• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于啟發(fā)式方法和支持向量機(jī)方法預(yù)測有機(jī)物的熱導(dǎo)率

    2012-12-11 09:10:14時靜潔陳利平陳網(wǎng)樺
    物理化學(xué)學(xué)報 2012年12期
    關(guān)鍵詞:熱導(dǎo)率南京向量

    時靜潔 陳利平 陳網(wǎng)樺,* 石 寧 楊 惠 徐 偉

    (1南京理工大學(xué)化工學(xué)院安全工程系,南京210094;2化學(xué)品安全控制國家重點(diǎn)實(shí)驗室,山東青島266071)

    基于啟發(fā)式方法和支持向量機(jī)方法預(yù)測有機(jī)物的熱導(dǎo)率

    時靜潔1,2陳利平1陳網(wǎng)樺1,*石 寧2楊 惠1徐 偉2

    (1南京理工大學(xué)化工學(xué)院安全工程系,南京210094;2化學(xué)品安全控制國家重點(diǎn)實(shí)驗室,山東青島266071)

    構(gòu)建147個有機(jī)物分子結(jié)構(gòu)與其熱導(dǎo)率值之間的定量結(jié)構(gòu)-性質(zhì)關(guān)系(QSPR)模型,探討影響有機(jī)物熱導(dǎo)率的結(jié)構(gòu)因素.以147個化合物作為樣本集,隨機(jī)選擇118個作為訓(xùn)練集,29個作為測試集.應(yīng)用CODESSA軟件計算了組成、拓?fù)?、幾何、靜電和量子化學(xué)等描述符,通過啟發(fā)式方法(HM)篩選得到5個結(jié)構(gòu)參數(shù)并建立線性回歸模型;用所選5個結(jié)構(gòu)參數(shù)作為支持向量機(jī)(SVM)的輸入,建立非線性的支持向量機(jī)回歸模型.預(yù)測結(jié)果表明:支持向量機(jī)回歸模型的性能(復(fù)相關(guān)系數(shù)R2=0.9240)雖略低于啟發(fā)式回歸模型的性能(R2=0.9267),但是支持向量機(jī)方法預(yù)測性能(R2=0.9682)高于啟發(fā)式方法的預(yù)測性能(R2=0.9574),對于QSPR模型來說,預(yù)測性能更重要.因此,總體來說支持向量機(jī)方法優(yōu)于啟發(fā)式方法.支持向量機(jī)方法和啟發(fā)式方法的提出為工程上提供了一種根據(jù)分子結(jié)構(gòu)預(yù)測有機(jī)物熱導(dǎo)率的新方法.

    啟發(fā)式方法;支持向量機(jī);熱導(dǎo)率;預(yù)測;定量結(jié)構(gòu)-性質(zhì)關(guān)系

    1 Introduction

    Thermal conductivity,also known as the coefficient of thermal conductivity,reflects the capacity of heat transmission.1Thermal conductivity data are most important for the engineering design of any thermal processes.2Thermal conductivities of organics at 20°C in a liquid state were studied in this research. Usually thermal conductivity is experimentally measured.Several different approaches could potentially be used to study thermal conductivity:(i)heat flux meter techniques,3(ii)flash technique,4(iii)transient plane-source method,5(iv)transient hotwire method.6Yet such measuring methods are time-consuming and technique-limited.Furthermore,an accurate determination of this property is very difficult because of convection and radiation accompanying the heat losses during experiment.7Thus,the prediction of the thermal conductivity with a theoretical method becomes important and necessary.

    Quantitative structure-property relationship(QSPR)models are obtained through analyzing and calculating the correlation between the property and a variety of structural information.8-11The purpose of constructing a QSPR model is to find factors that determine the property.Meanwhile,such a model can also predict the property of compounds including those not yet synthesized,since the property is determined by the molecular structure which is translated into the so-called molecular descriptors.Recently,HM and SVM have been developed to predict nematic transition temperatures in themotropic liquid crystal,12binding affinities of adenosine A2Areceptor antagonists,13the activities of imidazothienopyrazines14and so on.Bini and his research team15also built an HM model on the thermal conductivity,but their study had some disadvantages.There were only 33 data in their sample dataset,although the squared correlation coefficient(R2)was a bit higher.Furthermore,they did not divide the sample dataset into the training set and the test one.As a result,it is impossible to know the predictive ability of the model.What is more,they did not study the non-linear model.Hence,we cannot figure out the non-linear relationship between the thermal conductivity and the molecular structure.

    The objective of our work is to find the structural factors which play important roles in the thermal conductivity for organics and to establish the quantitative linear and non-linear relationships(HM and SVM)between the thermal conductivity and molecular descriptors.

    2 Materials and methodology

    2.1 Data

    The accuracy of the prediction model can be affected directly by the reliability of experimental values.Thus it is important to select a reliable dataset.The data source in this work is from Data Manual for the Physical Property of Organic Compounds which is carefully compiled by Qingdao Institute of Chemical.

    The whole dataset is composed of 147 compounds containing C,H,O,N,Cl,S,and F,and covers hydrocarbons,halogen compounds,ethers,alcohols,esters,aldehydes,ketones, amines,and amino compounds.These compounds with wide chemical diversities lay the foundation for a robust and effective prediction model.In order to build a QSPR model,the dataset was randomly divided into two subsets,the training set and the test one,consisting of 118(80%)and 29(20%)compounds,respectively.The training set was used to select variables and to construct the models,and the performance of the models was evaluated by the test one.In addition,for the purpose of comparison,the two subsets which were employed to build an HM model,and the two ones employed to build an SVM model,were exactly the same.

    2.2 Descriptors

    Descriptors are defined as numerical characteristics associated with chemical structures.They are derived from the chemical constitution,topology,geometry,wave function,potential energy surface,and some combinations of these items of a given chemical structure.The value of a particular descriptor can be set by the user or calculated automatically by software,such as CODESSA.Each descriptor value must be associated with a previously defined structure.In this paper,CODESSA was employed to compute values of these descriptors.The software, designed by Katritzky team,can be used to calculate 804 descriptors covering constitutional,geometrical,topological,electrostatic,quantum-chemical,and thermodynamic descriptors. The classification of these descriptors is listed in Table 1.

    The selection of suitable molecule descriptors is very critical throughout the QSPR research.An efficient descriptor must be capable of providing as much structural information as possible,and the more precise the better.Recently,there are a variety of variable selection methods such as the genetic algorithm (GA)method and the HM.Herein,HM was chosen in this paper to select variables due to the two advantages of HM.First, with this approach,the global optimal solution could be found.16When selecting variables from large amounts of data, we are in need of a method to go beyond the local best solution so as to find a global best solution.But owing to their own limitations,traditional methods could be only used to search the partial solution,not the global optimal solution.The second advantage is that HM is very simple and convenient compared with GA.Although GA can also obtain the global optimal solution,people need to compile complicated codes in MATLAB environment when using this method.

    HM is employed to remove some descriptors by pretreat-ment according to the following four criteria.(1)Not all compounds share the same parameters;(2)to all compounds,numerical value of descriptors changes within a small range;(3) in the equation related to parameters,HM eliminates the descriptors which do not match the following criterion:the F-test F<0.1;(4)HM deletes the descriptors whose t-test value t is less than the defined one.After the pre-selection of descriptor, multiple linear regression method is developed in a stepwise procedure.First,starting with the top descriptor from the pre-selected list of descriptors,the two-parameter correlation is calculated using the following pairs:the first descriptor with each of the remaining descriptors and the second descriptor with each of the remaining descriptors,etc.The best pairs,as evidenced by the highest F-values in the two-parameter correlations,are chosen and used for further inclusion of descriptors in a similar manner.Then,new descriptors are added one-byone until the pre-selected number of descriptors in the model is achieved.Astepwise addition of further descriptor scales is performed to find the best multi-parameter regression models with the optimum values of statistical criteria(highest values of R2, the F-test,and the standard deviation(S)).From the above processes,five descriptors are selected from descriptors pool and the linear model is produced by the HM.17

    Table 1 Classification of descriptors

    2.3 Computational methods

    SVM was introduced by Vapnik18and has been applied to classification as well as regression tasks.For a given regression problem,the main goal of using SVM is to find the optimal hyperplane with the largest margin separating classes of data.The schematic diagram is shown in Fig.1.

    For the linear regression problem,a data set is considered, and each input{(xi,yi),i=1,2,…,n}is mapped into the corresponding output.The approximate value can be obtained by the linear function:

    In order to ensure the flatness of the function(1),finding out the minimum w is essential.A hypothesis is suggested:all the data points can fit with the linear function in the accuracy of ε. Then minimizing w transforms into the problem of reducing model complexity,namely,the following quadratic programming problem:min(1/2||w||2)

    Fig.1 Principle description of SVM for regression problems

    In consideration of the fitting error,the slack variablesand C are introduced.The constant C>0 is a regularization constant determining the trade-off between the training error and the model flatness.Then the problem correspondingly changes into the following optimization one:

    The solution is a linear regression function of the optimal hyperplane as follows:

    where,αi,and b are the parameters which play the performance of determining the optimal hyperplane and can be achieved by means of working out the above constraint conditions(3).

    For the non-linear regression problem,with the help of the nonlinear mapping ψ,all data points are mapped into the high dimensional feature space.Then the problem can be perfectly solved just by using the above linear regression method.With the transformation of the nuclear function,the points are successfully mapped into the high dimensional feature space by the support vector machine.The kernel function accords with the following constraint:K(x,xi)=<ψ(x)·ψ(xi)>.

    Once the coefficients are determined,the regression estimate is given by Eq.(5):

    In the present study,the kernel function mainly contains four forms:linear nuclear,polynomial nuclear,radial basis function (RBF),and sigmoid.Herein,the widely used technique RBF was adopted for research.

    2.4 Model validation

    Model validation is proved to be crucial to QSPR modelling. It is acknowledged that the three aspects of fitting ability,robust performance,and predictive power are all very important. If one of them is ignored,we would never reach any comprehensive evaluation.Hence,according to OECD principles,the QSPR models,which have been built,must be comprehensively validated from the above mentioned three indices.The quality of fitting ability of the models is judged by the squared correlation coefficient R2,the average absolute error(AAE),and the root mean square error(RMSE).R2is an indicator that measures linear correlation degree between one variable and another.RMSE indicates dispersion degree of random error.The larger R2is,the smaller RMSE will be,and the model will have more fitting ability.However,good fitness does not stand for good robustness and predictive ability,thus internal validation is considered to be necessary for model validation.The internal predictive capability of a model is evaluated by leave-one-out cross-validationon the training set,which is defined as the following equation(6):

    Excellent Q2can illustrate robustness as well as excellent internal predictive ability of the QSPR models;yet,it cannot guarantee the true predictive ability of the models.Roy20and Pinheiro21et al.pointed out that the external validation was a crucial and indispensable validation method used to determine the true predictive ability of the QSPR models for new chemicals.The predictive ability of a model on external validation set can be expressed byby the following equation(7):

    where,yiandare respectively the experimental,predicted values of the test set,andis the mean experimental lnTC values of the samples in the training set.

    3 Results and discussion

    3.1 Interpretation of the selected descriptors

    The descriptors of each compound were calculated by CODESSA.HM can give one-to six-parameter models.When adding another descriptor cannot improve significantly the statistics of a model,it shows that the optimum subset size has been achieved.To avoid over-parametrization of the model,an increase in the value which is less than 0.02 is chosen as the breakpoint criterion.22The influences of the numbers of descriptors on R2are shown in Fig.2.

    Fig.2 shows that 5-parameter correlation is an ideal choice and adopted for the model input.Therefore,five descriptors were proposed as the model input.

    3.2 Results of HM

    After the heuristic reduction,a linear model was built shown in the following equation(8):

    Fig.2 R2versus descriptor number

    where,lnTC is the logarithm value of the thermal conductivity, F is Fish criterion,S is corrected mean square error,and n is the number of the sample.The type and the definition of the five descriptors and statistical parameters are described in Table 2.The comparison of the predicted and the experimental values are presented in Fig.3.

    The aim of this study is to seek the structural factors that influence the thermal conductivity by the analysis of the descriptors.There are five descriptors including two electrostatic descriptors,two constitutional descriptors,and one quantumchemical descriptor.These descriptors reflect different characters of the molecular structure.It is observed that constitutional descriptors and electrostatic descriptors play a main role.HA dependent HDSA-1/TMSA among electrostatic descriptors represents solvent-accessible surface area of H-bonding donor H atoms which is affected by the size of the hydrogen bonding interaction.The definition of FPSA3 fractional PPSA(PPSA3/ TMSA)[Zefirov?s PC]is FPSA3=PPSA3/TMSA,PPSA3 indicates total charge weighted partial positively charged molecular surface area,TMSA refers to total molecular surface area, and FPSA3 is expressed by fractional atomic charge weighted partial positive surface area.Relative molecular weight and relative number of C atoms are the constitutional descriptors. Quantum-chemical descriptor of the model is minimun(Min>0.1)bond order of an F atom.How much influence each descriptor has on the thermal conductivity is judged by comparing the coefficients before descriptors.If the coefficient is positive,the correlation between the descriptors and the thermal conductivity is positive,otherwise,negative.The larger the absolute value of the coefficient is,the more influence the descriptor is.Accordingly the permutation order is X3>X1>X2>X4>X5.

    3.3 Results of SVM

    For further research on the non-linear relationship betweenthe thermal conductivity and the molecular structure,SVM was proposed for the non-linear model.Descriptors were selected by HM as input and the thermal conductivity as output. It is difficult to choose related parameters when SVM is developed to predict.Inappropriate parameter selection can make a serious impact on the precision or accuracy of the prediction.

    Table 2 Selected descriptors and statistical parameters

    Fig.3 Comparison between the predicted and experimental lnTC by HM for test set

    RBF was chosen as a kernel function for appropriate related parameters which is most widely used at present.23-25Grid point search(GS)was applied to choose the best parameter combination.The search range of C and γ named the width of RBF, were both from 2-8to 28,and the step length was 1.Then the best coefficient was determined on the basis of Q2loocalculated by leave-one-out cross-validation for the training set.The optimal parameters are displayed as follows:C=256,γ=0.2500,ε= 0.1.The main performance parameters are presented in Table 3 and the comparison between the predicted and the experimental values are shown in Fig.4.

    3.4 Comparison and analysis of the results

    From Fig.3 and Fig.4,one can see that the calculated conversion values of HM and SVM are in good agreement with the experimental ones(Table 4),and the prediction accuracy is satisfying.As shown in Table 3,RMSE and AAE of HM and SVM are both small for the test set,and compared the training set with the test one,the prediction error is close to each other. This depicts that the constructed models have not only higher prediction ability but also better generalization performance than previous ones.

    In addition,the specific calculation results of relative errorfor HM and SVM are shown in Fig.5.In terms of HM,the mean relative error is 0.7961%and the maximum relative error is 2.986%.The relative errors of 52 compounds are smaller than 0.5%,whose number accounts for about 35%of the whole samples.For SVM,the mean relative error is 0.7435% and the maximum relative error is 2.965%.The relative errors of 70 compounds are smaller than 0.5%,whose number accounts for more than 50%of the whole samples.Compared with HM,the number of larger prediction error in SVM is significantly reduced.The data in Table 3 reveals that for the training set,R2of SVM is a bit smaller than that of HM,but for the test set,R2of SVM is higher than that of HM;however,prediction ability is regarded more important,therefore,SVM model for the thermal conductivity is better than HM model.

    Table 3 Performance comparison between the results of two models

    Fig.4 Comparison between the predicted and experimental lnTC by SVM for test set

    Although prediction effect of the two models in this study is satisfying,abnormal values still exist.Abnormal values(Table 5)severely influence the prediction performance of the models.If abnormal values of HM and SVM are screened,the performance of the models is greatly improved.

    Further residual analysis on the test set of the two models was performed(Fig.6).The residuals of HM model and SVM model are both randomly distributed in both sides of the line. Thus it can be concluded that the system error is not produced in the built process for HM model and SVM model,and the built models are very robust.

    Fig.5 Number of compounds for each interval and the percent errors obtained by HM and SVM

    Table 4 Experimental and predicted lnTC by HM and SVM

    Table 5 Abnormal values of predicted ln(TC/(mW·m-1·K-1))

    Fig.6 Comparative residuals vs experimental lnTC of test set for the HM and SVM models

    4 Conclusions

    (1)HM in software CODESSA not only screens molecular descriptors but also builds a linear model in this paper.Then SVM constructs a non-linear model with the screened descriptors.The two models are satisfying;especially SVM has stronger ability to predict.

    (2)Analysis of the screened abnormal values and the residual figure can improve the built model and make the model robust.

    (3)The interpretation of the models indicates that the influential factors are solvent-accessible surface area of H-bonding donor H atoms,fractional atomic charge,weighted partial positive surface area,relative number of C atoms,and relative molecular weight.Of all the factors,solvent-accessible surface area of H-bonding donor H atoms,fractional atomic charge,and weighted partial positive surface area are primary ones.

    (1) Gao,S.;Cao,C.Z.Acta Phys.-Chim.Sin.2006,22,1478. [高 碩,曹晨忠.物理化學(xué)學(xué)報,2006,22,1478.]doi:10.3866/ PKU.WHXB20061209

    (2) Khajeh,A.;Modarress,H.Struct.Chem.2011,22,1315.doi: 10.1007/s11224-011-9828-6

    (3) Rides,M.;Morikawa,J.;Halldahl,L.;Hay,B.;Lobo,H.; Dawson,A.;Allen,C.Polymer Testing 2009,28,480.doi: 10.1016/j.polymertesting.2009.03.002

    (4) Coquard,R.;Panel,B.Int.J.Therm.Sci.2009,48,747.doi: 10.1016/j.ijthermalsci.2008.06.005

    (5) Huang,L.H.;Liu,L.S.J.Food Eng.2009,95,179.doi: 10.1016/j.jfoodeng.2009.04.024

    (6) Nagasaka,Y.;Nagashima,A.Rev.Sci.Instrum.1981,52,229. doi:10.1063/1.1136577

    (7) Sastri,S.R.S.;Rao,K.K.Chem.Eng.J.1999,74,161.

    (8)Toropov,A.A.;Toropova,A.P.;Benfenati,E.J.Math.Chem. 2009,46,1060.doi:10.1007/s10910-008-9491-3

    (9) Shi,J.J.;Chen,L.P.;Shi,N.;Xu,W.;Yang,H.;Chen,W.H. China Safety Science Journal 2011,21,125.[時靜潔,陳利平,石 寧,徐 偉,楊 惠,陳網(wǎng)樺.中國安全科學(xué)學(xué)報,2011, 21,125.]

    (10)Tamm,K.;Burk,P.J.Mol.Model.2006,12,417.doi:10.1007/ s00894-005-0062-2

    (11) Gharagheizi,F.Comput.Mater.Sci.2007,40,159.doi:10.1016/ j.commatsci.2006.11.010

    (12) Gong,Z.G.;Zhang,R.S.;Xia,B.B.;Hu,R.J.;Fan,B.T. QSAR Comb.Sci.2008,27,1282.doi:10.1002/qsar.200860027 (13)Lu,P.;Wei,X.;Zhang,R.S.;Yuan,Y.G.;Gong,Z.G.Med. Chem.Res.2011,20,1220.doi:10.1007/s00044-010-9431-1

    (14)Long,W.;Liu,P.X.;Li,X.R.;Xu,Y.;Yu,J.;Ma,S.T.;Yu,L. L.;Zou,Z.M.J.Chemometrics 2009,23,304.doi:10.1002/ cem.1235

    (15) Bini,R.;Malvaldi,M.;Pitner,W.R.;Chiappe,C.J.Phys.Org. Chem.2008,21,622.doi:10.1002/poc.1337

    (16) Pan,Y.Research on Prediction Model and Quantitative Relationship between the Structures and Flammability Characteristics of Organic Compounds.Ph.D.Dissertation, Nanjing University of Technology,Nanjing,2009. [潘 勇.有機(jī)物定量結(jié)構(gòu)-燃爆特性相關(guān)性及預(yù)測模型研究[D].南京:南京工業(yè)大學(xué),2009.]

    (17)Katritzky,A.R.;Lobanov,V.S.;Karelson,M.CODESSA Version2.0 Reference Manual;University of Florida:Florida, 1995-1997.

    (18) Vapnik,V.N.The Nature of Statistical Learning Theory;Wiley: New York,1998.

    (19) Ojha,P.K.;Mitra,I.;Das,R.N.;Roy,K.Chemomet.Intell. Lab.Syst.2011,107,194.doi:10.1016/j.chemolab.2011.03.011

    (20) Roy,K.;Mitra,I.;Kar,S.J.Chem.Inf.Model.2012,52,396. doi:10.1021/ci200520g

    (21)Pinheiro,L.M.V.;Ventura,M.C.M.M.;Moita,M.L.C.J.J. Mol.Liq.2010,154,102.doi:10.1016/j.molliq.2010.04.013

    (22) Strouf,O.Chemical Pattern Recognition;Wilely:New York 1986.

    (23) Lin,S.L.;Liu,Z.Journal of Zhejiang University of Technology 2007,35,163.[林升梁,劉 志.浙江工業(yè)大學(xué)學(xué)報,2007, 35,163.]

    (24) Pan,Y.;Jiang,J.C.;Wang,R.;Cao,H.Y.;Cui,Y.J.Hazard. Mater.2009,164,1242.doi:10.1016/j.jhazmat.2008.09.031

    (25)Yang,H.;Chen,L.P.;Xie,C.X.;Shi,N.;Chen,W.H.Fire Safety Science 2011,20,62.[楊 惠,陳利平,謝傳欣,石 寧,陳網(wǎng)樺.火災(zāi)科學(xué),2011,20,62.]

    July 16,2012;Revised:September 10,2012;Published on Web:September 27,2012..

    Prediction of the Thermal Conductivity of Organic Compounds Using Heuristic and Support Vector Machine Methods

    SHI Jing-Jie1,2CHEN Li-Ping1CHEN Wang-Hua1,*SHI Ning2YANG Hui1XU Wei2
    (1Department of Safety Engineering,School of Chemical Engineering,Nanjing University of Science&Technology,Nanjing 210094, P.R.China;2State Key Laboratory of Chemical Safety and Control,Qingdao 266071,Shandong Province,P.R.China)

    To build the quantitative structure-property relationship(QSPR)between the molecular structures and the thermal conductivities of 147 organic compounds and investigate which structural factors influence the thermal conductivity of organic molecules,the topological,constitutional,geometrical, electrostatic,quantum-chemical,and thermodynamic descriptors of the compounds were calculated using the CODESSA software package,where these descriptors were pre-selected by the heuristic method (HM).The dataset of 147 organic compounds was randomly divided into a training set(118),and a test set (29).As a result,a five-descriptor linear model was constructed to describe the relationship between the molecular structures and the thermal conductivities.In addition,a non-linear regression model was built based on the support vector machine(SVM)with the same five descriptors.It was concluded that,although the fitting performance of the SVM model(squared correlation coefficient,R2=0.9240)was slightly worse than that of the HM model(R2=0.9267),the predictive performance of the SVM model(R2=0.9682)was better than that of the HM model(R2=0.9574).As the predictive parameter is more important than the fitting parameter,it can be seen that the SVM model is superior to the HM model.The proposed methods(SVM and HM)can be successfully used to predict the thermal conductivity of organic compounds with pre-selected theoretical descriptors,which can be directly calculated solely from the molecular structure.

    Heuristic method; Support vector machine; Thermal conductivity;Prediction;QSPR

    10.3866/PKU.WHXB201209273

    O641

    ?Corresponding author.Email:chenwh_nust@163.com;Tel:+86-25-84315526.

    The project was supported by the National Key Basic Research Program of China(973)(2010CB735510).

    國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項目(973)(2010CB735510)資助

    猜你喜歡
    熱導(dǎo)率南京向量
    南京比鄰
    “南京不會忘記”
    空位缺陷對單層石墨烯導(dǎo)熱特性影響的分子動力學(xué)
    向量的分解
    聚焦“向量與三角”創(chuàng)新題
    連續(xù)碳纖維鋁基復(fù)合材料橫向等效熱導(dǎo)率的模擬分析
    Si3N4/BN復(fù)合陶瓷熱導(dǎo)率及其有限元分析
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    又是磷復(fù)會 又在大南京
    向量垂直在解析幾何中的應(yīng)用
    老司机午夜十八禁免费视频| 青草久久国产| 中文字幕人妻熟女乱码| 在线观看免费午夜福利视频| 色综合欧美亚洲国产小说| 亚洲欧美日韩高清在线视频 | 香蕉国产在线看| 亚洲精品自拍成人| 一区在线观看完整版| 精品国产一区二区久久| 色播在线永久视频| 新久久久久国产一级毛片| 久久精品国产亚洲av涩爱| 男女边摸边吃奶| 国产精品免费大片| 精品少妇一区二区三区视频日本电影| 国产一区有黄有色的免费视频| 深夜精品福利| 婷婷色麻豆天堂久久| 欧美日韩亚洲国产一区二区在线观看 | 91精品国产国语对白视频| 亚洲欧美激情在线| 91精品三级在线观看| 麻豆av在线久日| 国产亚洲午夜精品一区二区久久| 老司机影院成人| 精品亚洲成国产av| 亚洲七黄色美女视频| e午夜精品久久久久久久| 丝袜美足系列| 欧美精品高潮呻吟av久久| 亚洲九九香蕉| 婷婷丁香在线五月| 又紧又爽又黄一区二区| av天堂在线播放| 国精品久久久久久国模美| 国产三级黄色录像| 90打野战视频偷拍视频| 国产精品二区激情视频| 久热这里只有精品99| av在线app专区| 精品人妻1区二区| 老司机靠b影院| 一边摸一边做爽爽视频免费| 国产精品一二三区在线看| 亚洲专区国产一区二区| 国产亚洲av高清不卡| 一本大道久久a久久精品| 久久国产亚洲av麻豆专区| 日日摸夜夜添夜夜爱| svipshipincom国产片| 91精品国产国语对白视频| 日本欧美国产在线视频| 亚洲av综合色区一区| 韩国精品一区二区三区| 国产精品香港三级国产av潘金莲 | 99香蕉大伊视频| 最新的欧美精品一区二区| 丝袜脚勾引网站| 国产黄色视频一区二区在线观看| www日本在线高清视频| 欧美日韩亚洲高清精品| 久久精品熟女亚洲av麻豆精品| 国产淫语在线视频| 国产成人精品在线电影| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国产一级毛片高清牌| 亚洲欧洲日产国产| 国产av国产精品国产| 久久人人爽人人片av| 丝袜在线中文字幕| tube8黄色片| 亚洲国产日韩一区二区| 亚洲九九香蕉| 美女主播在线视频| 国产精品偷伦视频观看了| 一级片免费观看大全| 麻豆国产av国片精品| 女人精品久久久久毛片| 欧美中文综合在线视频| 十八禁人妻一区二区| 亚洲人成电影观看| 国产成人影院久久av| 又粗又硬又长又爽又黄的视频| av网站在线播放免费| 99国产精品99久久久久| 久久久精品区二区三区| 国产精品久久久av美女十八| 波野结衣二区三区在线| 久久精品国产亚洲av高清一级| 在线观看免费日韩欧美大片| 久久久久视频综合| 免费在线观看日本一区| 亚洲中文日韩欧美视频| 日韩 亚洲 欧美在线| 欧美av亚洲av综合av国产av| 99国产精品免费福利视频| 国产女主播在线喷水免费视频网站| 欧美人与性动交α欧美精品济南到| 一本—道久久a久久精品蜜桃钙片| 又大又黄又爽视频免费| 午夜激情久久久久久久| 青春草亚洲视频在线观看| av电影中文网址| 日韩一区二区三区影片| 日本五十路高清| 十八禁网站网址无遮挡| 亚洲七黄色美女视频| 视频在线观看一区二区三区| 99精品久久久久人妻精品| e午夜精品久久久久久久| 亚洲,一卡二卡三卡| 99热全是精品| 午夜影院在线不卡| 亚洲精品一二三| www.av在线官网国产| 国产成人精品久久二区二区91| 国产精品久久久久久人妻精品电影 | 熟女av电影| 精品人妻熟女毛片av久久网站| 最近最新中文字幕大全免费视频 | 午夜两性在线视频| 亚洲av成人不卡在线观看播放网 | 男人添女人高潮全过程视频| 久久av网站| 51午夜福利影视在线观看| 一级片免费观看大全| 国产欧美日韩综合在线一区二区| www.精华液| 亚洲欧美日韩高清在线视频 | av视频免费观看在线观看| 亚洲成人国产一区在线观看 | 国产熟女午夜一区二区三区| www.精华液| 亚洲成人手机| 欧美 日韩 精品 国产| 国产精品香港三级国产av潘金莲 | 亚洲欧美日韩高清在线视频 | 精品久久蜜臀av无| 女人爽到高潮嗷嗷叫在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产在线视频一区二区| 亚洲黑人精品在线| 中文字幕人妻熟女乱码| 一区二区三区四区激情视频| 欧美精品亚洲一区二区| 中文字幕制服av| 精品一区二区三卡| 国产成人一区二区在线| 国产高清不卡午夜福利| 成年人黄色毛片网站| 99久久精品国产亚洲精品| 青春草亚洲视频在线观看| 丰满少妇做爰视频| 777米奇影视久久| 老鸭窝网址在线观看| 后天国语完整版免费观看| 日韩大片免费观看网站| www.熟女人妻精品国产| 黄色怎么调成土黄色| 欧美人与性动交α欧美软件| 亚洲欧美清纯卡通| 黄网站色视频无遮挡免费观看| 国产日韩欧美视频二区| 黄色 视频免费看| 午夜视频精品福利| 丝袜喷水一区| 美女中出高潮动态图| 熟女av电影| 亚洲精品中文字幕在线视频| 欧美成人午夜精品| 新久久久久国产一级毛片| 18禁国产床啪视频网站| cao死你这个sao货| 亚洲欧美成人综合另类久久久| 免费看十八禁软件| e午夜精品久久久久久久| 国产人伦9x9x在线观看| 丝袜美足系列| 9热在线视频观看99| 每晚都被弄得嗷嗷叫到高潮| 免费黄频网站在线观看国产| 成人午夜精彩视频在线观看| 日韩熟女老妇一区二区性免费视频| 天堂中文最新版在线下载| 制服诱惑二区| 777米奇影视久久| 精品一区二区三区av网在线观看 | 亚洲精品第二区| 婷婷色av中文字幕| 深夜精品福利| 午夜福利在线免费观看网站| 国产精品 国内视频| 成人国语在线视频| 看免费av毛片| 亚洲三区欧美一区| 波多野结衣av一区二区av| 午夜福利,免费看| 亚洲av日韩在线播放| 女警被强在线播放| 色视频在线一区二区三区| 精品福利观看| 人人妻,人人澡人人爽秒播 | 亚洲av日韩在线播放| 久久久精品国产亚洲av高清涩受| 免费久久久久久久精品成人欧美视频| 午夜免费鲁丝| 久久精品亚洲熟妇少妇任你| 一二三四在线观看免费中文在| 韩国高清视频一区二区三区| 国产深夜福利视频在线观看| 日韩,欧美,国产一区二区三区| 香蕉丝袜av| 国产精品人妻久久久影院| 青青草视频在线视频观看| www日本在线高清视频| 黑人巨大精品欧美一区二区蜜桃| 免费黄频网站在线观看国产| 免费看不卡的av| 欧美日韩综合久久久久久| 最黄视频免费看| 久久久精品94久久精品| 国产精品久久久久成人av| 麻豆乱淫一区二区| 久久精品熟女亚洲av麻豆精品| 亚洲精品一二三| 男的添女的下面高潮视频| 亚洲免费av在线视频| av国产精品久久久久影院| 一级a爱视频在线免费观看| 在线观看人妻少妇| kizo精华| 纵有疾风起免费观看全集完整版| 日本色播在线视频| 欧美中文综合在线视频| 咕卡用的链子| 老司机靠b影院| 欧美变态另类bdsm刘玥| 夫妻性生交免费视频一级片| 婷婷色麻豆天堂久久| 可以免费在线观看a视频的电影网站| 国产亚洲午夜精品一区二区久久| 久久国产亚洲av麻豆专区| 一区二区三区激情视频| tube8黄色片| av有码第一页| 国产精品偷伦视频观看了| 日本猛色少妇xxxxx猛交久久| 国产高清国产精品国产三级| 在现免费观看毛片| 十八禁高潮呻吟视频| 亚洲伊人色综图| 亚洲,欧美,日韩| 嫁个100分男人电影在线观看 | 一级黄色大片毛片| 午夜福利视频在线观看免费| 精品久久久久久久毛片微露脸 | 亚洲,欧美,日韩| 麻豆av在线久日| 欧美中文综合在线视频| 又紧又爽又黄一区二区| 久久天堂一区二区三区四区| 青草久久国产| 91精品伊人久久大香线蕉| av天堂在线播放| 老司机影院毛片| 各种免费的搞黄视频| 欧美国产精品va在线观看不卡| 日本91视频免费播放| 中国美女看黄片| 久久久久精品国产欧美久久久 | 午夜福利视频精品| 精品人妻1区二区| 久久亚洲国产成人精品v| 在线看a的网站| 菩萨蛮人人尽说江南好唐韦庄| 欧美国产精品一级二级三级| 一区二区三区激情视频| 久久精品人人爽人人爽视色| 可以免费在线观看a视频的电影网站| 91精品国产国语对白视频| 欧美日韩亚洲高清精品| 亚洲成人国产一区在线观看 | 亚洲av片天天在线观看| av天堂在线播放| 一级毛片黄色毛片免费观看视频| 亚洲国产av影院在线观看| 国精品久久久久久国模美| 亚洲av在线观看美女高潮| 精品国产一区二区三区久久久樱花| 在线av久久热| 国产成人欧美| 亚洲天堂av无毛| 亚洲五月色婷婷综合| 性色av乱码一区二区三区2| 91精品伊人久久大香线蕉| 深夜精品福利| 50天的宝宝边吃奶边哭怎么回事| 国产主播在线观看一区二区 | 久久精品aⅴ一区二区三区四区| 午夜老司机福利片| 自线自在国产av| 男人操女人黄网站| 国产无遮挡羞羞视频在线观看| 51午夜福利影视在线观看| 99久久综合免费| 日本黄色日本黄色录像| 亚洲欧美日韩高清在线视频 | av在线老鸭窝| 女人精品久久久久毛片| 在线观看人妻少妇| 日韩大片免费观看网站| 欧美av亚洲av综合av国产av| 操美女的视频在线观看| 涩涩av久久男人的天堂| 成人国语在线视频| 国产精品久久久av美女十八| 亚洲国产欧美在线一区| 免费少妇av软件| 操美女的视频在线观看| 精品亚洲成国产av| 亚洲成国产人片在线观看| 日韩制服丝袜自拍偷拍| 亚洲欧美成人综合另类久久久| 久久精品久久久久久久性| 亚洲黑人精品在线| 亚洲欧美一区二区三区国产| 亚洲精品自拍成人| 国产精品国产三级国产专区5o| 亚洲欧美一区二区三区黑人| av不卡在线播放| 国产熟女欧美一区二区| 亚洲自偷自拍图片 自拍| 天天添夜夜摸| 精品少妇内射三级| 久久久久精品人妻al黑| 亚洲精品av麻豆狂野| 18禁国产床啪视频网站| 久久综合国产亚洲精品| 在线精品无人区一区二区三| 国产99久久九九免费精品| 久久av网站| 欧美大码av| kizo精华| 50天的宝宝边吃奶边哭怎么回事| 国产成人一区二区在线| xxxhd国产人妻xxx| 黄色一级大片看看| 丝袜美足系列| 久久人妻福利社区极品人妻图片 | 最近最新中文字幕大全免费视频 | 这个男人来自地球电影免费观看| 亚洲欧美中文字幕日韩二区| 老鸭窝网址在线观看| 亚洲欧美中文字幕日韩二区| 久久天躁狠狠躁夜夜2o2o | 国产一区二区三区av在线| 精品少妇一区二区三区视频日本电影| 亚洲国产欧美一区二区综合| 久久久久网色| 日韩一本色道免费dvd| 777久久人妻少妇嫩草av网站| 精品国产乱码久久久久久男人| 国产成人a∨麻豆精品| 久久鲁丝午夜福利片| 美女扒开内裤让男人捅视频| 午夜精品国产一区二区电影| 熟女av电影| 成年人免费黄色播放视频| 国产精品一国产av| 热99国产精品久久久久久7| 久久精品国产亚洲av涩爱| 免费久久久久久久精品成人欧美视频| 亚洲欧美清纯卡通| avwww免费| 狂野欧美激情性xxxx| 久久久久久人人人人人| 老司机影院毛片| 久久午夜综合久久蜜桃| 欧美黑人精品巨大| 色婷婷av一区二区三区视频| 黄网站色视频无遮挡免费观看| 久久国产精品大桥未久av| 色视频在线一区二区三区| 国产一区有黄有色的免费视频| 国产成人影院久久av| 在现免费观看毛片| 大陆偷拍与自拍| 国产成人av激情在线播放| 赤兔流量卡办理| 大片电影免费在线观看免费| 性色av一级| 免费看十八禁软件| 2021少妇久久久久久久久久久| 国产成人一区二区在线| 精品欧美一区二区三区在线| 天天躁夜夜躁狠狠躁躁| 69精品国产乱码久久久| 一级a爱视频在线免费观看| 色网站视频免费| 日本av手机在线免费观看| 午夜免费观看性视频| 老司机午夜十八禁免费视频| 每晚都被弄得嗷嗷叫到高潮| 大香蕉久久成人网| 狂野欧美激情性bbbbbb| 国产熟女欧美一区二区| 国产成人a∨麻豆精品| 亚洲精品美女久久av网站| 精品一区二区三区av网在线观看 | 国产免费现黄频在线看| 一级毛片女人18水好多 | 免费观看a级毛片全部| 国产精品久久久久成人av| 90打野战视频偷拍视频| 国产精品一区二区在线不卡| av欧美777| 18禁裸乳无遮挡动漫免费视频| 久久精品久久久久久久性| 欧美精品一区二区大全| 一本综合久久免费| 午夜福利免费观看在线| 91老司机精品| 国产成人一区二区在线| 欧美大码av| 国产xxxxx性猛交| 操美女的视频在线观看| 日韩制服丝袜自拍偷拍| 欧美日韩成人在线一区二区| 欧美日韩国产mv在线观看视频| 精品国产一区二区三区四区第35| 久久精品亚洲av国产电影网| www日本在线高清视频| 亚洲,欧美精品.| 免费久久久久久久精品成人欧美视频| 建设人人有责人人尽责人人享有的| 国产免费又黄又爽又色| 中文欧美无线码| 好男人视频免费观看在线| 欧美激情 高清一区二区三区| 性少妇av在线| 妹子高潮喷水视频| 一级片免费观看大全| 欧美日韩av久久| 亚洲精品久久久久久婷婷小说| 国产精品免费视频内射| 99精品久久久久人妻精品| 国产日韩欧美亚洲二区| 黑人猛操日本美女一级片| 中文字幕人妻丝袜一区二区| 亚洲国产最新在线播放| 99re6热这里在线精品视频| 亚洲国产中文字幕在线视频| 在线精品无人区一区二区三| 久久精品国产综合久久久| 高清黄色对白视频在线免费看| a级毛片黄视频| 免费看十八禁软件| 天天躁夜夜躁狠狠躁躁| 成人三级做爰电影| 亚洲成av片中文字幕在线观看| 亚洲 欧美一区二区三区| 亚洲人成77777在线视频| 女性被躁到高潮视频| 日韩大码丰满熟妇| 18禁观看日本| 一级片'在线观看视频| a级片在线免费高清观看视频| 黄片播放在线免费| 成在线人永久免费视频| 狂野欧美激情性bbbbbb| 操出白浆在线播放| 天天影视国产精品| 日韩av免费高清视频| 国产日韩欧美在线精品| 一本一本久久a久久精品综合妖精| 欧美在线一区亚洲| 欧美日韩国产mv在线观看视频| 亚洲男人天堂网一区| 久久久久久久精品精品| 一本一本久久a久久精品综合妖精| 成年女人毛片免费观看观看9 | 精品国产一区二区久久| 欧美精品亚洲一区二区| 欧美日韩综合久久久久久| 黄色a级毛片大全视频| 午夜免费观看性视频| 国产成人一区二区三区免费视频网站 | 黑人欧美特级aaaaaa片| 日韩视频在线欧美| 国产国语露脸激情在线看| 水蜜桃什么品种好| 黑丝袜美女国产一区| 脱女人内裤的视频| 另类亚洲欧美激情| 国产一区亚洲一区在线观看| 中文字幕亚洲精品专区| 大香蕉久久成人网| 午夜激情av网站| 精品国产乱码久久久久久男人| 一级毛片女人18水好多 | 精品欧美一区二区三区在线| 乱人伦中国视频| 一级,二级,三级黄色视频| 在线观看免费高清a一片| 国产欧美日韩精品亚洲av| 夫妻午夜视频| 国产精品久久久av美女十八| 久久久精品国产亚洲av高清涩受| 午夜两性在线视频| 国产精品偷伦视频观看了| 国产黄色视频一区二区在线观看| 欧美激情极品国产一区二区三区| 可以免费在线观看a视频的电影网站| 在线亚洲精品国产二区图片欧美| 久久99一区二区三区| 国产免费一区二区三区四区乱码| 老汉色av国产亚洲站长工具| 久久99热这里只频精品6学生| 久久久精品免费免费高清| 十分钟在线观看高清视频www| 飞空精品影院首页| 如日韩欧美国产精品一区二区三区| 一级黄色大片毛片| 国产精品 国内视频| 久久久久国产精品人妻一区二区| 日本a在线网址| 国产老妇伦熟女老妇高清| 久久精品国产亚洲av高清一级| 一本久久精品| 亚洲欧美一区二区三区黑人| 国产在视频线精品| 女人久久www免费人成看片| 久久久久久久精品精品| 国产成人一区二区在线| 中国国产av一级| 亚洲人成网站在线观看播放| 又粗又硬又长又爽又黄的视频| 亚洲国产精品国产精品| 久久久精品国产亚洲av高清涩受| 纯流量卡能插随身wifi吗| 日本一区二区免费在线视频| 精品亚洲乱码少妇综合久久| 七月丁香在线播放| 国产日韩欧美亚洲二区| 成人国产av品久久久| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三 | 国产av精品麻豆| 亚洲精品久久午夜乱码| 亚洲国产日韩一区二区| 99久久综合免费| 大陆偷拍与自拍| av电影中文网址| 亚洲av欧美aⅴ国产| 亚洲一区中文字幕在线| 免费看十八禁软件| 亚洲成人免费电影在线观看 | 免费日韩欧美在线观看| 交换朋友夫妻互换小说| a级毛片黄视频| 国产黄色免费在线视频| 一区二区三区激情视频| 成人黄色视频免费在线看| 晚上一个人看的免费电影| 黄色片一级片一级黄色片| av线在线观看网站| 国产麻豆69| 女人高潮潮喷娇喘18禁视频| 久久久国产一区二区| 亚洲欧美一区二区三区黑人| 久久精品亚洲熟妇少妇任你| 纵有疾风起免费观看全集完整版| 五月天丁香电影| 国产成人影院久久av| 成年av动漫网址| av片东京热男人的天堂| 男女无遮挡免费网站观看| 伦理电影免费视频| 国产欧美日韩一区二区三 | 久久精品国产亚洲av涩爱| 色播在线永久视频| 中文字幕另类日韩欧美亚洲嫩草| av电影中文网址| 人成视频在线观看免费观看| 欧美日韩精品网址| 欧美在线一区亚洲| 久久国产精品影院| 99精品久久久久人妻精品| 一个人免费看片子| 国产亚洲午夜精品一区二区久久| tube8黄色片| 精品一区在线观看国产| 99re6热这里在线精品视频| 一区二区三区四区激情视频| 成年人免费黄色播放视频| 一区二区三区乱码不卡18| 美女大奶头黄色视频| 欧美亚洲日本最大视频资源| 国产一区二区在线观看av| 人妻 亚洲 视频| 日日摸夜夜添夜夜爱| 亚洲欧美精品自产自拍| 蜜桃国产av成人99| 欧美少妇被猛烈插入视频| 一二三四社区在线视频社区8| 国产免费一区二区三区四区乱码| 18在线观看网站| 国产精品麻豆人妻色哟哟久久| 黑人欧美特级aaaaaa片| 国产精品久久久久久人妻精品电影 | 欧美中文综合在线视频| 国产精品av久久久久免费| 亚洲国产成人一精品久久久| av天堂久久9|