鄧靜靜 鄭建明
microRNA-26a與腫瘤
鄧靜靜 鄭建明
microRNA(miRNA)是一類(lèi)長(zhǎng)度為18~25個(gè)核苷酸(nt)的非編碼小RNA,通過(guò)與靶mRNA的互補(bǔ)配對(duì)在轉(zhuǎn)錄后水平調(diào)控基因表達(dá),導(dǎo)致mRNA的降解或翻譯抑制,控制哺乳類(lèi)動(dòng)物約30%的蛋白質(zhì)編碼基因活性[1-2]。miRNA與其靶mRNA分子組成了一個(gè)復(fù)雜的調(diào)控網(wǎng)絡(luò),參與包括細(xì)胞增殖、分化、凋亡、發(fā)育等多種生物學(xué)過(guò)程。研究顯示,在多種腫瘤中miRNA表達(dá)異常,可能與腫瘤的形成、細(xì)胞分化及凋亡有關(guān),它們有的起癌基因作用,有的則起抑癌基因作用。
miR-26a含有21個(gè)核苷酸(nt),位于人3號(hào)染色體3P21.3,在人的大多數(shù)組織中表達(dá),序列分析顯示miR-26a位于染色體的不穩(wěn)定位點(diǎn)[3]。通過(guò)基因數(shù)據(jù)分析確定,miR-26a與CDK4和CENTG1共同組成一個(gè)擴(kuò)增子,而CDK4和CENTG1作為癌基因分別調(diào)控RB1和PI3/AKT通路[4]。Zcchc11(zinc-finger, CCHC domain-containing protein 11)通過(guò)其尿苷化酶的作用維持miR-26族miRNA的3′末端的A尾,從而影響miR-26族miRNA生物學(xué)功能[5]。另有文獻(xiàn)報(bào)道[6-7],miR-26a的活性受到myc的調(diào)控。目前已證實(shí),在腫瘤中miR-26a的直接作用靶點(diǎn)有Ezh2、PTEN、cyclinD2、cyclinE2、GSK-3β;功能相關(guān)靶點(diǎn)有Rb1、MAP3K2/MEKK1和SMAD1。miR-26a通過(guò)作用于這些靶點(diǎn)發(fā)揮其調(diào)控腫瘤細(xì)胞生物學(xué)行為的作用。
1.miR-26a與肝細(xì)胞癌:miR-26a在肝細(xì)胞癌(HCC)中過(guò)表達(dá),它能顯著下調(diào)cyclinE2蛋白的表達(dá),抑制肝癌細(xì)胞株HepG2的增殖[8]。大宗HCC病例統(tǒng)計(jì)資料顯示,miR-26a表達(dá)量低的HCC患者總生存期短于miR-26a表達(dá)量高的,但對(duì)干擾素的治療更為敏感[9]。Kota 等[10]研究顯示,miR-26a能抑制小鼠肝癌模型的形成,在體外實(shí)驗(yàn)中,miR-26a可引起肝癌細(xì)胞周期阻滯,這與其靶蛋白cyclinD2和cyclinE2表達(dá)下調(diào)有關(guān),miR-26a能抑制肝癌細(xì)胞的增殖,導(dǎo)致特異性凋亡,抑制肝癌進(jìn)展。
2.miR-26a與乳腺癌:miRNA參與乳腺癌細(xì)胞生長(zhǎng)的調(diào)節(jié),發(fā)揮廣泛的雌激素依賴(lài)性抑制作用。研究顯示,miR-26a和miR-181a抑制cyclin E2的表達(dá),調(diào)節(jié)許多與細(xì)胞增殖和生長(zhǎng)有關(guān)的基因,包括在雌激素信號(hào)效應(yīng)中起關(guān)鍵作用的孕激素受體基因[11]。另有報(bào)道顯示,miR-26a在乳腺癌細(xì)胞系中表達(dá)下降,短暫轉(zhuǎn)染miR-26a可引起乳腺癌細(xì)胞系McF7細(xì)胞凋亡。應(yīng)用逆轉(zhuǎn)錄病毒載體轉(zhuǎn)染miR-26a,可抑制乳腺癌細(xì)胞克隆形成,并且在動(dòng)物體內(nèi)成瘤能力減弱。miR-26a的兩個(gè)作用靶標(biāo)MTDH和Ezh2在乳腺癌中顯著上調(diào)。轉(zhuǎn)染表達(dá)miR-26a載體,乳腺癌McF7細(xì)胞的MTDH和Ezh2表達(dá)下降,細(xì)胞凋亡增加。miR-26a主要通過(guò)作用于MTDH和Ezh2抑制乳腺癌的形成[12]。
3.miR-26a 與鼻咽癌:miR-26a在鼻咽癌(nosopharyngeal cancer, NPC)組織及細(xì)胞系中普遍下調(diào),在NPC的形成中發(fā)揮重要作用。轉(zhuǎn)染miR-26a可引起細(xì)胞G1期阻滯,抑制NPC細(xì)胞增殖和克隆形成。實(shí)驗(yàn)表明,miR-26a能下調(diào)NPC的癌基因Ezh2的表達(dá),Ezh2低表達(dá)又能抑制miR-26a的作用。NPC組織mRNA高表達(dá)Ezh2,與miR-26a的表達(dá)呈負(fù)相關(guān)。因此,miR-26a作為NPC中的一個(gè)生長(zhǎng)抑制性miRNA,主要通過(guò)抑制Ezh2的表達(dá)發(fā)揮其抑制作用[13]。
4.miR-26a 與淋巴瘤:Sander等[14]發(fā)現(xiàn),miR-26a在原發(fā)性Burkitt淋巴瘤組織中表達(dá)下調(diào),是myc的靶分子。他們運(yùn)用基因芯片技術(shù)分別檢測(cè)myc誘導(dǎo)和myc抑制后的miRNA基因表達(dá)譜,結(jié)果顯示myc在多種腫瘤中持續(xù)抑制miR-26a的表達(dá)。在myc誘導(dǎo)的淋巴瘤細(xì)胞中轉(zhuǎn)染miR-26a,可導(dǎo)致細(xì)胞增殖能力下降,周期進(jìn)程受損,并且證實(shí)Ezh2為miR-26a的直接作用靶點(diǎn)。myc通過(guò)抑制miR-26a表達(dá),從而減弱對(duì)Ezh2表達(dá)的抑制,提示miR-26a在myc誘導(dǎo)的淋巴瘤中發(fā)揮很強(qiáng)的抑癌基因作用[15]。另外,Di Lisio等[16]檢測(cè)了套細(xì)胞淋巴瘤miRNA表達(dá)譜,通過(guò)生物信息學(xué)方法分析miRNA可能的作用靶點(diǎn),并用功能實(shí)驗(yàn)證實(shí)miR-26a調(diào)節(jié)套細(xì)胞淋巴瘤中NF-κB亞單位的核轉(zhuǎn)移,從而影響套細(xì)胞的生物學(xué)行為。
5.miR-26a與胰腺癌:胰腺癌miRNA表達(dá)譜芯片結(jié)果顯示,miR-26a在胰腺癌中表達(dá)[17]。在研究治療糖尿病的藥物二甲雙胍抑制胰腺癌細(xì)胞生長(zhǎng)的機(jī)制中發(fā)現(xiàn),二甲雙胍通過(guò)上調(diào)胰腺癌細(xì)胞中包括miR-26a在內(nèi)的數(shù)種miRNA的表達(dá)發(fā)揮作用[18]。二甲雙胍呈劑量依賴(lài)性上調(diào)胰腺癌miR-26a的表達(dá),并引起細(xì)胞生長(zhǎng)抑制,侵襲、轉(zhuǎn)移能力下降,凋亡增加,其機(jī)制可能是通過(guò)HMGA1發(fā)揮其作用[19]。此外,經(jīng)CDF(抗癌藥物姜黃素的類(lèi)似物)處理的胰腺癌細(xì)胞生長(zhǎng)抑制,侵襲能力下降,Ezh2表達(dá)下調(diào),miR-26a表達(dá)上調(diào)[20],認(rèn)為miR-26a可能參與了胰腺癌的發(fā)生發(fā)展過(guò)程,并在抗癌藥物的作用機(jī)制中發(fā)揮重要作用。
此外,miR-26a在肺原發(fā)性鱗狀細(xì)胞癌[21]、口腔鱗癌[22]等腫瘤中也發(fā)揮著抑癌基因作用。研究發(fā)現(xiàn),miR-26a在良惡性胸水中表達(dá)存在差異[23];在高侵襲的轉(zhuǎn)移性腎透明細(xì)胞癌和橫紋肌肉瘤中呈低表達(dá)[24-25];在甲狀腺未分化癌(ATC)中表達(dá)下調(diào),外源性給予miR-26a后,癌細(xì)胞的生長(zhǎng)受到抑制[26]。
1.miR-26a與膠質(zhì)瘤:膠質(zhì)瘤的miR-26a常常是擴(kuò)增的,miR-26a作為擴(kuò)增子的組成部分發(fā)揮作用,該擴(kuò)增子還包括CDK4和CENTG1。CDK4和CENTG1作為癌基因,分別調(diào)控RB1和PI3/AKT通路。有人通過(guò)調(diào)查DNA的拷貝數(shù)、mRNA和miRNA及DNA甲基化數(shù)據(jù)庫(kù),確定膠質(zhì)瘤中與miR-26a功能相關(guān)的靶基因有PTEN、Rb1和MAP3K2/MEKK1。實(shí)驗(yàn)證實(shí),miR-26a能夠轉(zhuǎn)化細(xì)胞,在體外促進(jìn)膠質(zhì)瘤細(xì)胞增殖,在鼠腦內(nèi)通過(guò)降低PTEN、Rb1和MAP3K2/MEKK1蛋白表達(dá),從而增加AKT的活性,促進(jìn)增殖,降低c-JUN癌基因N端激酶依賴(lài)的凋亡。在PTEN高表達(dá)以及PTEN表達(dá)缺失的膠質(zhì)瘤細(xì)胞中過(guò)表達(dá)miR-26a,在體外均能促進(jìn)腫瘤生長(zhǎng),也能促進(jìn)CDK4或GENTG1過(guò)表達(dá)的細(xì)胞增殖,含該擴(kuò)增子的膠質(zhì)瘤患者生存率明顯下降。因此has-miR-26a、CDK4和GENTG1功能相關(guān)Oncomir/Oncogene簇通過(guò)協(xié)同靶作用于RB1、PI3K/AKT及JNK通路促進(jìn)癌的侵襲[4]。
2.miR-26a與前列腺癌:美國(guó)非裔的前列腺癌的發(fā)病率較其他種族高,檢測(cè)非裔和白種人前列腺癌發(fā)病階段中miR-26a的表達(dá)量,發(fā)現(xiàn)非裔的前列腺癌miR-26a較白種人在該癌相同的發(fā)展階段(良性、惡性、轉(zhuǎn)移)分別高出2.25、13.3、2.38倍,而且侵襲力高的腫瘤miR-26a升高[27]。表明miR-26a表達(dá)升高可能與前列腺癌的侵襲性有關(guān)。
Kang等[28]用基于分子熒光信號(hào)的生物影像學(xué)證實(shí),miR-26a僅在高分化的肌母細(xì)胞C2C12中表達(dá)。Wong等[29]報(bào)道,miR-26a的表達(dá)在肌母細(xì)胞增殖到分化成肌小管過(guò)程中逐步上調(diào),miR-26a表達(dá)升高促進(jìn)肌形成,并且確定骨骼肌細(xì)胞分化抑制子Ezh2作為miR-26a作用靶點(diǎn),通過(guò)下調(diào)Ezh2的表達(dá)促進(jìn)肌細(xì)胞的分化。Luzi等[30]認(rèn)為,miR-26a通過(guò)作用于轉(zhuǎn)錄因子Smad1調(diào)節(jié)晚期骨母細(xì)胞的分化。當(dāng)抑制骨母細(xì)胞miR-26a表達(dá),并增加其靶蛋白Smad1表達(dá)時(shí),骨特異基因表達(dá)上調(diào),骨母細(xì)胞分化明顯增多。此外,通過(guò)體內(nèi)外實(shí)驗(yàn)證實(shí),miR-26a與人類(lèi)角化細(xì)胞的分化有關(guān)[31]。
Havelange等[32]通過(guò)對(duì)急性髓系白血病(AML)的mRNA和miRNA表達(dá)譜進(jìn)行相關(guān)性、基因本位(gene ontology)和作用網(wǎng)絡(luò)(network)分析,認(rèn)為miR-26a與促凋亡基因BIM和PTEN成正相關(guān),并用實(shí)驗(yàn)證實(shí)miR-26a與AML細(xì)胞凋亡有關(guān)。Alajez等[33]用Luciferase實(shí)驗(yàn)證實(shí),miR-26a調(diào)控NPC中Ezh2的表達(dá),進(jìn)而調(diào)控細(xì)胞凋亡。Kota等[10]的研究結(jié)果顯示,miR-26a在肝細(xì)胞癌模型中引起肝癌細(xì)胞特異性凋亡。Zhang等[12]將miR-26a瞬時(shí)轉(zhuǎn)染乳腺癌細(xì)胞株MCF7從而啟動(dòng)癌細(xì)胞凋亡。但也有文獻(xiàn)報(bào)道,miR-26a降低HeLa、前列腺癌(DU145)和結(jié)腸癌細(xì)胞(SW480)對(duì)Trail誘導(dǎo)凋亡的敏感性[34],降低膠質(zhì)瘤細(xì)胞中C-JUN-terminal Kinase依賴(lài)性凋亡[4]。故miR-26a在凋亡中的作用機(jī)制還有待于進(jìn)一步的研究。
[1] Rachagani S,Kumar S, batra SK, et al. MicroRNA in pancreatic cancer: Pathological, diagnostic and therapeutic implications. Cancer Lett, 2010,292: 8-16.
[2] Sun W, Julie Li YS, Huang HD, et al.microRNA: a master regulator of cellular processes for bioeng-ineering systems. Annu Rev Biomed Eng, 2010,12:1-27.
[3] Calin GA,Sevignani C,Dumitru CD,et al.Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc Natl Acad Sci USA,2004,101:2999-3004.
[4] Kim H, Huang W, Jiang X, et al.Integrature genome analysis reveals an oncomir/ aocogene claster regulating glioblastoma survivorship.Proc Natl Acad Sci USA, 2010,107:2183-2188.
[5] Jones MR, Quinton LJ,Blahna MT, et al.Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol,2009,11:1157-1163.
[6] Sudbery I, Enright AJ, Fraser AG, et al.Systematic analysis of off-target effects in an RNAi screen reveals microRNAs affecting sensitivity to TRAIL-induced apoptosis. BMC Genomics, 2010,11:175.
[7] Sander S, Bullinger L, Klapproth K,et al.MYC stimulates EzH2 expression by repression of its negative regulator miR-26a. Blood,2008,112:4202-4212.
[8] Chen X,Murad M,Cui YY,et al.miRNA regulation of liver growth after 50% partial hepatectomy and small size grafts in rats. Transplantation, 2011,91:293-299.
[9] Ji J,Shi J,Budhu A, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med, 2009,361:1437-1447.
[10] Kota J, Chivukula RR, O′Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 2009,137:1005-1017.
[11] Maillot G, Lacroin-Triki M, Pierredon S, et al. Widespread estrogen-dependent repression of micrornas involved in breast tumor cell growth. Cancer Res, 2009,69: 8332-8340.
[12] Zhang B, Liu XX,He JR,et al. Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and Ezh2 in breast cancer. Carcinogenesis, 2011,32:2-9.
[13] Lu J, He ML,Wang L,et al. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res, 2011,71:225-233.
[14] Sander S, Bullinger L,Klapproth K,et al.MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood,2008,112:4202-4212.
[15] Sander S, Bullinger L, Wirth T.Repressing the repressor: a new mode of myc action in lymphomagenesis. Cell Cycle, 2009,8:556-559.
[16] Di Lisio L, Gómez-López G,Sánchez-Beato M, et al.Mantle cell lymphoma: transcriptional regulation by microRNAs. Leukemia,2010,24:1335-1342.
[17] Zhang Y, Li M, Wang H, et al. Profiling of 95 MicroRNAs in pancreatic cancer cell Lines and surgical specimens by Real-time PCR analysis. World J Surg,2009,33:698-709.
[18] Bao B, Wang Z, Ali S, et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res (Phila), 2012,5:355-364.
[19] Li W, Yuan Y, Huang L, et al.Metformin alters the expression profiles of microRNAs in human pancreatic cancer cells. Diabetes Res Clin Pract, 2012,96:187-195.
[20] Bao B,Ali S,Baneriee S,et al.Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression.Cancer Res,2012,72:335-345.
[21] Gao W,Shen H, Liu L, et al. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol, 2011,137:557-566.
[22] Yu T, Wang XY, Gong RG, et al.The expression profile of microRNAs in a model of7,12-dimethyl-benz[a] anthrance-induced oral carcinogenesis in Syrian hamster. J Exp Clin Cancer Res, 2009,13;28:64.
[23] Xie L, Chen X, Wang L, et al. Cell-free miRNAs may indicate diagnosis and docetaxel sensitivity of tumor cells in malignant effusions. BMC Cancer, 2010,10:591.
[24] Heinzelmann J, Henning B, Sanjmyatav J, et al. Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol, 2011,29:367-373.
[25] Ciarapica R, Russo G, Verginelli F, et al.Deregulated expression of miR-26a and Ezh2 in rhabdomyosarcoma. Cell Cycle,2009,8:172-175.
[26] Visone R, Pallante P, Vecchione A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene, 2007,26:7590-7595.
[27] Huse JT,Brennan C,Hambardzumyan D,et al.The PTEN-regulating miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo.Genes Dev,2009,23:1327-1337.
[28] Kang WJ, Cho YL, Chae JR, et al. Molecular beacon-based bioimaging of multiple microRNAs during myogenesis.Biomaterials,2011,32:1915-1922.
[29] Wong CF, Tellam RL.MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem,2008,283:9836-9843.
[30] Luzi E,Marini F, Sala SC, et al. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res, 2008,23:287-295.
[31] Hildebrand J, Rütze M, Walz N, et al.A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo. J Invest Dermatol, 2011,131:20-29.
[32] Havelange V, Stauffer N, Heaphy CC, et al.Functional implications of microRNAs in acute myeloid leukemia by integrating microRNA and messenger RNA expression profiling. Cancer, 2011, 10.1002/cncr.26096.[Epub ahead of print].
[33] Alajez NM, Shi W, Hui AB, et al. Enhancer of Zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis, 2010,1:e85.
[34] Sudbery I,Enright AJ,Fraser AG,et al.Systematic analysis of off-target effects in an RNAi screen reveals microRNAs affecting sensitivity to TRAIL-induced apoptosis.BMC Genomics,2010,11:175.
10.3760/cma.j.issn.1674-1935.2012.04.025
200433 上海,第二軍醫(yī)大學(xué)長(zhǎng)海醫(yī)院病理科
鄭建明,Email:jmzheng1962@163.com
2011-05-04)
(本文編輯:呂芳萍)