琚新剛,董樂(lè)
(1.河南教育學(xué)院電路與系統(tǒng)重點(diǎn)學(xué)科組,河南鄭州450046;2鄭州文理學(xué)院教務(wù)處,河南鄭州 450052)
基于徑向基神經(jīng)網(wǎng)絡(luò)的水飽和含氧量的數(shù)據(jù)擬合
琚新剛1,董樂(lè)2
(1.河南教育學(xué)院電路與系統(tǒng)重點(diǎn)學(xué)科組,河南鄭州450046;2鄭州文理學(xué)院教務(wù)處,河南鄭州 450052)
相關(guān)部門(mén)提供的標(biāo)準(zhǔn)大氣壓下水飽和含氧量標(biāo)定值僅為離散溫度點(diǎn)處的數(shù)據(jù),這些數(shù)據(jù)顯示了水的飽和含氧量與溫度之間呈非線性關(guān)系,由此提出了利用Matlab函數(shù)創(chuàng)建徑向基神經(jīng)網(wǎng)絡(luò)對(duì)既有標(biāo)定數(shù)據(jù)進(jìn)行分析、擬合.結(jié)果顯示,該方法達(dá)到了誤差目標(biāo),且較傳統(tǒng)方法具有數(shù)據(jù)存儲(chǔ)量小,網(wǎng)絡(luò)學(xué)習(xí)時(shí)間短,收斂速度快的特點(diǎn).
徑向基函數(shù);神經(jīng)網(wǎng)絡(luò);擬合
在檢測(cè)標(biāo)準(zhǔn)大氣壓下純水含氧量是否飽和時(shí),需用測(cè)得的數(shù)據(jù)與相同溫度條件下的標(biāo)準(zhǔn)飽和數(shù)據(jù)比對(duì)才能得到結(jié)論.然而,在實(shí)際檢測(cè)時(shí),純水的溫度值是隨機(jī)的、連續(xù)的,而既有的標(biāo)準(zhǔn)飽和數(shù)據(jù)僅給出了若干離散溫度點(diǎn)處的值,這就需要進(jìn)一步根據(jù)這些數(shù)據(jù)擬合出實(shí)際測(cè)量時(shí)的溫度下對(duì)應(yīng)的飽和值,以作為監(jiān)控水含氧量是否飽和的參考.
本文提出將RBF(Radial Basis Function,徑向基函數(shù))神經(jīng)網(wǎng)絡(luò)用于水飽和含氧量非線性離散數(shù)據(jù)的擬合.Matlab仿真結(jié)果表明,相較常用的BP(Back Propagation,反向傳播)神經(jīng)網(wǎng)絡(luò),RBF神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)存儲(chǔ)量小,訓(xùn)練收斂速度快[1].
根據(jù)ISO 5814-1984,標(biāo)準(zhǔn)大氣壓下,含有20.94%(V/V)氧的空氣在純水中的氧飽和含量值(以濃度表示),如表1所示.
表1 水溫與水飽和含氧量之間的關(guān)系(標(biāo)準(zhǔn)氣壓下)Tab.1The Relationship of temperature and oxygen saturation in water(standard atmospheric pressure)
顯然,水溫與其飽和含氧量之間呈明顯的非線性關(guān)系,且中間有跳躍,如圖1所示.表1樣本數(shù)據(jù)精確到小數(shù)點(diǎn)后兩位有效數(shù)字,可確定擬合的誤差目標(biāo)不大于0.005.
在Matlab的眾多函數(shù)中,newrbe和newrb可用于創(chuàng)建RBF網(wǎng)絡(luò).newrb函數(shù)在創(chuàng)建RBF網(wǎng)絡(luò)時(shí),是逐漸增加RBF神經(jīng)元數(shù)目,比newrbe函數(shù)創(chuàng)建的RBF網(wǎng)絡(luò)規(guī)模小,且仍兼具比其他神經(jīng)網(wǎng)絡(luò)訓(xùn)練時(shí)間短的優(yōu)點(diǎn)[2].
newrb函數(shù)創(chuàng)建的RBF網(wǎng)絡(luò),最初并不含有RBF神經(jīng)元,而是通過(guò)對(duì)輸入樣本循環(huán)仿真來(lái)創(chuàng)建網(wǎng)絡(luò)[3].
具體做法是:
(1)利用全部輸入樣本對(duì)網(wǎng)絡(luò)進(jìn)行仿真;
(2)尋到誤差最大的一個(gè)輸入樣本;
(3)新增一個(gè)RBF神經(jīng)元,它的權(quán)值確定為輸入矢量的轉(zhuǎn)置;
(4)將RBF神經(jīng)元的輸出矢量標(biāo)積作為線性網(wǎng)絡(luò)層神經(jīng)元的輸入,重新設(shè)計(jì)線性網(wǎng)絡(luò)層,使得誤差趨于最小;
(5)如果均方誤差仍未達(dá)到希望的目標(biāo),并且神經(jīng)元的數(shù)目還沒(méi)有達(dá)到規(guī)定的上限,就重復(fù)上述做法[1].
圖1 溫度—飽和含氧量特性Fig.1Temperature-oxygen saturation characteristics
為了使網(wǎng)絡(luò)響應(yīng)達(dá)到指定的均方誤差目標(biāo),newrb函數(shù)連續(xù)增加RBF網(wǎng)絡(luò)隱層中的神經(jīng)元個(gè)數(shù).函數(shù)形式如下
其中,I為輸入矢量,G為目標(biāo)矢量,e為均方誤差目標(biāo)(缺省默認(rèn)值為0),s為擴(kuò)展系數(shù)(即分布密度),默認(rèn)值為1.0,Max是神經(jīng)元數(shù)目上限,N為兩次顯示之間所添加的神經(jīng)元數(shù)目(缺省默認(rèn)值為25).s值越大則函數(shù)逼近過(guò)程越顯光滑,s值過(guò)大則會(huì)導(dǎo)致在擬合快速變化的函數(shù)時(shí)神經(jīng)元數(shù)目激增,s值太小則會(huì)導(dǎo)致在擬合光滑函數(shù)時(shí)也無(wú)謂地產(chǎn)生過(guò)多神經(jīng)元.因此,s的值需要根據(jù)實(shí)際問(wèn)題嘗試選擇.
在Matlab命令窗口中,將既有的標(biāo)定數(shù)據(jù)定義為待用的輸入、輸出矢量x、y:
由上可知,當(dāng)神經(jīng)元個(gè)數(shù)累加至38時(shí),網(wǎng)絡(luò)響應(yīng)的均方誤差達(dá)到了0.005的誤差目標(biāo).如圖2所示.此外,Matlab工作區(qū)中顯示的訓(xùn)練時(shí)間st僅為0.485 s.
對(duì)已創(chuàng)建的神經(jīng)網(wǎng)絡(luò)進(jìn)行仿真,可以得到對(duì)既有樣本的擬合結(jié)果,如圖3所示.可見(jiàn),所建網(wǎng)絡(luò)對(duì)訓(xùn)練樣本擬合良好,由此擬合曲線,可以得到目標(biāo)誤差約束下的0℃~39℃連續(xù)值范圍內(nèi)任何溫度點(diǎn)處的水飽和含氧量.
RBF神經(jīng)網(wǎng)絡(luò)在逼近非線性的特性函數(shù)時(shí),網(wǎng)絡(luò)訓(xùn)練的速度快,效率高,需要的神經(jīng)元數(shù)目也較?。?].另外,值得注意的是在設(shè)計(jì)RBF網(wǎng)絡(luò)時(shí),需要多次嘗試s的值使得網(wǎng)絡(luò)訓(xùn)練結(jié)果達(dá)到目標(biāo)誤差要求.
[1]琚新剛,郭海鷗,郭敏.基于徑向基神經(jīng)網(wǎng)絡(luò)的乙醇?xì)怏w檢測(cè)儀仿真分析[J].鄭州大學(xué)學(xué)報(bào):工學(xué)版,2010,31(3):61-64.
[2]周開(kāi)利,康耀紅.神經(jīng)網(wǎng)絡(luò)模型其MATLAB仿真程序設(shè)計(jì)[M].北京:清華大學(xué)出版社,2005:101-109.
[3]周志剛,陳麗紅.徑向基函數(shù)網(wǎng)絡(luò)在數(shù)值計(jì)算中的應(yīng)用[J].計(jì)算機(jī)仿真,2006,22(10):80-83.
[4]張習(xí)民,卓東風(fēng).BP神經(jīng)網(wǎng)絡(luò)在圖像壓縮中的應(yīng)用[J].河南教育學(xué)院學(xué)報(bào):自然科學(xué)版,2010,19(2):28-32.
Data-Fitting Calibration for Oxygen Saturation of Water Based on Redial Basis Neural Network
JU Xin-gang1,DONG Le2
(1.Group of Circuits and Systems Key Discipline,Henan Institute of Education,Zhengzhou 450046,China; 2.Dean’s Office,Zhengzhou University of Arts and Sciences,Zhengzhou 450052,China)
Calibration data in the discrete temperature,provided by relevant departments,show a non-linear relationship between oxygen saturation of water and temperature.Meanwhile,calibration data are analyzed and fitted in radial basis neural network,which is constructed by a radial basis function in Matlab environment.The fitting result,obtained by the neural network simulation,shows that the method has reached the error goal,the amount of data storage is small,learning time is short,and convergence speed is fast.
redial basis function;neural networks;fitting
TP391.9
A
1007-0834(2011)03-0032-03
10.3969/j.issn.1007-0834.2011.03.011
2011-05-28
國(guó)家科技支撐計(jì)劃(2006BAK01A38);河南省教育廳科技攻關(guān)項(xiàng)目(2009A510003);鄭州市科技攻關(guān)項(xiàng)目(10PTGG379-1)
琚新剛(1973—),男,河南輝縣人,河南教育學(xué)院電路與系統(tǒng)重點(diǎn)學(xué)科組副教授,主要研究方向:EDA技術(shù).