馬莎 王玉璟
胎兒和新生兒的心肌能夠指導(dǎo)DNA合成和細(xì)胞分裂,然而到發(fā)育時期,它們的分裂能力逐漸減低。成年人和哺乳動物的心肌已被認(rèn)為是終末期分化,不能增生,在產(chǎn)后心肌細(xì)胞也不可逆地離開了細(xì)胞周期[1]。盡管可以通過外來因素,如誘導(dǎo)骨膜蛋白、p38絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)抑制劑、細(xì)胞周期素 D1/CDK4、A2 和轉(zhuǎn)化生長因子 β(transforming growth factor-β,TGF-β)進入成年心肌的細(xì)胞周期,來激活其增生潛力,但它們的增生能力仍然有限?;颊叱霈F(xiàn)心肌梗死后,存活心肌減少,增生能力有限,故臨床預(yù)后嚴(yán)重。而骨髓間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSC)是骨髓基質(zhì)干細(xì)胞[2],不僅對骨髓中的造血干細(xì)胞(hematopoietic stem cell,HSC)有機械支持作用,還能分泌多種生長因子[如白介素6(interleukin,IL-6),白介素11(IL-11),白血病抑制因子(leukemia inhibitory factor,LIF),巨噬細(xì)胞集落刺激因子(macrophage colony stimulating factor,M-CSF)和干細(xì)胞生長因子(stem cell factor,SCF)等]來支持造血,故MSC的移植能有效地促進損傷心肌的修復(fù)?;|(zhì)細(xì)胞衍生因子(stromal cell derived factor,SDF)/趨化因子受體 CXCR4即參與了這一過程,因此本文對其在此過程中的作用進行綜述。
SDF-1又稱趨化因子CXCL12,是小分子的細(xì)胞因子,屬于趨化因子蛋白家族。它有兩種形式,SDF-1α/CXCL12a和SDF-1β/CXCL12b。趨化因子有4個保守的半胱氨酸殘基形成兩對雙硫鍵以構(gòu)成其特殊結(jié)構(gòu)。第1和2個半胱氨酸殘基之間隔著一個介入氨基酸殘基。趨化因子CXCL12對淋巴細(xì)胞有強烈的趨化作用并在發(fā)育中起重要作用。在胚胎發(fā)育中CXCL12引導(dǎo)HSC從胎兒肝臟到骨髓的遷徙。CXCL12基因敲除的小鼠常常死于胎中或出生后1 h內(nèi)。SDF-1α/CXCL12a還可以影響神經(jīng)元的電生理機制。CXCL12可以在許多組織(包括腦、胸腺、心、肺、肝、腎、骨髓和脾臟)中表達(dá)。CXCL12的受體是CXCR4,但最近也有人認(rèn)為CXCL12還可以與CXCR7受體結(jié)合[3]。
趨化因子受體CXCR4是CXCL12的特異受體。CXCR4在體內(nèi)大部分組織和器官上均有表達(dá),它是由352個氨基酸組成的G蛋白耦聯(lián)受體(G protein-coupled receptor,GPCR),具有7次跨膜結(jié)構(gòu)。該受體是用來提取純化人類免疫缺陷病毒的幾個趨化因子受體之一?,F(xiàn)在還不清楚使用CXCR4的人類免疫缺乏病毒是否導(dǎo)致免疫缺陷。另外,CXCR4還可能在人類胚胎發(fā)育中的著床過程中起作用。絕大多數(shù)趨化因子受體有多個配體,一個趨化因子可以結(jié)合到兩個或多個受體。而作為趨化因子受體與配體,CXCR4和CXCL12比較特殊,他們是一配一的受體配體關(guān)系。CXCR4的配體CXCL12在HSC移居骨髓中起重要作用。影響或阻斷CXCR4受體配體結(jié)合,可以調(diào)節(jié)HSC的遷徙,這對骨髓HSC移植可能十分有用。目前的實驗藥物有粒細(xì)胞集落刺激因子(granulocyte colony-stimulating factor,F(xiàn)CSF)和 Plerixafor(AMD3100)。當(dāng)然,這些藥物尚未臨床應(yīng)用。CXCR4還參與體內(nèi)多種生理機制,包括參與HIV-1侵染、造血、胚胎發(fā)育及腫瘤遷移等[4]。
心肌梗死多發(fā)生于中年以后,是冠狀動脈粥樣硬化引起血栓形成、冠狀動脈分支堵塞,使一部分心肌失去血液供應(yīng)而壞死的病征。心肌梗死發(fā)生后可引起不同程度的心功能障礙和血流動力學(xué)改變,包括心肌收縮力減弱、順應(yīng)性減低、心肌收縮不協(xié)調(diào)、左心室舒張末期壓力增高、心排血量下降、血壓下降、心律失常、心臟擴大等,可導(dǎo)致心力衰竭及心原性休克。MSC移植治療心肌梗死是近年來的研究熱點,已有大量研究表明,MSC的移植能有效地促進損傷心肌的修復(fù)[5]。通過MSC移植修復(fù)梗死心肌,誘導(dǎo)新生血管形成,改善心臟功能,甚至對整個心臟的重構(gòu)起到保護性生物學(xué)效應(yīng),已備受廣大學(xué)者關(guān)注[6-7]。
SDF從低濃度區(qū)域到高濃度區(qū)域指引干細(xì)胞遷移[8]。在骨髓中當(dāng)SDF被蛋白酶降解時,其在骨髓與外周血之間的濃度梯度即建立,這種濃度梯度促使MSC遷移至循環(huán)系統(tǒng)中[9]。隨后循環(huán)系統(tǒng)中干細(xì)胞的命運由周圍血液與受損組織之間的SDF濃度梯度來決定。例如,急性心肌梗死時心肌梗死區(qū)域面積與SDF濃度均增加,但這種心肌過量表達(dá)SDF僅持續(xù)1周,在缺血性心肌病中心肌SDF濃度反而降低[10]。因此,在慢性心肌缺血患者中,SDF濃度降低時不利于招募干細(xì)胞從周圍血液至重構(gòu)心肌。Lee等[11]用雄性新西蘭大白兔結(jié)扎左冠狀動脈前降支誘導(dǎo)心肌梗死模型,實驗動物被隨機分成兩組,分別用鹽水和MSC治療,4周后與鹽水對照組相比,MSC治療組從骨髓至外周血液和血液至受損心肌的SDF濃度梯度增加,相應(yīng)提高了心功能和血管密度,縮小了梗死面積。產(chǎn)生朝向心肌的SDF濃度梯度是MSC治療的一個新穎效應(yīng)。這種效應(yīng)促進干細(xì)胞招募至重塑心構(gòu)、改善心肌功能。
SDF與CXCR4相互作用在干細(xì)胞動員中起重要作用。MSC能夠分化為成熟的血管內(nèi)皮細(xì)胞并促進受損內(nèi)皮修復(fù),因此成為修補缺血組織的目標(biāo)。MSC的數(shù)量和功能與冠狀動脈內(nèi)皮功能明顯相關(guān),已有研究發(fā)現(xiàn),足夠的MSC數(shù)量與分化為成熟的內(nèi)皮細(xì)胞的能力對心肌功能恢復(fù)與梗死面積縮小至關(guān)重要。急性心肌梗死后挽救心臟功能紊亂的1個策略就是改善MSC上的CXCR4表達(dá)[12]。例如缺氧預(yù)處理MSC上調(diào)了CXCR4的表達(dá)和誘導(dǎo)了這些MSC遷移到缺血心肌中[13]。另外,冠狀動脈內(nèi)輸入 CXCR4過表達(dá)的MSC,可提高心臟功能、改善心肌梗死后心肌重構(gòu),表明CXCR4可作為心血管疾病的一個重要治療目標(biāo)[14]。
微小核糖核酸(microRNA)在轉(zhuǎn)錄后調(diào)控目標(biāo)信使核糖核酸(mRNA)的一系列生物進程中起重要作用,包括調(diào)控干細(xì)胞的動員、增生和分化。MicroRNA由19~23個核苷酸組成,非編碼小調(diào)節(jié)RNA進入RNA誘導(dǎo)的剪切復(fù)合物中,辨認(rèn)目標(biāo)基因的3'-非編碼區(qū),因此通過轉(zhuǎn)錄抑制或mRNA降解來調(diào)控它們的表達(dá)[15-16]。MicroRNA-150在單核細(xì)胞中大量表達(dá),在免疫應(yīng)答與腫瘤發(fā)生中非常警覺[17-18]。Tano等[19]研究發(fā)現(xiàn),急性心肌梗死后microR-150表達(dá)上調(diào)促進了CXCR4表達(dá),誘導(dǎo)MSC的動員和遷移。因此,microR-150可能成為刺激MSC動員至缺血組織并進入修補進程中的一個新穎治療目標(biāo)。
神經(jīng)肽Y(neuropeptide Y,NPY)是人類周圍和中樞神經(jīng)系統(tǒng)中最豐富的神經(jīng)肽之一[20],作為神經(jīng)轉(zhuǎn)錄調(diào)節(jié)因子調(diào)節(jié)多種自發(fā)性和內(nèi)分泌活動。NPY促進血管生成的活性已在多種模型中證實[21]。Wang等[22]發(fā)現(xiàn) NPY可以直接誘導(dǎo)新生和成年心肌進入細(xì)胞周期,梗死區(qū)域MSC分化的心肌細(xì)胞明顯增多,同時SDF/CXCR4明顯升高,提高了心臟功能、減少了纖維化和心室重構(gòu)、增加了血管生成。
胰島素樣生長因子1(insulin-like growth factor-1,IGF-1)在心臟的主要功能是促進心肌生長和收縮[23]。Haider等[24]發(fā)現(xiàn),IGF-1處理MSC后IGF-1水平上升,同時SDF也大量表達(dá)。IGF-1過表達(dá)伴隨SDF大量釋放,通過自分泌或旁分泌激活了PI3K/Akt信號通路,有利于細(xì)胞生存、干細(xì)胞動員和血管生長。IGF-1通過SDF/CXCR4來促進干細(xì)胞動員來實現(xiàn)這些生物學(xué)作用。
MSC治療有利于心肌梗死后心肌修復(fù),SDF/CXCR4可以促進這一過程。目前SDF/CXCR4已引起了廣大學(xué)者的關(guān)注,進一步了解SDF/CXCR4對MSC的作用及機制,可能對疾病的治療提供新的策略。
[1]Tamamori-Adachi M,Hayashida K,Nobori K,et al.Downregulation of p27Kip1 promotes cell proliferation of rat neonatal cardiomyocytes induced by nuclear expression of cyclin D1 and CDK4.J Biol Chem,2004,279:50429-50436.
[2]Zhao B,F(xiàn)u X.Effect of co-treatment of bone marrow stromal cells with bcl-2 gene infusion on rats after focal cerebral ischemia reperfusion.Chin J Neuroimmunol& Neurol,2009,16:329-336.(in Chinese)趙彬,付霞.聯(lián)合應(yīng)用骨髓基質(zhì)細(xì)胞與bcl-2基因?qū)δX缺血大鼠的神經(jīng)保護作用.中國神經(jīng)免疫學(xué)和神經(jīng)病學(xué)雜志,2009,16:329-336.
[3]Balabanian K,Lagane B,Infantino S,et al.The chemokine SDF-1/CXCl12 binds to and signals through the orphan receptor RDC1 in T lymphocytes.J Biol Chem,2005,280:35760-35766.
[4]Burger JA,Kipps TJ.CXCR4:a key receptor in the crosstalk between tumor cells and their microenvironment.Blood,2006,107:1761-1767.
[5]Perin EC,Silva GV, Assad JA, etal. Comparition of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction.J Mol Cell Cardiol,2008,44:486-495.
[6]Xu YL,Gao YH, Liu Z, etal. Myocardium-targeted transplantation of mesenchymal stem cells by diagnostic ultrasound-mediated microbubble destruction improves cardiac function in myocardial infarction of New Zealand rabbits.Int J Cardiol,2010,138:182-195.
[7]Duan HY,Chen XC.Influence of bone marrow mesenchymal stem cells on restenosis after precutanous transluminal angioplasty.Chin J Cardiovasc Med,2010,15:482-483.(in Chinese)段宏宇,陳曉春.骨髓間充質(zhì)干細(xì)胞對血管成形術(shù)后再狹窄的影響.中國心血管雜志,2010,15:482-483.
[8]Avigdor A,Goichberg P,Shivtiel S,et al.CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34t stem/progenitor cells to bone marrow.Blood,2004,103:2981-2989.
[9]Dar A,Goichberg P,Shinder V,et al.Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells.Nat Immunol,2005,6:1038-1046.
[10]Ma J,Ge J,Zhang S,et al.Time course of myocardial stromal cell-derived factor1 expression and beneficialeffects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction.Basic Res Cardiol,2005,100:217-223.
[11]Lee BC,Hsu HC,Tseng WY,et al.Cell therapy generates a favourable chemokine gradient for stem cell recruitment into the infarcted heart in rabbits.Eur J Heart Fail,2009,11:238-245.
[12]Yin Y,Zhao X, Fang Y, et al. SDF-1alpha involved in mobilization and recruitment of endothelial progenitor cells after arterial injury in mice.Cardiovasc Pathol,2010,19:218-227.
[13]Tang YL,Zhu W,Cheng M,et al.Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression.Circ Res,2009,104:1209-1216.
[14]Haider HKh,Jiang S,Idris NM,et al.IGF-1-overexpressing mesenchymal stem cellsacceleratebonemarrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair.Circ Res,2008,103:1300-1308.
[15]Winter J,Jung S,Keller S,et al.Diederichs S.Many roads to maturity:microRNA biogenesis pathways and their regulation.Nat Cell Biol,2009,11:228-234.
[16]Kim VN,Han J,Siomi MC,et al.Biogenesis of small RNAs in animals.Nat Rev Mol Cell Biol,2009,10:126-139.
[17]Tsitsiou E,Lindsay MA.MicroRNAs and the immune response.Curr Opin Pharmacol,2009,9:514-520.
[18]Amaral FC,Torres N, Saggioro F, etal. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors.J Clin Endocrinol Metab,2009,94:320-323.
[19]Tano N,Kim HW, AshrafM. MicroRNA-150 Regulates Mobilization and Migration of Bone Marrow-Derived Mononuclear Cells by Targeting Cxcr4.PLoS One,2011,6:e23114.
[20]NPY and cohorts in human disease.Proceedings of the 8th International NPY Meeting.Peptides,2007,28:197-483.
[21]Kitlinska J.Neuropeptide Y in neural crest-derived tumors:effect on growth and vascularization.Cancer Lett,2007,245:293-302.
[22]Wang Y,Zhang D,Ashraf M,et al.Combining neuropeptide Y and mesenchymal stem cells reverses remodeling after myocardial infarction.Am J Physiol Heart Circ Physiol,2010,298:H275-H286.
[23]Laustsen PG,Russell SJ,Cui L,et al.Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function.Mol Cell Biol,2007,27:1649-1664.
[24]Haider HKh,Jiang S,Idris NM,et al.IGF-1-overexpressing mesenchymal stem cellsacceleratebonemarrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair.Circ Res,2008,103:1300-1308.