changed when the precursors were mixed together,which was about 6.50.The mixture was heated at 170,190,and 220°C respectively for the same time of 60 h to find an optimum temperature of preparing homogeneous micro-sized LiFePO4.

    As Dokko et al.34has pointed out,170°C is high enough to get phase-pure olivine LiFePO4(see Fig.5),but SEM picture in Fig.6(a)indicates that the particle size is only~0.9 μm.The particles are grown to~3.0 μm at 190°C as already discussed in Fig.2(d).However,further increasing the temperature to 220°C has little influence on modifying the particle size and morphology(Fig.6(b)).Ellis et al.35also used hydrothermal method to synthesize LiFePO4and found that the particles prepared at 190°C were bigger than that at 140°C,but they had no clue of further increasing the temperature.

    3.1.4 Heating time

    The heating time was set as 3,6,12,20,and 60 h respectively while the heat temperature was kept at 190°C.Other synthesis parameters were the same as in part 3.1.3.At 190°C, phase-pure LiFePO4could be obtained after 3 h(Fig.7),the longer time was then used to modify the particle size and morphology as shown in Fig.8.The typical particle size is only~0.6 μm when t=3 h.When it is prolonged to 6,12,and 20 h,the particle size increases to~1.5,~2.2,and~2.6 μm respectively and finally reaches~3.0 μm(t=60 h)in Fig.2(d).It seems that longer time is helpful for particle growth,but the electrochemical performance and the synthesis cost should also be considered in large-scale production.Therefore,a better way of synthesizing high performance large particle LiFePO4is combining all these factors together to get a group of optimized param-eters with a compromise as will be discussed later.

    Fig.5 XRD patterns of LiFePO4synthesized at different temperatures

    Fig.6 SEM images of LiFePO4synthesized at different temperatures T/°C:(a)170,(b)220

    3.2 Electrochemical performance

    Four representatives of the above LiFePO4with different sizes and morphologies were selected to study their electrochemical performance:PS0.7([Fe2+]=0.16 mol·L-1,Fig.2(a)),PS2.3 (pH=7.05,Fig.4(b)),PS3.0([Fe2+]=0.60 mol·L-1,Fig.2(d))and PS16.5(pH=4.50,Fig.4(c)),where PS stands for particle size and the number shows its value of~0.7,~2.3,~3.0,and~16.5 μm,respectively.

    Fig.7 XRD patterns of LiFePO4synthesized for different heating times

    Swagelok prototype batteries were assembled in an Ar-filled glove box and were cycled on an Arbin BT2000 between 2.0-4.3V(vs Li/Li+hereafter)at room temperature.The charge/ discharge curves are plotted in Fig.9(a)at a constant current density of 0.1C(1C=170 mA·g-1).All of them have the similar discharge plateau at 3.4 V that is characteristic of LiFePO4. The specific discharge capacities are 152,146,and 142 mAh· g-1when the particle sizes are 0.7,2.3,and 3.0 μm,respectively.It decreases dramatically to 80 mAh·g-1for PS16.5.One should also note the small discharge plateau at 2.5 V for PS0.7 which comes from reduction of Fe2O3according to Dokko et al.36Amorphous Fe2O3could be formed during hydrothermal synthesis in high temperature aqueous solutions.With only a little quantity,it cannot be detected by XRD.

    Fig.8 SEM images of LiFePO4synthesized for different heating times t/h:(a)3,(b)6,(c)12,(d)20

    Fig.9 Charge/discharge curves at 0.1C rate(a)and constant current cyclings at 1C rate(b)of LiFePO4with different particle sizesContinuous lines and dotted lines in(a)correspond to the first and fifth cycles,respectively.The potential window in(b)is 2.0-4.3 V(vs Li/Li+).All tests are performed at room temperature and the cathodes are composed of 80%(w)active material,15%(w)conducting carbon(super P),and 5%(w)binder(PTFE).

    The cells were then cycled at a constant current of 1C for 100 cycles between 2.0 and 4.3 V.No relaxation was allowed during cycling and the results are shown in Fig.9(b).LiFePO4with particle size of 0.7 μm has the highest initial capacity of 105 mAh·g-1and the highest capacity retention of 94.6%after 100 cycles,while PS16.5 has the lowest capacity of 40 mAh· g-1with the capacity retention of 82%.The performance difference between PS2.3 and PS3.0 is not significant at the beginning where they have a similar capacity of 92 mAh·g-1,but PS3.0 loses more capacity after 100 cycles with a capacity retention of only 77.2%(vs 83.77%for PS2.3).The results are in agreement with the charge/discharge curves.Remember that there is no modification such as surface coating or bulking doping for these pristine samples,both Fig.9(a)and Fig.9(b)demonstrate the intrinsic degradation of electrochemical performance in large particle LiFePO4that deserves further investigation.

    3.3 Optimized micro LiFePO4

    Fig.10 Optimized micro-sized LiFePO4as a cathode for LIBs(a)and(b)are the XRD pattern and SEM image of hydrothermally prepared LiFePO4respectively,(c)is the charge/discharge curve at 0.1C rate and(d)is the cycling performance at 1C rate between 2.0 and 4.3 V(vs Li/Li+).The inset in(d)shows the charge/discharge curves of the 1st,50th,and 100th cycles respectively along with cycling.All tests are performed at room temperature and the cathode composition is LiFePO4/super P/PTFE of 80/15/5(mass ratio).

    Based on the above results,an optimized synthesis condition for micro-sized LiFePO4was chosen as follows:[Fe2+]=0.4 mol· L-1with a stoichiometric ratio of ,the pH value was adjusted to 7.05 by a little LiOH,and the mixture was hydrothermally heated at 200°C for 24 h.Phase-pure olivine LiFePO4is prepared as indicated by XRD in Fig.10(a). The SEM image in Fig.10(b)shows that the particles are mainly~2 μm size with distorted thick diamond shapes that are typical for hydrothermally synthesized LiFePO4as discussed before.Moreover,the particle distribution in concern of size and morphology is more homogeneous than the aforementioned samples.The charge/discharge curves of this optimized LiFe-PO4at a constant current of 0.1C are shown in Fig.10(c).Its initial specific discharge capacity is 146 mAh·g-1and a very slight discharge plateau at 2.5 V of Fe2O3could still be found in the first cycle but seems disappeared along with cycling.37The specific discharge capacity of the fifth cycle is stabilized at 148 mAh·g-1with a mono plateau at 3.4 V.When the charge/ discharge rate is changed to a higher current of 1C(Fig.10(d)), the capacity decreases dramatically to 102 mAh·g-1and decays to 90 mAh·g-1after 100 cycles with a retention of 88.24%.It follows well with the above performance trend in micro-sized LiFePO4and lies between sub-micro particles and large micro particles.Without any modification(coating/doping),the capacity is reasonable and kind of acceptable but the rate and cycle performance still need to be enhanced.Moreover,the inset of Fig.10(d)indicates that the charge/discharge curves are slightly transformed to slope-like profiles with increased polarization along with cycling.Therefore,it is a good candidate for investigating the plausible mechanism of performance degradation in large particle LiFePO4.If the electrochemical property LiFePO4with such particle size could be improved,the practical performance especially the volumetric performance of LIBs as well as that of the end applications such as HEVs,PHEVs,and EVs could be much elevated.

    4 Conclusions

    The particle size of olivine LiFePO4increases with the increase of precursor concentration,heat temperature and heating time but with the decrease of pH value during hydrothermal synthesis.The specific capacity drops from 152 to 80 mAh·g-1at 0.1C rate and from 105 to 40 mAh·g-1at 1C rate when the particle size is increased from 0.7 to 16.5 μm demonstrating the intrinsic electrochemical performance degradation in large particle LiFePO4.An optimized 2 μm LiFePO4with relatively homogeneous size and morphology distribution shows reasonable capacity without any modification such as surface coating or bulk doping.Further work is undergoing to understand the underneath mechanism of performance loss in large particle LiFePO4and to improve its battery performance accordingly so as to get high energy/power density cathodes for lithium ion batteries in high efficiency energy storage applications.

    (1)Whittingham,M.S.Chem.Rev.2004,104,4271.doi:10.1021/ cr020731c

    (2) Yang,Z.;Liu,J.;Baskaran,S.;Imhoff,C.;Holladay,J.D. Journal of the Minerals,Metals and Materials Society 2010,62, 14.

    (3) Ozawa,K.Solid State Ionics 1994,69,212.doi:10.1016/0167-2738(94)90411-1

    (4) Ellis,B.L.;Lee,K.T.;Nazar,L.F.Chem.Mater.2010,22,691. doi:10.1021/cm902696j

    (5) Padhi,A.K.;Nanjundaswamy,K.S.;Goodenough,J.B. J.Electrochem.Soc.1997,144,1188.doi:10.1149/1.1837571

    (6) Jugovic,D.;Uskokovic,D.J.Power Sources 2009,190,538. doi:10.1016/j.jpowsour.2009.01.074

    (7) Franger,S.;Le Cras,F.;Bourbon,C.;Rouault,H.J.Power Sources 2003,119-121,252.

    (8) Cabana,J.;Shirakawa,J.;Chen,G.Y.;Richardson,T.J.;Grey, C.P.Chem.Mater.2010,22,1249.doi:10.1021/cm902714v

    (9)Ong,S.P.;Wang,L.;Kang,B.;Ceder,G.Chem.Mater.2008, 20,1798.doi:10.1021/cm702327g

    (10) Recham,N.;Casas-Cabanas,M.;Cabana,J.;Grey,C.P.;Jumas, J.C.;Dupont,L.;Armand,M.;Tarascon,J.M.Chem.Mater. 2008,20,6798.doi:10.1021/cm801817n

    (11) Zhou,F.;Maxisch,T.;Ceder,G.Phys.Rev.Lett.2006,97,4.

    (12)Yamada,A.;Koizumi,H.;Nishimura,S.I.;Sonoyama,N.; Kanno,R.;Yonemura,M.;Nakamura,T.;Kobayashi,Y.Nat. Mater.2006,5,357.doi:10.1038/nmat1634

    (13) Delacourt,C.;Poizot,P.;Tarascon,J.M.;Masquelier,C.Nat. Mater.2005,4,254.doi:10.1038/nmat1335

    (14) Kang,B.;Ceder,G.Nature 2009,458,190.doi:10.1038/ nature07853

    (15) Morgan,D.;Van der Ven,A.;Ceder,G.Electrochem.Solid-State Lett.2004,7,A30.

    (16) Islam,M.S.;Driscoll,D.J.;Fisher,C.A.J.;Slater,P.R.Chem. Mater.2005,17,5085.doi:10.1021/cm050999v

    (17) Nishimura,S.I.;Kobayashi,G.;Ohoyama,K.;Kanno,R.; Yashima,M.;Yamada,A.Nat.Mater.2008,7,707.doi: 10.1038/nmat2251

    (18) Kobayashi,G.;Nishimura,S.I.;Park,M.S.;Kanno,R.; Yashima,M.;Ida,T.;Yamada,A.Adv.Funct.Mater.2009,19, 395.doi:10.1002/adfm.v19:3

    (19) Gibot,P.;Casas-Cabanas,M.;Laffont,L.;Levasseur,S.; Carlach,P.;Hamelet,S.;Tarascon,J.M.;Masquelier,C.Nat. Mater.2008,7,741.doi:10.1038/nmat2245

    (20) Malik,R.;Burch,D.;Bazant,M.;Ceder,G.Nano Lett.2010, 10,4123.doi:10.1021/nl1023595

    (21) Delacourt,C.;Poizot,P.;Levasseur,S.;Masquelier,C. Electrochem.Solid-State Lett.2006,9,A352.

    (22) Herle,P.S.;Ellis,B.;Coombs,N.;Nazar,L.F.Nat.Mater. 2004,3,147.doi:10.1038/nmat1063

    (23) Herstedt,M.;Stjerndahl,M.;Nytén,A.;Gustafsson,T.; Rensmo,H.;Siegbahn,H.;Ravet,N.;Armand,M.;Thomas,J. O.;Edstr?m,K.Electrochem.Solid-State Lett.2003,6,A202.

    (24) Chung,S.Y.;Bloking,J.T.;Chiang,Y.M.Nat.Mater.2002,1, 123.doi:10.1038/nmat732

    (25)Oh,S.W.;Bang,H.J.;Myung,S.T.;Bae,Y.C.;Lee,S.M.; Sun,Y.K.J.Electrochem.Soc.2008,155,A414.

    (26) Chen,J.;Vacchio,M.J.;Wang,S.;Chernova,N.;Zavalij,P.Y.; Whittingham,M.S.Solid State Ionics 2008,178,1676.doi: 10.1016/j.ssi.2007.10.015

    (27) Yang,S.;Zavalij,P.Y.;Whittingham,M.S.Electrochem. Commun.2001,3,505.doi:10.1016/S1388-2481(01)00200-4

    (28) Chen,G.;Song,X.;Richardson,T.J.J.Electrochem.Soc.2007, 154,A627.

    (29) Zhao,H.C.;Song,Y.;Guo,X.D.;Zhong,B.H.;Dong,J.;Liu, H.Acta Phys.-Chim.Sin.2011,27,2347.[趙浩川,宋 楊,郭孝東,鐘本和,董 靜,劉 恒.物理化學(xué)學(xué)報(bào),2011,27, 2347.]doi:10.3866/PKU.WHXB20110905

    (30) Fisher,C.A.J.;Islam,M.S.J.Mater.Chem.2008,18,1209. doi:10.1039/b715935h

    (31) Chen,G.;Song,X.;Richardson,T.J.Electrochem.Solid-State Lett.2006,9,A295.

    (32) Yu,D.Y.W.;Donoue,K.;Kadohata,T.;Murata,T.;Matsuta,S.; Fujitani,S.J.Electrochem.Soc.2008,155,A526.

    (33) Wang,L.;Zhou,F.;Meng,Y.S.;Ceder,G.Phys.Rev.B 2007, 76,165435.doi:10.1103/PhysRevB.76.165435

    (34)Dokko,K.;Koizumi,S.;Kanamura,K.Chem.Lett.2006,35, 338.doi:10.1246/cl.2006.338

    (35)Ellis,B.;Kan,W.H.;Makahnouk,W.R.M.;Nazar,L.F. J.Mater.Chem.2007,17,3248.doi:10.1039/b705443m

    (36) Dokko,K.;Shiraishi,K.;Kanamura,K.J.Electrochem.Soc. 2005,152,A2199.

    (37) Sun,X.;Xu,Y.Mater.Lett.2012,84,139.doi:10.1016/ j.matlet.2012.06.053

    猜你喜歡
    橄欖石西安交通大學(xué)水熱
    《西安交通大學(xué)(社會(huì)科學(xué)版)》青年編委招募
    《西安交通大學(xué)(社會(huì)科學(xué)版)》再獲“最受歡迎期刊”
    西安交通大學(xué)馬克思主義學(xué)院簡(jiǎn)介
    綠色之星橄欖石
    化石(2021年1期)2021-03-16 01:20:50
    橄欖石項(xiàng)鏈
    水熱還是空氣熱?
    天然橄欖石單晶的壓縮性*
    échanges humains dans le contexte de la mondialisation
    綠色小精靈橄欖石
    西部資源(2014年1期)2014-04-29 00:44:03
    簡(jiǎn)述ZSM-5分子篩水熱合成工藝
    麻豆成人av在线观看| 丰满人妻一区二区三区视频av | 午夜亚洲福利在线播放| 国产麻豆成人av免费视频| 级片在线观看| 曰老女人黄片| 18禁黄网站禁片免费观看直播| 日韩三级视频一区二区三区| 午夜福利视频1000在线观看| 亚洲男人的天堂狠狠| 亚洲一区二区三区不卡视频| 神马国产精品三级电影在线观看| 国产精品一区二区三区四区久久| 国产成人影院久久av| 国产激情久久老熟女| 特级一级黄色大片| 国产精品香港三级国产av潘金莲| 亚洲九九香蕉| 亚洲人与动物交配视频| 看片在线看免费视频| 色哟哟哟哟哟哟| 18禁国产床啪视频网站| 久久性视频一级片| 免费在线观看日本一区| 精品国产亚洲在线| 深夜精品福利| 在线观看日韩欧美| 中文字幕av在线有码专区| 亚洲成人久久性| 亚洲av免费在线观看| 午夜免费激情av| 高清在线国产一区| 亚洲中文字幕日韩| 免费电影在线观看免费观看| 禁无遮挡网站| 欧美最黄视频在线播放免费| www.自偷自拍.com| 叶爱在线成人免费视频播放| 亚洲第一欧美日韩一区二区三区| 91九色精品人成在线观看| 嫩草影视91久久| 亚洲精品国产精品久久久不卡| 好男人在线观看高清免费视频| 国产人伦9x9x在线观看| 国产极品精品免费视频能看的| 香蕉av资源在线| 免费看十八禁软件| 夜夜躁狠狠躁天天躁| 国产精品亚洲一级av第二区| 精品国产美女av久久久久小说| 免费人成视频x8x8入口观看| 最近最新中文字幕大全电影3| 变态另类成人亚洲欧美熟女| 亚洲av免费在线观看| 两性夫妻黄色片| 九色国产91popny在线| 黑人巨大精品欧美一区二区mp4| 国产又色又爽无遮挡免费看| 久久久久国内视频| 啦啦啦观看免费观看视频高清| 九色国产91popny在线| 一区二区三区激情视频| 老汉色av国产亚洲站长工具| 两性夫妻黄色片| 国产精品永久免费网站| 午夜福利在线观看免费完整高清在 | 好男人在线观看高清免费视频| 最近最新中文字幕大全电影3| 成人特级黄色片久久久久久久| 美女黄网站色视频| 黄色片一级片一级黄色片| 脱女人内裤的视频| 成人国产一区最新在线观看| 国产伦人伦偷精品视频| 日本在线视频免费播放| 999精品在线视频| 国产欧美日韩精品亚洲av| 亚洲成av人片免费观看| 波多野结衣巨乳人妻| 亚洲专区中文字幕在线| 天天添夜夜摸| 亚洲欧美精品综合久久99| 少妇熟女aⅴ在线视频| 亚洲美女黄片视频| 久久精品91无色码中文字幕| 精品国内亚洲2022精品成人| 男女午夜视频在线观看| 亚洲国产精品成人综合色| 人妻久久中文字幕网| 手机成人av网站| 亚洲片人在线观看| 99在线视频只有这里精品首页| 可以在线观看毛片的网站| 悠悠久久av| 女生性感内裤真人,穿戴方法视频| 国产成人一区二区三区免费视频网站| 不卡av一区二区三区| 美女午夜性视频免费| 成人午夜高清在线视频| 久久久久精品国产欧美久久久| 国产亚洲av高清不卡| 精品乱码久久久久久99久播| 三级毛片av免费| 亚洲国产欧美网| 在线视频色国产色| 黄片大片在线免费观看| 亚洲av片天天在线观看| 国产一区在线观看成人免费| 青草久久国产| 国产伦在线观看视频一区| 久久人人精品亚洲av| 亚洲精品中文字幕一二三四区| 欧美成人免费av一区二区三区| 欧美日韩精品网址| 中文字幕人妻丝袜一区二区| 夜夜夜夜夜久久久久| 少妇熟女aⅴ在线视频| 国产精品久久久人人做人人爽| 美女cb高潮喷水在线观看 | 一个人免费在线观看的高清视频| 最新在线观看一区二区三区| 久久久久国产精品人妻aⅴ院| 久久精品aⅴ一区二区三区四区| 国产精品 国内视频| 国产aⅴ精品一区二区三区波| av在线蜜桃| 亚洲av日韩精品久久久久久密| 国产成人欧美在线观看| 变态另类成人亚洲欧美熟女| or卡值多少钱| 成人18禁在线播放| 嫩草影视91久久| 狠狠狠狠99中文字幕| 成人18禁在线播放| 精品人妻1区二区| 免费看美女性在线毛片视频| av黄色大香蕉| 日韩欧美国产一区二区入口| a级毛片在线看网站| 九色国产91popny在线| 999久久久国产精品视频| 亚洲性夜色夜夜综合| 成人三级做爰电影| 熟女电影av网| 叶爱在线成人免费视频播放| 亚洲国产精品久久男人天堂| 日韩欧美 国产精品| 国产精品精品国产色婷婷| 老司机福利观看| 精品不卡国产一区二区三区| 亚洲狠狠婷婷综合久久图片| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av| 在线免费观看的www视频| 成人av在线播放网站| 久久久久免费精品人妻一区二区| 一进一出好大好爽视频| 三级毛片av免费| 91在线观看av| 午夜福利在线在线| 成人午夜高清在线视频| 亚洲在线自拍视频| 精品国产超薄肉色丝袜足j| 欧美黑人欧美精品刺激| 色播亚洲综合网| 在线免费观看的www视频| 亚洲国产色片| 国产精品99久久久久久久久| 亚洲av免费在线观看| 国产美女午夜福利| 99视频精品全部免费 在线 | 两性午夜刺激爽爽歪歪视频在线观看| 亚洲熟妇中文字幕五十中出| 久久久久国产一级毛片高清牌| 久久国产精品影院| 少妇裸体淫交视频免费看高清| 亚洲第一电影网av| 午夜免费成人在线视频| 男人的好看免费观看在线视频| 国产1区2区3区精品| av国产免费在线观看| 毛片女人毛片| 无限看片的www在线观看| 国产蜜桃级精品一区二区三区| 亚洲成av人片免费观看| 欧美日韩国产亚洲二区| 亚洲精品美女久久av网站| 日本黄色片子视频| 亚洲中文字幕一区二区三区有码在线看 | 91麻豆av在线| 一进一出抽搐gif免费好疼| 久久精品影院6| 成人无遮挡网站| 窝窝影院91人妻| 成年女人看的毛片在线观看| 亚洲国产欧洲综合997久久,| 精品99又大又爽又粗少妇毛片 | 免费看日本二区| 熟女电影av网| 99国产精品一区二区蜜桃av| 成人欧美大片| 在线永久观看黄色视频| 国产亚洲欧美98| 日本成人三级电影网站| а√天堂www在线а√下载| 真实男女啪啪啪动态图| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 成人永久免费在线观看视频| 亚洲国产欧洲综合997久久,| 熟女少妇亚洲综合色aaa.| 免费在线观看影片大全网站| 老鸭窝网址在线观看| 亚洲av中文字字幕乱码综合| 国产蜜桃级精品一区二区三区| 日韩有码中文字幕| 亚洲国产精品合色在线| 九九热线精品视视频播放| 欧美中文综合在线视频| 久久久国产欧美日韩av| 精品熟女少妇八av免费久了| 在线观看66精品国产| 国产三级黄色录像| 中文字幕最新亚洲高清| 巨乳人妻的诱惑在线观看| 亚洲成av人片免费观看| 变态另类成人亚洲欧美熟女| 欧美成人性av电影在线观看| 亚洲中文日韩欧美视频| 国产精品,欧美在线| 美女 人体艺术 gogo| 国产精品一区二区精品视频观看| 亚洲av日韩精品久久久久久密| 国产av一区在线观看免费| 日韩免费av在线播放| 色精品久久人妻99蜜桃| 757午夜福利合集在线观看| 九色成人免费人妻av| 亚洲av电影不卡..在线观看| 男人舔女人的私密视频| 久久性视频一级片| 亚洲专区国产一区二区| 18禁美女被吸乳视频| 啦啦啦观看免费观看视频高清| 在线观看一区二区三区| 99热6这里只有精品| 黄色成人免费大全| 一夜夜www| 国产探花在线观看一区二区| 精品国产美女av久久久久小说| 国产69精品久久久久777片 | 特大巨黑吊av在线直播| 亚洲美女黄片视频| 亚洲人成伊人成综合网2020| 麻豆久久精品国产亚洲av| av视频在线观看入口| 窝窝影院91人妻| 久久天堂一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 国产一区在线观看成人免费| 国产精品亚洲av一区麻豆| 999久久久精品免费观看国产| 日本a在线网址| 99国产精品99久久久久| 十八禁网站免费在线| www.精华液| 国产av在哪里看| a在线观看视频网站| 特级一级黄色大片| 俄罗斯特黄特色一大片| 亚洲av片天天在线观看| 欧美一区二区国产精品久久精品| 精品久久久久久久久久免费视频| 一区福利在线观看| 99久久精品国产亚洲精品| 亚洲精品在线美女| 久久久久国内视频| 在线观看66精品国产| 日本a在线网址| 国产成人精品久久二区二区免费| 国产欧美日韩精品亚洲av| www.熟女人妻精品国产| 国产不卡一卡二| 久久这里只有精品19| 成年女人看的毛片在线观看| 俺也久久电影网| 欧美激情久久久久久爽电影| 性色av乱码一区二区三区2| 成人欧美大片| 19禁男女啪啪无遮挡网站| 国产av一区在线观看免费| 亚洲成人中文字幕在线播放| 色视频www国产| 悠悠久久av| 男人的好看免费观看在线视频| 亚洲午夜精品一区,二区,三区| 一个人免费在线观看的高清视频| 小蜜桃在线观看免费完整版高清| 久久久水蜜桃国产精品网| 天堂影院成人在线观看| avwww免费| 操出白浆在线播放| 两个人的视频大全免费| 久久性视频一级片| 亚洲电影在线观看av| 91久久精品国产一区二区成人 | 网址你懂的国产日韩在线| 91av网站免费观看| 91九色精品人成在线观看| 久久久久久国产a免费观看| 中文字幕最新亚洲高清| 国产91精品成人一区二区三区| 国产v大片淫在线免费观看| 国产av在哪里看| 亚洲成人久久爱视频| 亚洲电影在线观看av| 久久精品91无色码中文字幕| 一级黄色大片毛片| www.www免费av| 婷婷亚洲欧美| 母亲3免费完整高清在线观看| 日韩欧美一区二区三区在线观看| 色综合欧美亚洲国产小说| av中文乱码字幕在线| 国产真实乱freesex| 国产亚洲精品久久久久久毛片| 精品免费久久久久久久清纯| 91九色精品人成在线观看| 国产成人福利小说| 真人做人爱边吃奶动态| 国产精品爽爽va在线观看网站| 精品久久久久久久久久免费视频| 天堂动漫精品| 久久久精品大字幕| 国产高清视频在线观看网站| 欧美一级a爱片免费观看看| 一进一出好大好爽视频| 法律面前人人平等表现在哪些方面| 欧美av亚洲av综合av国产av| 欧美中文日本在线观看视频| 亚洲真实伦在线观看| 操出白浆在线播放| 日韩欧美国产一区二区入口| 亚洲成a人片在线一区二区| 日韩精品青青久久久久久| 男人和女人高潮做爰伦理| 国产视频一区二区在线看| 色播亚洲综合网| 又黄又爽又免费观看的视频| 亚洲国产精品成人综合色| 搞女人的毛片| 亚洲欧美日韩卡通动漫| 国产精品99久久99久久久不卡| 51午夜福利影视在线观看| 欧美日韩国产亚洲二区| 精品国产乱码久久久久久男人| 色综合婷婷激情| 欧美性猛交黑人性爽| 窝窝影院91人妻| 日韩三级视频一区二区三区| 国产成人精品久久二区二区免费| 一个人免费在线观看的高清视频| 国产午夜精品论理片| 亚洲九九香蕉| 岛国在线观看网站| 欧美zozozo另类| 国产成+人综合+亚洲专区| 国产精品自产拍在线观看55亚洲| 亚洲一区二区三区不卡视频| 国产高清有码在线观看视频| 亚洲午夜精品一区,二区,三区| 岛国在线免费视频观看| 手机成人av网站| 老鸭窝网址在线观看| 国产精品99久久99久久久不卡| 91久久精品国产一区二区成人 | 久久久久久人人人人人| 非洲黑人性xxxx精品又粗又长| 此物有八面人人有两片| 97超级碰碰碰精品色视频在线观看| 国产三级中文精品| 桃色一区二区三区在线观看| 亚洲自拍偷在线| 欧美一级毛片孕妇| 黄色女人牲交| 中文在线观看免费www的网站| 热99在线观看视频| 亚洲欧洲精品一区二区精品久久久| 国产高清激情床上av| 欧美中文综合在线视频| 日韩欧美一区二区三区在线观看| 精品一区二区三区av网在线观看| 麻豆国产97在线/欧美| 看片在线看免费视频| 亚洲精品国产精品久久久不卡| 真人做人爱边吃奶动态| 我要搜黄色片| 国产毛片a区久久久久| 免费人成视频x8x8入口观看| 全区人妻精品视频| 真人一进一出gif抽搐免费| 久久久久久人人人人人| 桃色一区二区三区在线观看| 国产又色又爽无遮挡免费看| 丰满人妻熟妇乱又伦精品不卡| 国产私拍福利视频在线观看| 夜夜躁狠狠躁天天躁| 国产黄a三级三级三级人| 美女被艹到高潮喷水动态| 久久久久久国产a免费观看| 国产亚洲精品综合一区在线观看| 国产伦人伦偷精品视频| 国产精品98久久久久久宅男小说| 久久久久九九精品影院| 午夜福利高清视频| 桃色一区二区三区在线观看| 在线观看一区二区三区| 两个人看的免费小视频| 19禁男女啪啪无遮挡网站| 欧美高清成人免费视频www| 成在线人永久免费视频| 日本熟妇午夜| 亚洲精华国产精华精| 欧美日韩综合久久久久久 | 国产精品98久久久久久宅男小说| 欧美乱妇无乱码| 12—13女人毛片做爰片一| 精品无人区乱码1区二区| 亚洲欧美日韩无卡精品| 法律面前人人平等表现在哪些方面| 他把我摸到了高潮在线观看| 国产探花在线观看一区二区| 噜噜噜噜噜久久久久久91| 亚洲国产欧美网| 一夜夜www| 国产精品1区2区在线观看.| 久久久久国内视频| 亚洲专区中文字幕在线| 久久草成人影院| 黄色女人牲交| 成人欧美大片| 搡老妇女老女人老熟妇| 黄色日韩在线| 真人一进一出gif抽搐免费| 又粗又爽又猛毛片免费看| 国产单亲对白刺激| 久久精品国产清高在天天线| 国产91精品成人一区二区三区| 两个人看的免费小视频| 午夜福利免费观看在线| 日韩精品中文字幕看吧| 亚洲五月婷婷丁香| 好男人电影高清在线观看| 狂野欧美激情性xxxx| 久久亚洲精品不卡| 91老司机精品| 淫秽高清视频在线观看| 757午夜福利合集在线观看| 性色avwww在线观看| 老汉色∧v一级毛片| 三级毛片av免费| 巨乳人妻的诱惑在线观看| 午夜久久久久精精品| 波多野结衣高清作品| 99国产精品99久久久久| 久久久久久久精品吃奶| 身体一侧抽搐| 久久久国产成人精品二区| 九九久久精品国产亚洲av麻豆 | 99久久精品热视频| 成人欧美大片| av视频在线观看入口| 亚洲 欧美 日韩 在线 免费| x7x7x7水蜜桃| 在线观看一区二区三区| 看免费av毛片| 男女之事视频高清在线观看| 夜夜看夜夜爽夜夜摸| 久久这里只有精品19| 男人舔女人下体高潮全视频| 一级毛片女人18水好多| 搡老妇女老女人老熟妇| 熟女电影av网| 日本撒尿小便嘘嘘汇集6| 男人舔女人下体高潮全视频| 看免费av毛片| 亚洲精品中文字幕一二三四区| 国产精品久久久久久久电影 | 国产成人精品久久二区二区免费| 亚洲国产精品成人综合色| 日本黄大片高清| 久久久久性生活片| 久久精品aⅴ一区二区三区四区| 中文字幕久久专区| 18禁美女被吸乳视频| 日韩中文字幕欧美一区二区| 在线免费观看不下载黄p国产 | 免费在线观看日本一区| 亚洲av第一区精品v没综合| 日本黄色视频三级网站网址| 亚洲成a人片在线一区二区| 久久久成人免费电影| 国产欧美日韩精品一区二区| 精品免费久久久久久久清纯| 欧美日韩黄片免| 欧美3d第一页| 亚洲av免费在线观看| 国产午夜精品论理片| 又大又爽又粗| 日韩欧美国产一区二区入口| 色尼玛亚洲综合影院| 国产亚洲欧美在线一区二区| www日本在线高清视频| 国产亚洲精品久久久com| 午夜免费成人在线视频| 亚洲天堂国产精品一区在线| 综合色av麻豆| 又紧又爽又黄一区二区| 老司机午夜十八禁免费视频| 香蕉av资源在线| 2021天堂中文幕一二区在线观| 亚洲国产中文字幕在线视频| 在线免费观看的www视频| 亚洲av片天天在线观看| 亚洲精品久久国产高清桃花| 欧美+亚洲+日韩+国产| 狂野欧美激情性xxxx| 亚洲精品色激情综合| 无限看片的www在线观看| 国产精华一区二区三区| 亚洲欧美日韩无卡精品| 亚洲欧美日韩高清在线视频| 欧美日韩乱码在线| 亚洲一区二区三区色噜噜| 亚洲精品456在线播放app | 99久久精品一区二区三区| 亚洲国产欧美人成| 亚洲成av人片在线播放无| 免费大片18禁| 国内精品一区二区在线观看| 成人无遮挡网站| ponron亚洲| av片东京热男人的天堂| 美女免费视频网站| 女人被狂操c到高潮| 亚洲av免费在线观看| 亚洲自偷自拍图片 自拍| 午夜精品在线福利| 国产精品久久久av美女十八| 脱女人内裤的视频| 啪啪无遮挡十八禁网站| 91字幕亚洲| 日韩欧美在线二视频| 淫秽高清视频在线观看| 全区人妻精品视频| 免费看日本二区| 国产av不卡久久| 国内精品一区二区在线观看| 可以在线观看的亚洲视频| 99久久精品热视频| 久久久久免费精品人妻一区二区| 国产亚洲精品久久久com| 18禁黄网站禁片免费观看直播| 脱女人内裤的视频| 亚洲五月天丁香| 97碰自拍视频| 中文字幕最新亚洲高清| 午夜亚洲福利在线播放| 国产高清视频在线播放一区| 亚洲欧美精品综合久久99| 丰满的人妻完整版| 啦啦啦韩国在线观看视频| 观看美女的网站| 麻豆久久精品国产亚洲av| 国产69精品久久久久777片 | 国产精品 欧美亚洲| 舔av片在线| 999久久久精品免费观看国产| 成人三级做爰电影| 久久久久久大精品| 女同久久另类99精品国产91| 两人在一起打扑克的视频| 99精品欧美一区二区三区四区| 亚洲va日本ⅴa欧美va伊人久久| 久99久视频精品免费| 久久精品国产亚洲av香蕉五月| 91九色精品人成在线观看| 后天国语完整版免费观看| 国产高清激情床上av| 久久久久免费精品人妻一区二区| 亚洲欧美日韩高清专用| 男人舔女人下体高潮全视频| 国产亚洲精品综合一区在线观看| 给我免费播放毛片高清在线观看| 91av网一区二区| 波多野结衣巨乳人妻| 男人的好看免费观看在线视频| 亚洲欧美日韩无卡精品| 免费一级毛片在线播放高清视频| 亚洲五月天丁香| 亚洲欧美日韩无卡精品| 国产激情偷乱视频一区二区| 欧美xxxx黑人xx丫x性爽| 欧美av亚洲av综合av国产av| 国产激情偷乱视频一区二区| 嫁个100分男人电影在线观看| 美女午夜性视频免费| 国产亚洲精品综合一区在线观看| 一本一本综合久久| 九九久久精品国产亚洲av麻豆 | 国产精品爽爽va在线观看网站| 国产午夜福利久久久久久| 午夜成年电影在线免费观看| 91av网站免费观看| 男人舔女人的私密视频|