咼林兵
(長江大學(xué)信息與數(shù)學(xué)學(xué)院,湖北荊州 434023)
矩陣的降階定理及其應(yīng)用
咼林兵
(長江大學(xué)信息與數(shù)學(xué)學(xué)院,湖北荊州 434023)
給出了矩陣求逆的幾個降階定理,利用這些定理可將求高階矩陣的逆轉(zhuǎn)化為求低階矩陣的逆,并由定理導(dǎo)出了兩個推論,這些定理及其推論在求逆矩陣的過程中具有重要的意義.
矩陣;可逆矩陣;矩陣的逆;降階定理;分塊矩陣
利用分塊矩陣給出的矩陣求逆的這幾個降階定理,可以將高階矩陣的求逆問題轉(zhuǎn)化為較低階矩陣的求逆,在一定情況下可使計算簡便,同時在理論上也有十分重要的意義.
[1]屠伯塤,徐誠浩,王芬.高等代數(shù)[M].上海:上海科學(xué)技術(shù)出版社,1987.
[2]北京大學(xué)數(shù)學(xué)系幾何與代數(shù)教研室代數(shù)小組.高等代數(shù)[M].北京:高等教育出版社,2003.
[3]錢吉林.高等代數(shù)題解精粹[M].北京:中央民族大學(xué)出版社,2002.
[4]許甫華,張賢科.高等代數(shù)解題方法[M].北京:清華大學(xué)出版社,2006.
Matrix Reduction Theorems and Their Application
GUO Lin-bing
(School of Information and Mathematics,Yangtze University,Jingzhou 434023,China)
Several reduction theorems for matrix inversion are given,so matrix inversion of high demand can be converted into that of low demand by these theorems.Two inferences are derived by the theorems,both theorems and their inferences have important significance in matrix inversion.
matrix;invertible matrix;inverse of matrix;reduction theorem;block matrix
O151.21
A
1007-0834(2011)03-0007-02
10.3969/j.issn.1007-0834.2011.03.003
2011-04-24
咼林兵(1970—),男,湖北荊州人,長江大學(xué)信息與數(shù)學(xué)學(xué)院講師.