• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Organization and storage model of marine information and its application in the“China Digital Ocean”

    2011-12-28 10:22:48LIUJinLIHaoqianZHUJicaiJIANGXiaoyiZHANGfeng
    海洋通報 2011年2期
    關(guān)鍵詞:格網(wǎng)數(shù)據(jù)倉庫數(shù)據(jù)模型

    LIU Jin,LI Hao-qian, ZHU Ji-cai,JIANG Xiao-yi,ZHANG feng

    1. National Marine Data and Information Service, Tianjin 300171, China;

    2. China Nuclear Geology, Beijing 100013, China

    Organization and storage model of marine information and its application in the“China Digital Ocean”

    LIU Jin1,LI Hao-qian1, ZHU Ji-cai2,JIANG Xiao-yi1,ZHANG feng1

    1. National Marine Data and Information Service, Tianjin300171, China;

    2. China Nuclear Geology, Beijing100013, China

    Based on the experience and achievement of the“China Digital Ocean”, the classification plan for Marine data elements is made, which can be classified into five,including marine point elements, marine line elements, marine polygon elements,marine grid elements and marine dynamic elements. In this paper, the technology of features and object-oriented method, a spatial-temporal data model is proposed, which can be applied in the large information system engineering like the “Digital Ocean”, and this paper discusses the application of spatial data model, marine three-dimensional raster data model and relation data model in the building of Data Warehouse in “China Digital Ocean”, and concludes the merits of these models.

    digital ocean, sphere model, data warehouse, ocean elements, data organization and storage

    Introduction

    “Digital Ocean” is a massive and complex system supported by the newest information technology, which relies on the national information facilities and marine spatial data establishment to research the marine phenomenon[1]. It is a virtual ocean world formed by massive marine observation data with multi-resolution, multi-phase and multi-space type, and also by its analysis algorithm and model. Data model and data structure are the foundation for constructing the digital ocean information system. Most of the ocean phenomenon has a dynamic spatio-temporal feature, which is the essential difference comparing to the land information, so the traditional GIS data model is facing many embarrassments in organizing or displaying the ocean information.

    Many researchers propose various types of spatio-temporal data models to organize and display the time-space phenomenon. In the Time Lab technology report, Achilleas Pand Babis T detailedly discussed 9 frequently used spatio-temporal data models and analyzed their merits and drawbacks and the relative application domain[2]. Yet, these models can not organize or display the time-space process of ocean phenomenon well,particularly when both the property and position are changeable, such as the ocean front,the vortex and the coastline, et al. LI Shan et al. proposed an “ocean line data model basing on features” and designed an ocean line storage structure with a time-space feature[3].XUE Cun-jin et al. discussed the process objects and their logical relation according to the inner characteristics of continuous gradual changing geography substantiality. They implicitly recorded the dynamic changing mechanism of the geography substantiality by the abstract process object, and defined the function interface mode whose changing mechanism is supplied by the process object storage list. Also, they realized the process organization, storage and dynamic analysis of continuous gradual changing geography substantiality[4]. The researches of LI and XUE solved the organization and storage of the marine data with line feature and continuous gradual change feature respectively. Their work can partly fulfill the demand of ocean information system. However, the digital ocean is an integrated information system containing various types of marine data, which requires an integrated and general solution.

    Aiming at project application, this paper researches the classification of marine data elements in the “Digital Ocean” system, designs a spatio-temporal data model that suits for large information system project like “Digital Ocean”. Its practical application performs well.

    1 Background

    “China Digital Ocean” is a macro system, which recurs and predicts the real ocean based on the integrated digital platform and the virtual environment supported by the techniques of database, geographic information system, network and so on. The data this system contains are obtained from marine investigation, ocean observation (including the satellite, plane, ship, buoy, and station data) and society statistic investigation. “Digital Ocean” directly displays the real ocean phenomenon and process, predicts and simulates the future ocean scene, improves ocean development and application reliably and effectively to keep the continuable development of ocean[5].

    The data sources of “Digital Ocean” information system involve: the whole data of 908 investigation project, investigation data of history projects of National Ocean Bureau,the massive marine science data and relative information conserved by subordinate ocean bureaus, marine business centers and research institutes. The data cover wide domains like ocean hydrology, meteorology (near sea surface), marine biology, marine chemistry,marine environment quality, marine geology, marine geophysics, marine basic geography,ocean aviation and remote sensing, marine economy, ocean resource, etc. The total global ocean data volume is greater than 10 billion kb.

    Compared to the other data, ocean information owns the characteristics of multi-source, multiform and multi-type. Various observation methods determine the multi-source of data, subsequently lead to accuracy differences and various formats, which cause the complex data structure. The multiform of data, namely, the ocean information are presented by various formats, like graph, image, text, etc, which induces a further complication of data processing methods. The multi-type of data means that the ocean data cover various disciplines, which brings complexity to the data management. One of the important tasks of “Digital Ocean” is to establish the data warehouse and integrate the complex various ocean data together for the further information service, what’s the key point is the proper data organization & storage that can fulfill the requirements of data application.

    2 Classification of the ocean data elements

    Considering the multi-source and multiform of ocean data, this paper chooses a feature-based method, to categorize the complex various data and pick up their special properties for establishing the element category and the data model. A clear catalog can be formed by classifying the ocean data, which is beneficial to the construction of the database and dataset. The feature-based method is adopted to extract the common spatial character and property information, abstract them into element categories. Meanwhile,establish the relationship among the data and design the data model according to the needs of the data application, and supply the data interface, method and operation for it.

    Features highly generalize and abstract the phenomenon and its display of the realistic world, which are the basic units of entity. All the objects in the realistic world are displayed by the features, which are composed of feature property and feature operation.The instantiation of the features turns out to be the object entity of the realistic world. Thus,this paper categorizes the marine data into five elements, which are marine point elements,marine line elements, marine polygon elements, marine grid elements and marine dynamic elements. The definitions and the contents of each element are as follow.

    2.1 Marine point elements

    The marine points can be classified into two kinds, which are feature points and measurement points. The measurement points can be similarly classified into time series points and instantaneous points, while the latter are formed by four subcategories.

    Tab. 1 Classification of marine point elements

    2.1.1 Time series points

    The fixed buoy, coast base and station et al. can be displayed by the Time Series Point Model due to their long time series’ data collection, while the Instantaneous Point relates with a certain time. In the Time Series Point property table, X-location and Y-location define the location of the point. As the foreign key equipment list, Device ID defines the equipment information of that point. The time series parameter table keeps the parameter information. TS Type is the host key and responsible for connecting the Time Series table.Z-location can display the different profiles of the same parameter variable. The values of each variable are stored in the time series table.

    Tab. 2 Parameters of time series points

    There’s no definition for the time series with irregular interval. The main time intervals are 1 min, 2 mins, 30 mins, 1h, 2h, 1d and 1mon. As its name, the DataType indicates the data type, including the instantaneous data, the accumulative data, the increment, the mean, the maximum and the minimum. The Origin indicates whether the time series data are produced by a model or the real measurement data.

    Tab. 3 Parameters of Time Series Point

    2.1.2 Location series

    Location Series is the subcategory of Instantaneous Point. It fits for storing the information of each point of the trace and can be used to display the information of ocean plankton. The single plankton information is stored in the Series. The Series ID represents animal, are every point of animal is described by Location Series. Property Time Value and XY coordinates represent a single point element. Property Z Value is responsible for storing the depth. As a foreign key, Survey ID connects the object class Survey Info through the relation class SurveyInfoHasPoints. Series ID is used to connect the object class Series.

    2.2 Marine line elements

    The profile contour, duration line, and the element line are three components of the marine line elements.

    2.2.1 Profile contour

    This subcategory supplies a public data type for describing the element property of the nodes along the profile contour. In ocean GIS, the profile lines frequently used are vertical profile line, section line and transport line.

    2.2.2 Duration line

    The initial and the end time, and the lasting time are 3 core properties of time continuous line. It can record the sample data measured on the ship, the lasting time of the trawl and the partial trace of the automatic ship. One of its subcategories is the trace line,which is used in the ship-base data model. Differing from the profile contour, the trace line is only the trace of one ship. The data along the trace may be collected, or may not. Yet the profile contour always contains data.

    2.2.3 Element line

    Many ocean elements, like the seafloor pipeline, the administerial boundary and the sea route, can be displayed by standard line feature. A unique symbol, the x y coordinate pair and a free style measurement property aiming for application are required.Coastline is an extended subcategory of the element line. When confirming a coastline, the vertical profile data need to be recorded. Thus, a vertical datum plane property is added to store the vertical data of the coastline.

    2.3 Marine polygon elements

    The two kinds of the polygon elements in marine environment are: the time-independent static element polygon and the time-continuous polygon with initial and end time and also variables.

    All the marine polygon elements of the static polygon can be displayed into element polygons, such as the ocean protection district and the exclusive economic zone. The element polygon need one and the only symbol, the x y coordinate pair that form the boundary, the depth and the measurement property defined by customer. A period of changing feature of the dynamic marine polygon elements can be described by time-continuous section.

    2.4 Marine grid elements

    There are some sea surface features, such as SST, SSH, chlorophyll a, and waterpower measurement. Three kinds of data types can display those features, which are the regular interpolation surface, the irregular interpolation surface and the grid volume component.

    2.4.1 Regular interpolation surface

    This model is normally used for the remote sensing data and pictures. So far the formats that support the raster data involve ArcGIS, GRID data, GeoTiff, Band Sequential(BSQ), and Band Interleaved (BIL) data. Besides, there are many oceanography and meteorology data products organized by network Common Data Form (netCDF) or hierarchical data format (HDF).

    2.4.2 Irregular interpol surface

    The irregular triangle grid and many finite element models are the typical types of this kind of data, which recognize the minimum triangle piece through the pivotal node and border. TIN is a precise and effective model for displaying the continuous surface.

    2.4.3 Grid volume component

    Meshes are defined to fulfill the requirements of the ocean grid model and the analytical application. It displays the data into several layer Mesh data stacks with lines and columns. The structure of the elements flexibly defines the grid elements with regular interval, and these grid points can be the discrete node data.

    Fig. 1 Model of ocean grid elements

    2.5 Ocean dynamic element

    The nontraditional spatial data including, cartoon, kinescope, video and so on, aim at displaying the dynamic feature of the ocean data. The video observation data can be obtained by automatic underwater measurement equipment, aerial survey, or the video camera fixed in port, which are used to display the dynamic ocean elements and phenomenon like storm tide and current field.

    3 Data model construction and application

    Classify the ocean data into 5 categories according to their features, and the“object-oriented” technique is adopted in data management and storage. The object mentioned above is a concept base on the class, and the relations between feature and the object are as follows: 1) Feature is the most basic unit of data model and data structure;2) One feature is corresponding to one object, and has one only ID. 3) Class describes the common property and type of the features, and realizes the instantiation of it. 4) The arithmetic operator of the inner class is adopted to connect the different features, so as to construct the interrelated geographical entities[3]. The foundational idea based on the feature data model is to take the feature as the basic unit and adopt the object-oriented technique to design the space, time, and time-space function, relation and operation between the features.

    Most point, line and polygon data are spatial vector data, which all own spatial feature and property features, and the only difference is their spatial display style, and they can be organized and stored by the “Ocean Spatial Data Model”. Although the ocean remote sensing data are raster data, its main feature is spatial feature, thus the model mentioned above can be adopted here, too. The ocean grid element, with great data volume and single property information, fits the “Ocean Grid Data Model”, while the ocean dynamic elements fit the “Relation Data Model” due to the property feature information which the elements mainly contained.

    3.1 Ocean spatial data model

    The “Feature Dataset-Feature Class-Element” relationship is adopted for the organization of vector element data. Multi feature datasets are allowed, which are established by certain data class respectively, and multi-feature class and object class can be contained in each dataset. Each feature class involves multi geography elements, while each geography element is composed of property information, geometry information,symbol information and label information.

    After setting certain grid dataset, the remote sensing image data element can be stored by Raster Mosaic method or Raster Catalog method or both. The grid datasets or grid catalogs are formed according to the name of the subjects, and can be accessed and queried through the related spatial database sheet of the ArcSDE Geodatabase.

    The physical storage of the vector spatial data elements is realized by the ArcSDE Geodatabase software. Its relation sheet structure of the storage model in the Geodatanbase is presented below:

    Fig. 2 ArcSDE model of vector data

    Every data element vector layer has corresponding Tab. F and Tab. S. There are a series of metadata tables in the ArcSDE Geodatabase responsible for the organization of the spatial metadata and index metadata of the element layer stored in it.

    The organization of the spatio-temporal dynamic data relies on the history achieving function of the Geodatabase, and below is the related storage structure.

    Tab. B only stores the initial state of the object without the time information, and keeps conservation when editing and updating the data. Table H stores the changing achieving information of the object, mainly the records of property information. For the convenience of object query and historical remount, the time information is directly marked onto the property of the object, and saved in Table H. The time information in Table H includes the object’s valid time (the start of the valid time Vt_start, and the end of the valid time Vt_end) and affair time (the start of the affair time GDB_from_date, and the end of the business time GDB_to_date), also supports double time operation. Table F is responsible for the storage of the spatial feature, while Table S is for the spatial index information. Table R records the changing relation among the objects, while Object ID records the element code of the new object. The label code of the father object is recorded in Father ID. The Event ID is the serial number of the event that affects the changing of the object, which presents the combination and abruption among the objects, makes the changing process of the object clear. The changing events mainly involve the naissance, perdition, abruption and combination of the objects. Only the object formed through abruption or combination has the father object, the object that directly appears or vanishes has no father object.

    Fig. 3 Spatio-temporal data schema of Geodatabase

    3.2 Ocean Solid Grid Data Model

    The multi-layer grid data are the foundation of the ocean solid grid data model. It combines multi-layers into a whole object by feature class association to realize the organization and storage of the ocean solid data. Both the regular and irregular interpolation sea surfaces are single layer grid data, which can be treated as the grid volume data with only one layer, while the grid volume element can be treat as the grid volume data with multi-relating layers. Thus, this model is suitable for both the 2-D grid data and the 3-D grid volume data.

    The organization and storage of the grid data are realized by designing certain feature element class and object class in the model. This paper adopts the Mesh feature element class to store the one layer or multi-layer data, which involve the vector data and the scalar data like temperature, salinity, density, sound speed, current, storm tide, single layer tide and tidal current and so on. The storage of these data needs the proper Mesh element type chosen according to the characters of the Mesh elements. For temperature,salinity, density and sound speed, we can take vertical multi-layer data at a same time as one Mesh element, or take one layer of it as one Mesh element; while for the storm tide and tide, the field data during a time period are considered as one Mesh element. For the grid field data like current and tidal current, the data of all layers at the same time can be regarded as one Mesh element, or a single layer data at the same time as one Mesh element. Other types of element field data can be analyzed similarly.

    Several relation tables need to be defined, such as grid table, grid point table, vector table, scalar table and parameters.

    Tab. 4 Construction of grid table

    Tab. 5 Construction of parameters table

    The relationship of the tables are as follows: the grid points relate to the Mesh table by grid label, while the vector and scalar tables relate to the grid point table by element label, and relate to the parameter table by parameter label. Besides, a metadatabase is needed to illustrate the information of various elements, including the range, name, type,grid resolution, layer depth and updating frequency, etc. The alterable grid element data require specially to be illustrated in the metadata.

    In the “digital ocean” system, the environment data like seawater temperature,salinity and current, are divided into several layers by depth and stored by the solid grid data model. Consequently the information of different cross sections and vertical profiles at the same time can be visualized by depth, longitude, latitude or arbitrary direction.

    3.3 Relation Data Model

    Relation data model sets a certain spatial entity as the object, transforms its data information into different property features, and combines the entity object and property feature together by relating the host keys. It establishes complex data relations and organizes the various multi-source ocean data into a whole. There are two storage methods of this model. One is to store the elements directly into the relation database,which is suitable for binary or text data due to their small data volume and high demand of single-layer accessing. The organization and storage method is to form a document by layering the element data and store this document directly into the database table, namely,to dispart the multi-layer grid elements into several layers and form several documents from one. This storage method is convenient for obtaining, querying and displaying the one-layer element data with little records. Yet for multi-layer profile element data, it’s not efficient. This storage method is mainly suitable for multi-layer regular binary grid data,such as temperature, salinity, density, sound speed, current, and the one-layer binary field data, like storm tide, tide, tidal current, and the modeling analysis and forecast data.

    Fig. 3 Temperature information in different depths

    Fig. 4 Temperature information in different profiles

    Another method is to integrate the database sheet and the document system together, namely, store the metadata and the corresponding storage path in the database sheet, while store the relevant data entity under the directory defined by the document system. It is most efficient for data accessing and reading, which is propitious to the fast obtaining and visualization of the ocean data.

    4 Conclusion

    This paper classifies the features of ocean data into 5 major categories, and designs 3 data models according to an idea of “object-oriented”. The 3 data models solve the organization and storage problem of the ocean spatial data, solid grid data and great volume text data, respectively. The ocean vector spatial data model integrates the common 2-D ArcGIS software to make the data storage and management easily, which can be viewed, edited and controlled (for popedom and version) by many desktop graphic software. The shortcoming of it is the low efficiency when directly accessing the vector data layer in the 3-D information system, especially the polygon layers, which need to issue the vector layers by web feature service or web map service before using in the 3-D system.The ocean grid data model is designed specially for the storage of solid grid data, which is effective in storing the great volume grid data (in TB). Thanks to the pyramid structure it adopted, the reading speed is fast enough to satisfy the demand of the 3-D information system. However, its disadvantage is the failure of directly data editing. The grid data need processing in advance before storing into the database. The relation data model is good at storing various types of property data, such as the picture, text, model and sound, etc. It’s a sharp instrument for storing the “sundries” data, which plays an important role in constructing the digital ocean information system.

    In conclusion, so far there is no universal model suitable for the organization and storage of all kinds of ocean element data. Each model has its own merits and drawbacks,and also the limitation in application. Thus, the choice of the organization & storage method need to base on the demand of realistic application. Some are suitable for the manner of document system, while some fit for the common relation database, also there are considerable part of them suitable for the spatial database model. New data model should be introduced to display the spatial dynamic behavior of ocean and visualize its elements. Our ocean solid grid data model is such an example. Although it still can not be realized without the Geodatabase spatial data model, the ocean data types mentioned in its model design and organization are suitable for the concrete ocean applications.

    Reference

    [1] HOU Wenfeng. Tentative Ideas on the Development of Digital Ocean in China [J]. Marine Science Bulletin, 1999, 12(6):1 - 10.

    [2] Pavlopoulos A, Theodoul I D. Review of spatio temporal data models [R]. Time Lab Technical Report TR-98-3, 1998, 2 629 - 2 640.

    [3] LI Shan, XUE Cunjin, HE Huizhong. Feature-Based Marine Line Data Model [J]. Sun Yatsen University Forum, 2006, 26(9):193 - 198.

    [4] XUE Cunjin, ZHOU Chenghu, SU Fenzhen, et al. Research on Process-Oriented Temporal-Spatio Data Model [J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):95 - 101.

    [5] ZHANG Feng, SHI Suixiang, YIN Ruguang, et al. Research of Data Architecture in Digital Ocean[J], Marine Science Bulletin, 2009, 28(9):1 - 8.

    [6] SU Fenzhen, DU Yunyan, PEI Xiangbin, et al., Constructing Digital Sea of China with the Datum of Coastal Line [J]. Geo-information Science, 2006, 3, 8(1):12 - 15.

    [7] JIA Jun-tao, ZHAI Jing-sheng, WU Zhong-ding, et al. Constructing Digital Sea of China with the Datum of Coastal Line [J], Geo-information Science, 2007, 25(1):111 - 116.

    [8] BAO Yu-bin, LU Qun, CAI Jin-ming, et al. Domain Ontology-based Multidimensional Modeling of Marine Environmental Data Warehouse [J], Marine Science Bulletin, 2009, 28(4):132 - 140.

    [9] QIN Rufu, YE Na, XU Huiping, et al. Visualization of Multi-dimension Oceanographic Data in Geography Information System [J]. Journal of Tongji University (natural science), 2009, 37(2):272 -276.

    [10] HE Guangshun, LI Sihai. Constructing Spatial Information Database for Digital Ocean [J]. Marine Information, 2004, (1): 1 - 4.

    海洋信息組織與存儲模型研究及其在“數(shù)字海洋”中的應(yīng)用

    劉 金1,李昊倩1,朱吉才2,姜曉軼1,張 峰1

    (1. 國家海洋信息中心 天津 300171;2. 中國核工業(yè)地質(zhì)局 北京 100013)

    基于中國數(shù)字海洋建設(shè)的經(jīng)驗和成果,制定了海洋數(shù)據(jù)要素的分類方案,將海洋信息分為5大類:海洋點要素、海洋線要素、海洋面要素、海洋網(wǎng)格要素、海洋動態(tài)要素。采用基于特征的方法和面向?qū)ο蟮募夹g(shù)設(shè)計了適合數(shù)字海洋大型信息系統(tǒng)工程建設(shè)的時空數(shù)據(jù)模型,探討了海洋空間數(shù)據(jù)模型、海洋立體格網(wǎng)數(shù)據(jù)模型、關(guān)系數(shù)據(jù)模型在數(shù)字海洋數(shù)據(jù)倉庫建設(shè)中的應(yīng)用,并總結(jié)了其優(yōu)缺點。

    數(shù)字海洋;球體模型;數(shù)據(jù)倉庫;海洋要素;數(shù)據(jù)組織與存儲

    on May 5, 2011

    liujin@mail.nmdis.gov.cn

    猜你喜歡
    格網(wǎng)數(shù)據(jù)倉庫數(shù)據(jù)模型
    實時電離層格網(wǎng)數(shù)據(jù)精度評估
    基于數(shù)據(jù)倉庫的住房城鄉(xiāng)建設(shè)信息系統(tǒng)整合研究
    面板數(shù)據(jù)模型截面相關(guān)檢驗方法綜述
    加熱爐爐內(nèi)跟蹤數(shù)據(jù)模型優(yōu)化
    電子測試(2017年12期)2017-12-18 06:35:36
    分布式存儲系統(tǒng)在液晶面板制造數(shù)據(jù)倉庫中的設(shè)計
    電子制作(2016年15期)2017-01-15 13:39:15
    探析電力系統(tǒng)調(diào)度中數(shù)據(jù)倉庫技術(shù)的應(yīng)用
    基于空間信息格網(wǎng)與BP神經(jīng)網(wǎng)絡(luò)的災(zāi)損快速評估系統(tǒng)
    基于數(shù)據(jù)倉庫的數(shù)據(jù)分析探索與實踐
    平均Helmert空間重力異常格網(wǎng)構(gòu)制方法
    基于位置服務(wù)的地理格網(wǎng)編碼設(shè)計
    測繪通報(2013年2期)2013-12-11 07:27:50
    亚洲av.av天堂| 午夜老司机福利剧场| 在线 av 中文字幕| 日日啪夜夜爽| 国产毛片在线视频| 只有这里有精品99| 亚洲内射少妇av| 春色校园在线视频观看| 亚洲av不卡在线观看| 夜夜爽夜夜爽视频| 免费大片黄手机在线观看| 久久精品人妻少妇| 七月丁香在线播放| 能在线免费看毛片的网站| 国产精品蜜桃在线观看| www.av在线官网国产| 成人毛片60女人毛片免费| www.色视频.com| 欧美性猛交╳xxx乱大交人| 五月天丁香电影| 直男gayav资源| 看免费成人av毛片| 久久久久精品久久久久真实原创| 亚洲aⅴ乱码一区二区在线播放| 少妇 在线观看| 日韩视频在线欧美| 亚洲第一区二区三区不卡| 精品国产三级普通话版| 欧美成人a在线观看| 亚洲精品中文字幕在线视频 | 久久久成人免费电影| 九色成人免费人妻av| 欧美区成人在线视频| 一级毛片黄色毛片免费观看视频| 欧美日韩在线观看h| 亚洲av.av天堂| 亚洲av电影在线观看一区二区三区 | 久久99蜜桃精品久久| 九九久久精品国产亚洲av麻豆| 日韩伦理黄色片| 日本猛色少妇xxxxx猛交久久| 国产成人免费无遮挡视频| 亚洲人与动物交配视频| 香蕉精品网在线| 亚洲丝袜综合中文字幕| 亚洲欧美成人精品一区二区| 在线天堂最新版资源| 97人妻精品一区二区三区麻豆| 国产国拍精品亚洲av在线观看| 综合色av麻豆| 午夜老司机福利剧场| 麻豆乱淫一区二区| 久久精品国产鲁丝片午夜精品| 亚洲丝袜综合中文字幕| 一个人看的www免费观看视频| 男女啪啪激烈高潮av片| 国产精品av视频在线免费观看| 精品久久国产蜜桃| 国产视频首页在线观看| 丰满少妇做爰视频| 国产人妻一区二区三区在| 国产大屁股一区二区在线视频| 免费看光身美女| 亚洲av日韩在线播放| 日韩不卡一区二区三区视频在线| av在线天堂中文字幕| 毛片一级片免费看久久久久| 97精品久久久久久久久久精品| 一级爰片在线观看| 欧美人与善性xxx| 午夜福利网站1000一区二区三区| 国产一区二区三区av在线| 在线观看三级黄色| 大片免费播放器 马上看| 欧美xxxx性猛交bbbb| 在线观看人妻少妇| 久久精品国产亚洲av涩爱| 日韩av在线免费看完整版不卡| 亚洲av.av天堂| 毛片一级片免费看久久久久| 晚上一个人看的免费电影| 真实男女啪啪啪动态图| 看免费成人av毛片| 国产黄频视频在线观看| 色哟哟·www| 亚洲av免费高清在线观看| 亚洲精品国产av蜜桃| 亚洲国产精品999| 日韩av不卡免费在线播放| 亚洲av成人精品一二三区| 精品少妇久久久久久888优播| 97精品久久久久久久久久精品| 亚洲av在线观看美女高潮| 伊人久久精品亚洲午夜| 成人毛片a级毛片在线播放| 少妇人妻 视频| 深爱激情五月婷婷| 乱系列少妇在线播放| 伊人久久国产一区二区| 亚洲最大成人中文| 国产黄频视频在线观看| 丰满乱子伦码专区| 春色校园在线视频观看| 欧美高清性xxxxhd video| 男人添女人高潮全过程视频| 熟女电影av网| 亚洲天堂av无毛| 中文精品一卡2卡3卡4更新| 深爱激情五月婷婷| 最近手机中文字幕大全| 色婷婷久久久亚洲欧美| 别揉我奶头 嗯啊视频| 高清视频免费观看一区二区| 网址你懂的国产日韩在线| 欧美精品一区二区大全| 波多野结衣巨乳人妻| 看免费成人av毛片| 精品人妻偷拍中文字幕| 最新中文字幕久久久久| 有码 亚洲区| 国产精品久久久久久av不卡| 乱系列少妇在线播放| 女人被狂操c到高潮| 尤物成人国产欧美一区二区三区| 日韩一区二区视频免费看| 国产成人freesex在线| 春色校园在线视频观看| 国产精品久久久久久精品古装| 亚洲无线观看免费| 亚洲伊人久久精品综合| 日韩 亚洲 欧美在线| 午夜免费男女啪啪视频观看| 26uuu在线亚洲综合色| 欧美xxxx黑人xx丫x性爽| 亚洲成人久久爱视频| 一级毛片aaaaaa免费看小| 国产永久视频网站| 一区二区三区四区激情视频| 老师上课跳d突然被开到最大视频| 在线天堂最新版资源| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品电影小说 | 亚洲精品影视一区二区三区av| 国产在线一区二区三区精| 你懂的网址亚洲精品在线观看| 日韩三级伦理在线观看| 亚洲欧美中文字幕日韩二区| 天天一区二区日本电影三级| 亚洲一级一片aⅴ在线观看| 国产淫片久久久久久久久| 国产伦精品一区二区三区四那| 午夜福利在线在线| 卡戴珊不雅视频在线播放| av在线app专区| 成年女人看的毛片在线观看| 噜噜噜噜噜久久久久久91| 色视频www国产| 精品少妇黑人巨大在线播放| 中国三级夫妇交换| 天堂俺去俺来也www色官网| 国产成人freesex在线| 亚洲av.av天堂| 亚洲国产精品成人久久小说| 日韩国内少妇激情av| 日日撸夜夜添| 99热这里只有是精品在线观看| 九草在线视频观看| 久久人人爽人人爽人人片va| 成人鲁丝片一二三区免费| 一个人看的www免费观看视频| 亚洲av福利一区| 最近的中文字幕免费完整| 国产毛片在线视频| 亚洲av福利一区| 韩国av在线不卡| 一个人看视频在线观看www免费| 亚洲国产精品专区欧美| 麻豆精品久久久久久蜜桃| 99久久九九国产精品国产免费| 日韩不卡一区二区三区视频在线| 国产成人aa在线观看| 人人妻人人爽人人添夜夜欢视频 | 熟女av电影| 男女下面进入的视频免费午夜| 日韩欧美精品免费久久| 久久亚洲国产成人精品v| 久久精品久久久久久噜噜老黄| 亚洲综合精品二区| 中国美白少妇内射xxxbb| 视频区图区小说| 大香蕉97超碰在线| 日韩国内少妇激情av| 丰满人妻一区二区三区视频av| 99热6这里只有精品| 伦理电影大哥的女人| 亚洲一级一片aⅴ在线观看| 免费黄色在线免费观看| 色网站视频免费| 色哟哟·www| 晚上一个人看的免费电影| 午夜福利在线观看免费完整高清在| 男女国产视频网站| 国产综合懂色| 哪个播放器可以免费观看大片| 成人无遮挡网站| 日韩电影二区| 亚洲怡红院男人天堂| 简卡轻食公司| 不卡视频在线观看欧美| 一级片'在线观看视频| 日本黄色片子视频| 久久女婷五月综合色啪小说 | 亚洲国产精品国产精品| 亚洲真实伦在线观看| 久久精品综合一区二区三区| 少妇 在线观看| 黄色一级大片看看| 亚洲美女视频黄频| 午夜福利视频精品| 国产精品99久久久久久久久| 日韩av免费高清视频| 免费看日本二区| av在线蜜桃| 欧美zozozo另类| 久久精品熟女亚洲av麻豆精品| 97人妻精品一区二区三区麻豆| 久久久色成人| 大香蕉久久网| 听说在线观看完整版免费高清| 尤物成人国产欧美一区二区三区| 精华霜和精华液先用哪个| 中文乱码字字幕精品一区二区三区| 免费大片黄手机在线观看| 一级a做视频免费观看| 狠狠精品人妻久久久久久综合| 成人毛片60女人毛片免费| 一二三四中文在线观看免费高清| 国产欧美日韩精品一区二区| 爱豆传媒免费全集在线观看| 晚上一个人看的免费电影| 午夜福利高清视频| 亚洲va在线va天堂va国产| 亚洲欧美成人精品一区二区| 一本色道久久久久久精品综合| 狂野欧美白嫩少妇大欣赏| 国产高清不卡午夜福利| 久久久久久久精品精品| 97超碰精品成人国产| 高清日韩中文字幕在线| 午夜精品国产一区二区电影 | 热99国产精品久久久久久7| 十八禁网站网址无遮挡 | av专区在线播放| 成人毛片a级毛片在线播放| 久久久久久久精品精品| 青春草视频在线免费观看| 国产男女超爽视频在线观看| 五月玫瑰六月丁香| 久久久久国产精品人妻一区二区| 伦理电影大哥的女人| 国产一区二区在线观看日韩| 春色校园在线视频观看| 国产精品99久久久久久久久| 亚洲国产精品专区欧美| 亚洲成人久久爱视频| 久久鲁丝午夜福利片| 欧美日韩在线观看h| 国产人妻一区二区三区在| 特级一级黄色大片| 亚洲精品色激情综合| 中文乱码字字幕精品一区二区三区| 中国美白少妇内射xxxbb| 日韩不卡一区二区三区视频在线| 午夜福利视频精品| 国产精品人妻久久久久久| 3wmmmm亚洲av在线观看| 2021少妇久久久久久久久久久| 另类亚洲欧美激情| 高清av免费在线| 女人被狂操c到高潮| 大陆偷拍与自拍| 一级毛片电影观看| 亚洲精品一区蜜桃| 自拍偷自拍亚洲精品老妇| 国产精品熟女久久久久浪| 午夜免费观看性视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜精品一区二区三区免费看| av国产免费在线观看| 亚洲最大成人手机在线| 国产精品一区二区在线观看99| 亚洲精品色激情综合| 秋霞在线观看毛片| 男人舔奶头视频| 亚洲国产精品成人综合色| 亚洲精华国产精华液的使用体验| 七月丁香在线播放| 内地一区二区视频在线| 亚洲真实伦在线观看| 国产精品一区www在线观看| 日本熟妇午夜| 久久精品综合一区二区三区| a级一级毛片免费在线观看| 日本色播在线视频| 亚洲欧美一区二区三区国产| 亚洲欧美日韩东京热| 男人舔奶头视频| 卡戴珊不雅视频在线播放| 欧美+日韩+精品| 亚洲怡红院男人天堂| av女优亚洲男人天堂| 欧美人与善性xxx| 亚洲成人中文字幕在线播放| 最近2019中文字幕mv第一页| 国产av码专区亚洲av| 久久ye,这里只有精品| 国产色婷婷99| 亚洲欧美成人综合另类久久久| 美女视频免费永久观看网站| 日韩人妻高清精品专区| 2021少妇久久久久久久久久久| 国产精品99久久久久久久久| 青春草亚洲视频在线观看| 国产 一区 欧美 日韩| 亚洲国产高清在线一区二区三| 国产成人免费无遮挡视频| 精品久久久久久久人妻蜜臀av| 午夜激情久久久久久久| 精品亚洲乱码少妇综合久久| 精品一区二区免费观看| 国产精品久久久久久精品古装| 国产亚洲5aaaaa淫片| 一级毛片我不卡| 久久久欧美国产精品| 国产亚洲午夜精品一区二区久久 | 亚洲国产精品专区欧美| 国产一级毛片在线| 免费高清在线观看视频在线观看| 一本一本综合久久| .国产精品久久| 久久人人爽av亚洲精品天堂 | 伊人久久精品亚洲午夜| 欧美性感艳星| 国产淫语在线视频| 国产精品久久久久久精品电影| 欧美日韩亚洲高清精品| 日日啪夜夜撸| 2021少妇久久久久久久久久久| 国产有黄有色有爽视频| 最近中文字幕高清免费大全6| 国产探花在线观看一区二区| 免费播放大片免费观看视频在线观看| 亚洲国产成人一精品久久久| 免费高清在线观看视频在线观看| 亚洲国产色片| 欧美高清成人免费视频www| 成人国产麻豆网| 国产美女午夜福利| 国产精品.久久久| av在线播放精品| 国产淫语在线视频| 国产成人免费观看mmmm| 亚洲精品乱码久久久v下载方式| 22中文网久久字幕| 日韩免费高清中文字幕av| 九九在线视频观看精品| 69人妻影院| a级一级毛片免费在线观看| 国产精品久久久久久精品电影| 美女高潮的动态| 网址你懂的国产日韩在线| 在线观看国产h片| 尤物成人国产欧美一区二区三区| 日本wwww免费看| 男人狂女人下面高潮的视频| 亚洲精品aⅴ在线观看| 毛片女人毛片| 精品国产露脸久久av麻豆| 嫩草影院新地址| 成人高潮视频无遮挡免费网站| 男女国产视频网站| 精品一区二区三卡| 男女边吃奶边做爰视频| 国产精品麻豆人妻色哟哟久久| 亚洲精品成人久久久久久| 超碰97精品在线观看| 亚洲精品aⅴ在线观看| 欧美成人一区二区免费高清观看| 日韩一区二区视频免费看| 久久精品综合一区二区三区| 午夜精品一区二区三区免费看| 中文字幕av成人在线电影| 男人爽女人下面视频在线观看| 国产白丝娇喘喷水9色精品| 亚洲精品国产成人久久av| 91精品一卡2卡3卡4卡| 久久久久久九九精品二区国产| 亚洲av免费高清在线观看| 1000部很黄的大片| 国产成人aa在线观看| 亚洲精品日韩在线中文字幕| 啦啦啦啦在线视频资源| 国内揄拍国产精品人妻在线| 日日啪夜夜爽| 亚洲一级一片aⅴ在线观看| 免费少妇av软件| 大码成人一级视频| 国产午夜精品一二区理论片| 在线观看国产h片| 99re6热这里在线精品视频| 啦啦啦中文免费视频观看日本| 国产精品.久久久| videossex国产| 日本熟妇午夜| 欧美日韩国产mv在线观看视频 | 91午夜精品亚洲一区二区三区| 亚洲欧美日韩另类电影网站 | 国产精品一区二区在线观看99| 欧美一区二区亚洲| 久久久欧美国产精品| 免费大片18禁| 看黄色毛片网站| 又大又黄又爽视频免费| 女的被弄到高潮叫床怎么办| 欧美日韩视频精品一区| 内地一区二区视频在线| 男女下面进入的视频免费午夜| 蜜桃久久精品国产亚洲av| 日本午夜av视频| 国产精品国产三级国产专区5o| 深夜a级毛片| 乱系列少妇在线播放| 伊人久久精品亚洲午夜| 久久久久久久精品精品| 成人亚洲精品一区在线观看 | 美女国产视频在线观看| 晚上一个人看的免费电影| 亚洲自拍偷在线| 女的被弄到高潮叫床怎么办| 日本午夜av视频| 国产精品嫩草影院av在线观看| 麻豆久久精品国产亚洲av| 18禁在线无遮挡免费观看视频| 国产精品人妻久久久久久| 天美传媒精品一区二区| 欧美日本视频| 国产精品三级大全| 一级二级三级毛片免费看| 国产探花在线观看一区二区| 日韩av免费高清视频| 欧美97在线视频| 我要看日韩黄色一级片| 国产精品人妻久久久久久| 少妇的逼好多水| 欧美日本视频| 一级二级三级毛片免费看| 日日啪夜夜爽| 高清av免费在线| 日韩视频在线欧美| 国产男女内射视频| 免费看不卡的av| 亚洲欧洲日产国产| 日韩电影二区| 天美传媒精品一区二区| 不卡视频在线观看欧美| 男插女下体视频免费在线播放| 国产老妇女一区| 亚洲婷婷狠狠爱综合网| 亚洲欧美一区二区三区黑人 | 中文欧美无线码| 在线免费观看不下载黄p国产| 中文欧美无线码| 婷婷色av中文字幕| 国产 一区精品| 久久精品国产亚洲av天美| 日韩伦理黄色片| 午夜精品国产一区二区电影 | 久久久久国产精品人妻一区二区| 亚洲av欧美aⅴ国产| 亚洲成人一二三区av| 欧美日韩视频精品一区| 国产69精品久久久久777片| 少妇丰满av| 久久久久久久大尺度免费视频| 久久国产乱子免费精品| 精品亚洲乱码少妇综合久久| 一级毛片 在线播放| 少妇的逼水好多| 精品一区在线观看国产| a级一级毛片免费在线观看| 亚洲精品久久午夜乱码| 岛国毛片在线播放| 男男h啪啪无遮挡| 永久免费av网站大全| 午夜福利视频1000在线观看| 欧美区成人在线视频| 最近的中文字幕免费完整| 亚洲精品自拍成人| 狂野欧美激情性bbbbbb| 欧美亚洲 丝袜 人妻 在线| 插阴视频在线观看视频| av网站免费在线观看视频| 亚洲成人久久爱视频| eeuss影院久久| 亚洲精品乱码久久久v下载方式| 久久久国产一区二区| 一级毛片aaaaaa免费看小| 久久精品久久精品一区二区三区| 九草在线视频观看| 亚洲高清免费不卡视频| 精品国产一区二区三区久久久樱花 | 国产又色又爽无遮挡免| 免费不卡的大黄色大毛片视频在线观看| av黄色大香蕉| 亚洲av日韩在线播放| 午夜日本视频在线| 国产精品女同一区二区软件| 欧美一级a爱片免费观看看| 久久久国产一区二区| 高清在线视频一区二区三区| 国产一区二区三区av在线| 久久久久精品性色| 亚洲电影在线观看av| 日本欧美国产在线视频| 国产精品一区二区在线观看99| 日日摸夜夜添夜夜爱| 亚洲精品一区蜜桃| 国产精品av视频在线免费观看| 插阴视频在线观看视频| 亚洲精华国产精华液的使用体验| 久久影院123| 99久久人妻综合| 全区人妻精品视频| 综合色丁香网| 成人亚洲精品av一区二区| 身体一侧抽搐| 国产成人午夜福利电影在线观看| 九九久久精品国产亚洲av麻豆| 嘟嘟电影网在线观看| 久久久亚洲精品成人影院| 嫩草影院新地址| 国产老妇女一区| 亚洲国产色片| 搞女人的毛片| 精品一区在线观看国产| 日韩欧美一区视频在线观看 | 国产精品99久久99久久久不卡 | 国产淫片久久久久久久久| 2022亚洲国产成人精品| 99热全是精品| 精品国产乱码久久久久久小说| 精品亚洲乱码少妇综合久久| 亚洲激情五月婷婷啪啪| 一级黄片播放器| 麻豆久久精品国产亚洲av| 欧美xxxx性猛交bbbb| 永久网站在线| 成人无遮挡网站| 大香蕉久久网| 午夜老司机福利剧场| 亚洲av日韩在线播放| 日韩欧美精品免费久久| 人体艺术视频欧美日本| 亚洲欧美日韩卡通动漫| 高清视频免费观看一区二区| 精品人妻视频免费看| 麻豆成人午夜福利视频| 午夜福利在线观看免费完整高清在| 日本av手机在线免费观看| 国产成人精品福利久久| 久久久精品94久久精品| 高清视频免费观看一区二区| 日本猛色少妇xxxxx猛交久久| 免费av观看视频| a级毛片免费高清观看在线播放| 91狼人影院| 噜噜噜噜噜久久久久久91| 99久久九九国产精品国产免费| 夫妻午夜视频| 成人一区二区视频在线观看| 观看美女的网站| 国产精品99久久久久久久久| 欧美成人a在线观看| 精品酒店卫生间| 亚洲av免费高清在线观看| 岛国毛片在线播放| 久久精品久久精品一区二区三区| 人妻制服诱惑在线中文字幕| av国产精品久久久久影院| 插逼视频在线观看| 欧美激情在线99| 国产毛片a区久久久久| 国产精品爽爽va在线观看网站| 久久这里有精品视频免费| 777米奇影视久久| 日韩电影二区| 亚洲精品自拍成人| 成年av动漫网址| 久久久久久伊人网av| a级一级毛片免费在线观看| 丰满乱子伦码专区| 国产白丝娇喘喷水9色精品| 亚洲国产精品成人综合色| 亚洲国产精品999| 最近最新中文字幕免费大全7| 国产午夜精品一二区理论片| 国产精品女同一区二区软件| 三级男女做爰猛烈吃奶摸视频| 久久99热这里只频精品6学生| 国产老妇女一区| 久久韩国三级中文字幕| 午夜福利在线观看免费完整高清在| 美女cb高潮喷水在线观看| 欧美精品人与动牲交sv欧美| 最近2019中文字幕mv第一页|