• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fatigue Design Criteria for Welded Bridges in the U.S.

    2011-12-28 06:05:32JohnFisherSchoolofCivilEngineeringLehighUniversityBethlehemPAUSA
    關(guān)鍵詞:恒定抗力腹板

    John W.Fisher(School of Civil Engineering,Lehigh University,Bethlehem,PA,USA)

    1 Introduction

    The possibility of fatigue cracking under relatively high stress range conditions was demonstrated by the steel beam bridges(Fig.1)of the AASHO Road Test in 1960[1].

    Fatigue crack growth has occurred in bridge structures and components since the 1970’s.Cracks were first observed in coverplated bridge girders(Fig.2)located on an interstate highway which carried a high volume of truck traffic causing large numbers of cyclic stress[2].

    Fig.1 Fatigue crack at end of coverplated beam圖1 梁端疲勞裂縫

    Fig.2 Typical fatigue crack found in 1970 from bridge in service圖2 在役橋梁(1970年)發(fā)現(xiàn)的典型疲勞裂縫

    Early fatigue specifications in the U.S.originated from railway bridge design,which required reductions in allowable stress when members were subjected to load reversal[3].

    During the 1940’s both AREA and AASHO used the AWS bridge specifications for welded structures.These provided for three load cycle conditions and allowable stresses were expressed in terms of the maximum stress and varied with the stress ratio,R,defined as the algebraic ratio of minimum and maximum stress.In 1965,AASHO adopted steel bridge fatigue provisions based on the existing test data which was primarily on small test specimens and limited specimens and it was generally assumed that 2 million cycles was the fatigue limit or infinite life condition for all details.These details were divided into different classifications for fatigue lives of 100,000,500,000 and 2,000,000 cycles of maximum stress caused by passage of the HS-20 design truck(Fig.3)based on the type of road and the average daily truck traffic(Table 1).

    Fig.3 HS-20 design truck used for fatigue design,1965 -1994圖3 1965—1994年用于疲勞設(shè)計的荷載車HS-20

    Table 1 Stress cycles for main(longitudinal)load carrying members(1965-1994)表1 承擔(dān)主荷載構(gòu)件的應(yīng)力循環(huán)

    The allowable fatigue stress was still expressed in terms of the maximum stress and was derived from the modified Goodman diagram as seen in Fig.4 with provisions for stress ratio and steel strength.

    Fig.4 Goodman diagram and allowable design maximum stress provisions圖4 Goodman圖和容許設(shè)計最大應(yīng)力條款

    It was not possible to provide a statistical analysis of the design factors thought toinfluencefatigue strength as duplication was rare and variables were not controlled.

    2 Laboratory Tests of Welded Girders

    To overcome these limitations an extensive series of fatigue studies were carried out at Lehigh University starting in 1967 and continuing into the 1980’s.These studies used statistically designed experimental programs under controlled conditions,so that analysis of the data could reveal the significance of the parameters believed to be important in fatigue behavior[4-7].The substantial amount of experimental data developed on steel beam details showed that the most important factors that govern the fatigue strength are the stress range and the type of detail.Fig.5 shows the test data for coverplated steel beam details on both rolled and welded beams with 3 grades of steel(yields of 250MPa,350MPa and 700MPa),several levels of minimum stress and a variety of geometrical conditions.

    The test results show clearly that only the stress range was the controlling stress variable and that the type of steel and section as well as the type of geometrical detail were not significant.The test data had a log normal distribution of cyclic life at all levels of stress range.Stress range means that only the live load and impact stresses need to be considered when designing steel details for fatigue.These findings were observed to be applicable to every beam and detail examined.The ratio of minimum to maximum stress,R,did not affect the stress range to cycle life relationship.The existence of residual stresses from welding is largely responsible for the fact that the R ratio is not a significant factor in the stress range cycle life relationship.Measurements shown in Fig.6 verify the existence of high tensile residual stresses at the weld toe where the initial stages of fatigue crack growth and most of fatigue life occurs in as-welded structures.

    Fig.5 Test data for coverplated steel beams圖5 鋼蓋板梁試驗數(shù)據(jù)

    Fig.6 Residual stresses measured at the weld toe圖6 焊縫腳趾處殘余應(yīng)力測試值

    The lower bound stress range cycle life relationships are plotted in Fig.7 for all of the experimental tests that were available up to 1986[7]for each design category.It is apparent from Fig.7 that the assumption in 1965 that the fatigue limit occurred at 2 million cycles is only applicable to base metal(Category A).

    Fig.7 Lower bound S-N curves for design stress range for Categories A to E’圖7 A到E類設(shè)計應(yīng)力幅度S-N曲線下限

    Each subsequent Category provides a lower bound stress range limit that occurs at cycle lives between 2 million and 20 million as the Categories go from Category B to Category E’.This lower bound fatigue limit for constant amplitude test data is a crack growth threshold that has been verified for Categories C,E and E’out to 100 million cycles.

    The slopping S-N curves have an exponential relationship between stress range and life that is provided by

    Where,Cfis a constant value for each Category of detail;Sris the design stress range.This relationship is provided in the current AASHTO specifications.

    3 Variable Loading

    It is well established that bridge structures are subjected to a random variable loading which results in a wide band skewed stress range spectrum.Fig.8 shows a typical stress range histogram for a bridge girder with cover plates.The most widely used method to account for cumulative damage is the Miner hypothesis[8].

    Fig.8 Stress range histogram for a category E圖8 E類應(yīng)力幅度直方圖

    Variable stress cycle damage is accumulated in proportion to the relative frequency of occurrence of each level of stress range.Several studies were undertaken between 1971 and 1993 to evaluate the applicability ofthe cumulative damage criteria such as Miner’s Rule[9-11].These studies indicated that Miner’s linear damage hypothesis provided a means of relating random variable stress cycles to constant cycle data.An effective stress range can be developed using Miner’s linear fatigue damage relationship Σni/Ni=1 together with the exponential relationship provided by Eq.(2)as

    Where,γiis the frequency of occurrence of stress range Sri.

    The long life tests carried out in Reference[11]are shown in Fig.9 for welded web attachments.These random variable tests are seen to provide a good method of transforming the variable stress range spectrum into an equivalent effective stress range.

    Fig.9 Comparison of the variable load tests with the constant amplitude tests圖9 可變荷載試驗與恒定振幅荷載試驗比較

    These tests also demonstrated that if maximum stress cycles exceeded the constant amplitude fatigue limit by more than 0.01%,all of the stress cycles below the fatigue limit contributed to the damage and had to be considered in the effective stress range.

    4 Fatigue Design since 1994

    In 1994 AASHTO made use of the random variable truck loads on the U.S.roads to determine an effective fatigue truck that represented all of the trucks greater than 20 kips(90kN)[12].Fig.10 shows that gross vehicle load spectrum between 1970 and 1987.An effective GVW truck was developed using the relationship provided in Eq.(2)[12].Fig.11 shows the resulting fatigue truck that has been used by AASHTO since 1994.

    Fig.10 Gross vehicle weight spectrum observed between 1970 and 1987圖10 1970—1987年觀察的車輛總重量譜

    Fig.11 Fatigue truck(HS-15)used to design bridges for resistance圖11 用于橋梁抗力設(shè)計的疲勞荷載車輛

    The fatigue truck with 15%impact provides the effective load for the variable load spectrum that the bridge will be subjected to.If the cycle frequency is great,the maximum stress range in the variable spectrum must not exceed twice the stresses generated by the fatigue truck.This is shown schematically as case 3 in Fig.12.

    Fig.12 Effective fatigue resistance lies along the fatigue resistance curve when the constant amplitude fatigue limit is exceeded by 0.01%圖12 恒定振幅疲勞極限超過0.01%時有效疲勞抗力與疲勞抗力曲線一致

    The use of a multiplier of 2 for most bridge details is based on the fact that stress range measurements of hundreds of bridges in service for over 50 years have demonstrated that their actual live load stress range spectrum is no greater than one half to two thirds of the maximum stress predicted from the maximum loads.Hence the variable spectrum is adjusted for these observations as illustrated in Fig.13.

    Fig.13 Adjustments to the variable load spectrum to reflect actual measurements of stress range in bridge structures圖13 橋梁結(jié)構(gòu)中影響實測應(yīng)力范圍的可變荷載譜的調(diào)整

    Hence,the AASHTO fatigue limit state load range for primary members is taken as 2×HS-15 or HS-30(108kips 480kN)for the effective maximum stress.For orthotropic decks it is required to be 3×HS-15(162kips 720kN)with the single axle loads placed on dual axles.

    5 Distortion Induced Cracking and Secondary Stresses

    Since the 1970’s web gap cracking has been observed in many bridges built between 1950 and 1980.These web gaps occurred as a result of a rule adopted after WWII that you should not weld transverse to the tension flanges of girders.This was based on experience with early welded bridges in Europe in the 1930’s.As a result,the three dimensional behavior at transverse connection plates for transverse floor-beams and cross-frames resulted in very small displacements and very high stress range cycles in these web gaps.Typically these gaps were 10mm to 50mm between the longitudinal welds of the web-flange connection and the transverse welds that attached the connection plates to the web.Fig.14 shows a typical example of distortion induced cracking at the weld end of the transverse connection plate and along the toe of the web to flange weld.Distortion induced secondary stresses that result in fatigue cracks are found in every type of bridge structure.They include simple and continuous span girder bridges as illustrated in Fig.14,to box structures,tied arches(Fig.15),truss systems and many others[13-15].Often these cracks can be stopped by drilling holes at the crack tips.More often they require corrective action to prevent further web gap distortion by providing positive connections that prevents distortion between the gap.Another option is to soften the connection by increasing the size of the gap a significant amount.

    Fig.14 Web gap cracking in the girder web圖14 梁腹板裂縫

    Fig.15 Cracking in the floor-beam web gap at the connection to a tie girder圖15 樓板、梁板腹板裂縫

    The AASHTO specifications require positive attachments between web gaps so the distortion induced cracking is minimized.

    During the past decade fractures have developed in several bridges as a result of high triaxial stresses in very small web gaps(less than 6mm)without any detectable fatigue crack growth.Fig.16 shows the fractures that suddenly occurred in the Hoan Bridge at the small or negligible web gap between the transverse connection plate and a lateral gusset plate[16].These sudden brittle fractures resulted from the restraint stresses from weld shrinkage and dead load stress and the geometric crack-like condition that resulted from the intersecting gusset plate and the transverse connection plate.The very small web gap created a triaxial stress state that did not allow yielding to occur and resulted in stresses in the gap that exceeded the yield point by a substantial margin.This resulted in fracture under low service temperatures.The nature of the web crack development resulted in a detail that is not inspectable.

    Fig.16 Restraint induced cracking from the triaxial stresses at connection plates圖16 連接板三向應(yīng)力約束裂縫

    6 Summary

    This paper provided an historical overview of the development of fatigue design provisions in the US,which has been adopted in specifications around the world.These provisions,including improved detailing practices,were developed based on extensive research and case studies.Implementation of the guidelines and improved material has limited fatigue cracking and brittle fracture in newer constructions.Fatigue of steel bridges under traffic loading is the most significant issue affecting the service performance of aging transportation infrastructure.Without timely intervention these cracks can lead to brittle fracture in steels having less than adequate toughness.Historically most of the fatigue cracking of the welded steel bridges in the USA occurred at cover plate and similar attachment details,as well as at the web gaps from distortion.The attachment details are the most severe of the fatigue critical details,which are characterized by crack growth at the weld toe.Distortion induced fatigue cracking in the web gaps may be solved by proper detailing that eliminates the secondary stresses driving these cracks.In most cases,the web-gap-cracking can be prevented by rigidly connecting the attachment plates to the tension flange.Where the distortion is displacement controlled,the stresses can be reduced by increasing the flexibility of the connection.If distortion is limited,holes may be drilled or cored at the crack tips to temporarily arrest propagation.Triaxial stresses developing in overly constrained small web gaps can cause brittle fracture without any prior fatigue crack growth.When the cumulative stress ranges in the variable stress spectrum exceeds the CAFL by 0.05%or more of the total stress cycles in the distribution,the fatigue resistance of the attachments is given by the extension of the linear sloped part of the S-N curve below the CAFL.An infinite life may be assumed when the cumulative exceedence of the stress cycles beyond the CAFL is limited to 0.01%of the total.Most structures carry enough truck traffic to justify designing them for an infinite fatigue life,especially the deck elements.

    Acknowledgements:The author acknowledges those organizations that supported the research into the fatigue behavior of steel details carried out at the Fritz Engineering Laboratory and ATLSS Laboratories,Lehigh University.They include NCHRPTRB;FHWA,U.S.Department of Transportation;the Pennsyl-vania Dept.of Transportation;the U.S.Navy;the Canadian National Railroad;the New York State DOT;the New York City DOT;and the Triborough Bridge and Tunnel Authority.Thanks are also due colleagues and research students who worked with the author over the past 50 years.They include B.T.Yen,A.W.Pense,G.R.Irwin,K.H.Frank,M.A.Hirt,P.Albrecht,R.Jaccard,N.Zettlemoyer,H.Hausammann,D.R.Mertz,P.Keating,C.Menzemer,R.H.Dexter,G.L.Kulak,A.Nussbaumer,R.E.Slockbower,D.J.Klingerman,B.M.Barthelemey,J.A.Edinger,D.C.Wagner,R.Connor,W.J.Wright,B.Metrovich and S.Roy.

    [1]Fisher J W,Viest I M.Fatigue Life of Bridge Beams Subjected to Controlled Truck Traffic[C]//Preliminary Publication.7th Congress.Rio de Janeiro:IABSE,1964:497-510.

    [2]Fisher J W,Slockbower R E,Hausammann H,et al.Long-time observations of a fatigue damaged bridge[J].Proceedings ASCE,1981,107(TC1):55-71.

    [3]Fountain R S,Munse W H,Sunbury R D.Specifications and design relations[J].Journal of the Structural Division,ASCE,1968,94(ST12):2751-2767.

    [4]Fisher J W,F(xiàn)rank K H,Hirt M A,et al.Effect of Weldments on the Fatigue Strength of Steel Beams[R]//NCHRP Report 102,Washington,D.C.:Transportion Research Board,National Research Council,1970.

    [5]Fisher J W,Albrecht P A,Yen B T,et al.Fatigue Strength of Steel Beams with Transverse Stiffeners and Attachments[R].Washington,D.C.:Transportation Research Board,National Research Council,1974.

    [6]Fisher J W,Hausammann H,Sullivan M D,et al.Detection and Repair of Fatigue Damaged in Welded Highway Bridges[R]//NCHRP Report 206.Washington,D.C.:Transportafion Research Board,National Research Council,1979.

    [7]Keating P B,F(xiàn)isher J W.Evaluation of Fatigue Tests and Design Criteria on Welded Details[R]//NCHRP Report 286.Washington,D.C.:Transportafion Research Board,National Research Council,1986.

    [8]Miner M A.Cumulative damage in fatigue[J].Journal of Applied Mechanics,1945,12:111-119.

    [9]Schilling C G,Klippstein K H,Barsom J M,et al.Fatigue of Welded Steel Bridge Members Under Variable-Amplitude Loadings[R]//NCHRP Report 188.Washington,D.C.:Transportafion Research Board,National Research Council,1978.

    [10]Fisher J W,Mertz D R,Zhong A.Steel Bridge Members under Variable Long Life Fatigue Loading[R]//NCHRP Report 267.Washington,D.C.:Transportafion Research Board,National Research Council,1983.

    [11]Fisher J W,Nussbaumer A,Keating P B,et al.Resistance of Welded Details Under Variable Amplitude Long-Life Loading[R]//NCHRP Report 354.Washington,D.C.:Transportafion Research Board,National Research Council,1993.

    [12]Moses F,Schilling C G,Raju K S.Fatigue Evaluation Procedures for Steel Bridges[R]//NCHRP Report 299.Washington,D.C.:Transportafion Research Board,National Research Council,1987.

    [13]Fisher J W.Bridge Fatigue Guide-Design and Details[M].USA:American Institute of Steel Construction,1977.

    [14]Fisher J W.Fatigue and Fracture in Steel Bridges[M].USA:Wiley-Interscience,1984.

    [15]Fisher J W,Jin J,Wagner D C,et al.Distortion-Induced Cracking in Steel Bridges[R]//NCHRP Report 336.Washington,D.C.:Transportafion Research Board,National Research Council,1990.

    [16]Wright W J,F(xiàn)isher J W,Kaufmann E K.Failure Analysis of the Hoan Bridge Brittle Fracture[C]//Proceedings,NYC 2ndBridge Conference.Lisse:Swets & Zeitlinger,2003.

    猜你喜歡
    恒定抗力腹板
    腹板開口對復(fù)合材料梁腹板剪切承載性能的影響
    橋梁低樁承臺基底豎向抗力作用效應(yīng)的計算研究
    交通科技(2021年4期)2021-09-03 09:47:22
    變截面波形鋼腹板組合箱梁的剪應(yīng)力計算分析
    花花世界
    鋼箱梁超高腹板設(shè)計理論與方法
    上海公路(2018年3期)2018-03-21 05:55:50
    漫畫十萬個為什么
    巖塊的彈性模量及巖體單位彈性抗力系數(shù)的確定方法
    30MnSi熱變形抗力的數(shù)學(xué)模型
    上海金屬(2014年2期)2014-12-18 06:52:51
    恒定動能打擊變初速發(fā)射原理
    一種帶折腹板槽形鋼梁的組合箱梁橋
    欧美+日韩+精品| 日本黄大片高清| 国产 精品1| 视频中文字幕在线观看| 日韩精品有码人妻一区| 国产黄频视频在线观看| 这个男人来自地球电影免费观看 | 色视频在线一区二区三区| 日本av手机在线免费观看| 一二三四中文在线观看免费高清| 一级黄片播放器| 少妇精品久久久久久久| 国产精品一区二区三区四区免费观看| 天堂中文最新版在线下载| 在线天堂最新版资源| 黄色配什么色好看| 十八禁网站网址无遮挡 | 观看美女的网站| 国模一区二区三区四区视频| 色婷婷久久久亚洲欧美| 久久国内精品自在自线图片| 亚洲人与动物交配视频| 王馨瑶露胸无遮挡在线观看| 久久 成人 亚洲| 国产精品女同一区二区软件| 日韩av免费高清视频| 亚洲内射少妇av| 美女cb高潮喷水在线观看| 欧美成人午夜免费资源| 久久国产精品大桥未久av | 国产91av在线免费观看| 大陆偷拍与自拍| 久久精品国产自在天天线| 国产综合精华液| 国产日韩欧美视频二区| 国产精品人妻久久久久久| 午夜福利网站1000一区二区三区| 国产亚洲午夜精品一区二区久久| 最近的中文字幕免费完整| 国产淫语在线视频| 亚洲电影在线观看av| 国产一区二区在线观看av| 国产av国产精品国产| 美女视频免费永久观看网站| 国产在线视频一区二区| 美女主播在线视频| 91精品国产国语对白视频| 国产精品久久久久久精品古装| 国产精品国产av在线观看| av网站免费在线观看视频| 一区在线观看完整版| 美女国产视频在线观看| 免费观看无遮挡的男女| 久久久久网色| 久久狼人影院| 蜜臀久久99精品久久宅男| 国产精品欧美亚洲77777| 五月天丁香电影| 久久国产精品男人的天堂亚洲 | 国产成人精品福利久久| 草草在线视频免费看| 免费观看无遮挡的男女| 亚洲美女搞黄在线观看| 国产精品久久久久久久电影| 午夜激情久久久久久久| 女性被躁到高潮视频| 日本欧美视频一区| 美女大奶头黄色视频| xxx大片免费视频| 亚洲四区av| tube8黄色片| 在线天堂最新版资源| 亚洲精品乱久久久久久| 简卡轻食公司| 日韩成人伦理影院| 少妇被粗大猛烈的视频| 一区二区三区免费毛片| 一个人免费看片子| 交换朋友夫妻互换小说| 色哟哟·www| 男人和女人高潮做爰伦理| 国产成人精品一,二区| av.在线天堂| 中文精品一卡2卡3卡4更新| 亚洲四区av| 黄色欧美视频在线观看| 最新的欧美精品一区二区| 搡老乐熟女国产| 色视频www国产| 日韩,欧美,国产一区二区三区| 观看av在线不卡| 啦啦啦视频在线资源免费观看| 熟妇人妻不卡中文字幕| 国产精品一区二区在线观看99| 亚洲欧美成人综合另类久久久| 亚洲成人手机| 大又大粗又爽又黄少妇毛片口| 纵有疾风起免费观看全集完整版| 男女边吃奶边做爰视频| 超碰97精品在线观看| 黄色配什么色好看| 精品久久久久久电影网| 国产在视频线精品| 另类亚洲欧美激情| 国产熟女午夜一区二区三区 | 久久久久久久国产电影| 亚洲电影在线观看av| 国产国拍精品亚洲av在线观看| 人妻少妇偷人精品九色| 欧美高清成人免费视频www| 免费人妻精品一区二区三区视频| 在线观看免费高清a一片| 亚洲图色成人| 在线观看av片永久免费下载| 国精品久久久久久国模美| 国产91av在线免费观看| 寂寞人妻少妇视频99o| 日韩av免费高清视频| 在线免费观看不下载黄p国产| 国产亚洲av片在线观看秒播厂| 精品国产一区二区三区久久久樱花| av免费在线看不卡| 国产日韩欧美视频二区| 欧美日韩综合久久久久久| 亚洲一级一片aⅴ在线观看| 老司机影院成人| 80岁老熟妇乱子伦牲交| 少妇丰满av| 性色avwww在线观看| 观看免费一级毛片| 日本黄大片高清| 九色成人免费人妻av| 久久久久精品性色| 极品少妇高潮喷水抽搐| 中文字幕久久专区| 欧美高清成人免费视频www| 国产成人精品无人区| 成人国产av品久久久| 大香蕉97超碰在线| 欧美日韩亚洲高清精品| 欧美日本中文国产一区发布| 91久久精品电影网| 丰满人妻一区二区三区视频av| 免费观看性生交大片5| 乱系列少妇在线播放| 国产亚洲av片在线观看秒播厂| 国产精品国产av在线观看| 汤姆久久久久久久影院中文字幕| 丰满迷人的少妇在线观看| 国产乱来视频区| 久久精品熟女亚洲av麻豆精品| 日本免费在线观看一区| 精品一区二区免费观看| 亚洲色图综合在线观看| 麻豆精品久久久久久蜜桃| 亚洲精品乱码久久久v下载方式| 国产成人一区二区在线| .国产精品久久| av播播在线观看一区| 精品久久久久久久久av| 人妻人人澡人人爽人人| 欧美成人午夜免费资源| 国产欧美亚洲国产| 国产 一区精品| 少妇裸体淫交视频免费看高清| 国产视频内射| 婷婷色综合www| 女的被弄到高潮叫床怎么办| 少妇 在线观看| 国产爽快片一区二区三区| 91成人精品电影| h日本视频在线播放| 国内揄拍国产精品人妻在线| 观看美女的网站| 性色av一级| 久久av网站| 一区二区三区精品91| 成人特级av手机在线观看| 亚洲四区av| 亚洲av成人精品一区久久| 一级毛片黄色毛片免费观看视频| 欧美日韩精品成人综合77777| 欧美精品国产亚洲| 夜夜骑夜夜射夜夜干| 高清在线视频一区二区三区| 伦理电影大哥的女人| 精品久久久久久久久亚洲| 人人澡人人妻人| a级毛色黄片| 欧美日本中文国产一区发布| 国产极品粉嫩免费观看在线 | 亚洲av.av天堂| 性色avwww在线观看| 久久久a久久爽久久v久久| 大香蕉久久网| 欧美日韩视频精品一区| 成人国产麻豆网| 久久影院123| 少妇人妻精品综合一区二区| 高清毛片免费看| 国产欧美亚洲国产| 日韩一本色道免费dvd| 日韩大片免费观看网站| 一二三四中文在线观看免费高清| 麻豆乱淫一区二区| 在线观看一区二区三区激情| h日本视频在线播放| 亚洲欧美精品专区久久| 精品国产一区二区久久| 美女xxoo啪啪120秒动态图| 亚洲人与动物交配视频| 日日啪夜夜爽| 大香蕉久久网| 中文欧美无线码| 国产精品三级大全| 在线 av 中文字幕| 亚洲国产成人一精品久久久| 99re6热这里在线精品视频| 国产黄频视频在线观看| 一级二级三级毛片免费看| 一级毛片我不卡| 91成人精品电影| 精品国产一区二区三区久久久樱花| 日本wwww免费看| 最近手机中文字幕大全| 91成人精品电影| 精品熟女少妇av免费看| 亚洲综合色惰| av在线播放精品| 免费看日本二区| 熟女av电影| 日日啪夜夜撸| 久久午夜综合久久蜜桃| 丝袜在线中文字幕| 国产成人精品福利久久| 国产精品国产三级国产av玫瑰| 最后的刺客免费高清国语| 高清在线视频一区二区三区| 久热这里只有精品99| 亚洲av欧美aⅴ国产| 丰满饥渴人妻一区二区三| 亚洲人成网站在线播| 亚洲欧美成人精品一区二区| 亚洲精品日韩在线中文字幕| 久久ye,这里只有精品| 51国产日韩欧美| 黄色欧美视频在线观看| 国产av码专区亚洲av| 国内揄拍国产精品人妻在线| 午夜免费鲁丝| 丰满饥渴人妻一区二区三| 国产av一区二区精品久久| 亚洲精品日韩在线中文字幕| 九色成人免费人妻av| 五月天丁香电影| 国产亚洲av片在线观看秒播厂| 国产免费福利视频在线观看| 夫妻午夜视频| 美女视频免费永久观看网站| 免费看不卡的av| 久久久午夜欧美精品| 亚洲精品久久午夜乱码| 国产精品久久久久久久久免| 国产又色又爽无遮挡免| 亚洲精品久久久久久婷婷小说| 欧美国产精品一级二级三级 | 女性生殖器流出的白浆| 日韩制服骚丝袜av| 国产综合精华液| 成人二区视频| 日韩熟女老妇一区二区性免费视频| 日本vs欧美在线观看视频 | 91精品一卡2卡3卡4卡| 91午夜精品亚洲一区二区三区| 大片电影免费在线观看免费| 久久久久精品性色| 少妇被粗大的猛进出69影院 | 欧美少妇被猛烈插入视频| 精品国产国语对白av| 免费黄网站久久成人精品| 亚洲在久久综合| 久久国产乱子免费精品| 搡老乐熟女国产| 女的被弄到高潮叫床怎么办| 国产有黄有色有爽视频| 亚洲美女视频黄频| 日日爽夜夜爽网站| 日本91视频免费播放| 精品一品国产午夜福利视频| 国产精品久久久久久久电影| 最黄视频免费看| 观看美女的网站| 乱系列少妇在线播放| 亚洲精品国产av蜜桃| 精品酒店卫生间| 亚洲熟女精品中文字幕| 国产日韩一区二区三区精品不卡 | 性色avwww在线观看| 久久精品熟女亚洲av麻豆精品| 久久99精品国语久久久| 国产精品免费大片| 一级毛片我不卡| av线在线观看网站| 亚洲av二区三区四区| 一本—道久久a久久精品蜜桃钙片| 少妇 在线观看| 成人免费观看视频高清| 99久久中文字幕三级久久日本| a 毛片基地| 亚洲人成网站在线观看播放| 亚洲激情五月婷婷啪啪| 91久久精品国产一区二区三区| 超碰97精品在线观看| 欧美区成人在线视频| 国产精品人妻久久久影院| 亚洲人与动物交配视频| 日韩,欧美,国产一区二区三区| 99热网站在线观看| 国产 精品1| 国产精品不卡视频一区二区| 国产成人91sexporn| 亚洲精品日本国产第一区| 国产在线视频一区二区| 久久久久久久久大av| 亚洲国产精品成人久久小说| 人妻一区二区av| 亚洲国产av新网站| 久久久久网色| 人人妻人人爽人人添夜夜欢视频 | 六月丁香七月| 国产亚洲av片在线观看秒播厂| 寂寞人妻少妇视频99o| 伦理电影免费视频| 婷婷色av中文字幕| 在线看a的网站| 亚洲精品国产色婷婷电影| 秋霞在线观看毛片| 国产成人freesex在线| 亚洲国产欧美在线一区| 五月天丁香电影| 亚洲欧美日韩东京热| av又黄又爽大尺度在线免费看| 熟女人妻精品中文字幕| 人妻一区二区av| 欧美bdsm另类| 一本大道久久a久久精品| 国产伦精品一区二区三区四那| 国产极品天堂在线| 在线观看国产h片| 韩国av在线不卡| 人妻制服诱惑在线中文字幕| 18禁裸乳无遮挡动漫免费视频| 国产黄色视频一区二区在线观看| 人妻一区二区av| 久久久久久久久大av| 午夜激情福利司机影院| 九草在线视频观看| 欧美另类一区| 久久久久久人妻| 交换朋友夫妻互换小说| 色视频在线一区二区三区| 97在线人人人人妻| 男女啪啪激烈高潮av片| 99久久综合免费| 久久狼人影院| av福利片在线| 日韩亚洲欧美综合| 亚洲欧美日韩东京热| 国产男人的电影天堂91| 久热久热在线精品观看| 男女免费视频国产| 青青草视频在线视频观看| 国产一区有黄有色的免费视频| av播播在线观看一区| 免费黄频网站在线观看国产| 美女大奶头黄色视频| 91久久精品国产一区二区成人| a级一级毛片免费在线观看| 少妇的逼好多水| 一级爰片在线观看| 一级a做视频免费观看| 亚洲三级黄色毛片| 97在线视频观看| 人妻 亚洲 视频| 免费久久久久久久精品成人欧美视频 | www.色视频.com| 极品少妇高潮喷水抽搐| 亚洲国产欧美在线一区| 午夜免费观看性视频| 欧美国产精品一级二级三级 | 91精品国产国语对白视频| 女人久久www免费人成看片| 毛片一级片免费看久久久久| 大香蕉久久网| 一区二区三区乱码不卡18| 国产精品久久久久久久电影| 热99国产精品久久久久久7| 高清黄色对白视频在线免费看 | 国产精品成人在线| 国产视频内射| av福利片在线| 中文在线观看免费www的网站| 日韩大片免费观看网站| 久久婷婷青草| 亚洲欧洲精品一区二区精品久久久 | 亚洲图色成人| 黑人高潮一二区| 美女中出高潮动态图| 午夜久久久在线观看| 秋霞伦理黄片| 9色porny在线观看| 国产白丝娇喘喷水9色精品| 精品少妇内射三级| 夜夜看夜夜爽夜夜摸| 中文字幕精品免费在线观看视频 | 黄色日韩在线| 在线观看www视频免费| 国产黄片美女视频| 我要看黄色一级片免费的| 男女免费视频国产| 一级黄片播放器| 中文欧美无线码| 久久久久久久大尺度免费视频| 精品国产乱码久久久久久小说| 久久精品国产亚洲av天美| 久久久久久伊人网av| 亚洲av成人精品一区久久| 日韩av免费高清视频| 18+在线观看网站| 少妇裸体淫交视频免费看高清| 不卡视频在线观看欧美| 成人无遮挡网站| 肉色欧美久久久久久久蜜桃| 日韩 亚洲 欧美在线| 婷婷色麻豆天堂久久| 成人二区视频| 日本vs欧美在线观看视频 | 亚洲国产精品一区三区| 五月开心婷婷网| 国产在视频线精品| 日韩人妻高清精品专区| 嘟嘟电影网在线观看| 26uuu在线亚洲综合色| 久久久久久久久久久丰满| 亚洲精品乱久久久久久| av视频免费观看在线观看| 人人澡人人妻人| 女性生殖器流出的白浆| 亚洲av免费高清在线观看| 男女啪啪激烈高潮av片| 亚洲国产欧美日韩在线播放 | 80岁老熟妇乱子伦牲交| 久久久久久久精品精品| 久久国产精品大桥未久av | 91aial.com中文字幕在线观看| 男人狂女人下面高潮的视频| 久久久久久伊人网av| 男人添女人高潮全过程视频| 99九九线精品视频在线观看视频| 国产黄片美女视频| 麻豆成人午夜福利视频| 日本av免费视频播放| 久久精品国产亚洲av天美| 大码成人一级视频| 午夜福利,免费看| 国产精品久久久久久av不卡| 人妻夜夜爽99麻豆av| 国产精品国产三级国产专区5o| 国产一区二区在线观看日韩| 欧美精品高潮呻吟av久久| 成人特级av手机在线观看| 伊人久久精品亚洲午夜| 一本久久精品| 日日啪夜夜撸| 熟妇人妻不卡中文字幕| 国产国拍精品亚洲av在线观看| 尾随美女入室| 国产免费一区二区三区四区乱码| 大香蕉久久网| 一二三四中文在线观看免费高清| 亚洲欧美日韩东京热| 日本av手机在线免费观看| 色5月婷婷丁香| 亚洲精品国产色婷婷电影| 内射极品少妇av片p| videossex国产| 男的添女的下面高潮视频| 下体分泌物呈黄色| 国产亚洲5aaaaa淫片| 欧美 日韩 精品 国产| 草草在线视频免费看| tube8黄色片| 国产精品三级大全| 欧美+日韩+精品| 国产免费视频播放在线视频| 一级毛片黄色毛片免费观看视频| 黄色视频在线播放观看不卡| av播播在线观看一区| 亚洲不卡免费看| 黑人高潮一二区| 国产av一区二区精品久久| 国产综合精华液| h日本视频在线播放| 一本大道久久a久久精品| 欧美精品人与动牲交sv欧美| 麻豆乱淫一区二区| 日韩伦理黄色片| 久久久国产欧美日韩av| 国产男女内射视频| 欧美激情国产日韩精品一区| 久久午夜福利片| 国产精品一区二区性色av| 欧美精品亚洲一区二区| 成人黄色视频免费在线看| 99久久人妻综合| av又黄又爽大尺度在线免费看| 国产精品国产av在线观看| 91在线精品国自产拍蜜月| 精品国产一区二区三区久久久樱花| 国产淫片久久久久久久久| 久久99精品国语久久久| 久久精品国产鲁丝片午夜精品| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美性感艳星| 国产在线免费精品| 大香蕉97超碰在线| 国产精品国产三级专区第一集| 嘟嘟电影网在线观看| 一本色道久久久久久精品综合| 日韩一区二区视频免费看| 视频中文字幕在线观看| 99精国产麻豆久久婷婷| 狂野欧美激情性bbbbbb| 国内揄拍国产精品人妻在线| 国产色婷婷99| 欧美日韩视频高清一区二区三区二| 黄色日韩在线| 下体分泌物呈黄色| 亚洲天堂av无毛| 在线观看人妻少妇| 国产视频首页在线观看| 久久久久国产网址| 国产精品熟女久久久久浪| 久久99精品国语久久久| 久久久久久久久久久丰满| 有码 亚洲区| 免费看光身美女| 午夜91福利影院| 久久久亚洲精品成人影院| 欧美日韩亚洲高清精品| 国产一区亚洲一区在线观看| 尾随美女入室| 日韩欧美精品免费久久| 亚洲精品久久久久久婷婷小说| 久久久久久人妻| 大片电影免费在线观看免费| 欧美日本中文国产一区发布| 99久国产av精品国产电影| 在线观看免费日韩欧美大片 | av专区在线播放| 久久青草综合色| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品成人av观看孕妇| 亚洲欧美成人综合另类久久久| 老女人水多毛片| 我要看日韩黄色一级片| 欧美日韩一区二区视频在线观看视频在线| 另类精品久久| 午夜激情久久久久久久| 国产成人freesex在线| 色婷婷久久久亚洲欧美| 国产真实伦视频高清在线观看| 久久久国产欧美日韩av| 亚洲av电影在线观看一区二区三区| 免费av不卡在线播放| 国产黄色视频一区二区在线观看| 久久精品久久久久久噜噜老黄| 美女中出高潮动态图| 国产成人免费无遮挡视频| 午夜福利网站1000一区二区三区| 久热久热在线精品观看| 亚洲国产欧美在线一区| 国产欧美亚洲国产| 午夜激情福利司机影院| 中国三级夫妇交换| 国产欧美亚洲国产| 亚洲欧美日韩另类电影网站| 一本—道久久a久久精品蜜桃钙片| 99国产精品免费福利视频| 亚洲国产精品成人久久小说| 国产伦精品一区二区三区视频9| 熟女av电影| 色婷婷久久久亚洲欧美| 亚洲美女视频黄频| 人妻一区二区av| 亚洲欧美中文字幕日韩二区| 九九久久精品国产亚洲av麻豆| 亚洲无线观看免费| 精品一区二区三区视频在线| 九九久久精品国产亚洲av麻豆| 人妻一区二区av| 久久久久精品性色| 99热网站在线观看| 国产在线视频一区二区| 久久久久国产精品人妻一区二区| 亚洲一级一片aⅴ在线观看| 欧美激情极品国产一区二区三区 | 亚洲精品国产av成人精品| 91aial.com中文字幕在线观看| 国产欧美日韩精品一区二区| 热re99久久国产66热| 国产午夜精品久久久久久一区二区三区| 国产日韩欧美在线精品| 大片免费播放器 马上看| 日本av免费视频播放|