• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metabolism and thermoregulation between Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (S. ellioti)

    2011-12-25 06:39:46LUOYingYUTaiLinHUANGChengMingZHAOTongLIHanHuaLIChangJian
    Zoological Research 2011年4期
    關(guān)鍵詞:基礎(chǔ)代謝率代謝率產(chǎn)熱

    LUO Ying, YU Tai-Lin, HUANG Cheng-Ming, ZHAO Tong, LI Han-Hua, LI Chang-Jian

    (1. Department of Life Science and Chemistry, University of Science and Engineering, Yongzhou 425600, China; 2. College of Life Science, Guangxi Normal University, Guilin 541004, China; 3. Institute of Zoology, the Chinese Academy of Sciences, Beijing 100101, China)

    Metabolism and thermoregulation between Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (S. ellioti)

    LUO Ying1, YU Tai-Lin2,*, HUANG Cheng-Ming3,*, ZHAO Tong2, LI Han-Hua2, LI Chang-Jian1

    (1. Department of Life Science and Chemistry, University of Science and Engineering, Yongzhou 425600, China; 2. College of Life Science, Guangxi Normal University, Guilin 541004, China; 3. Institute of Zoology, the Chinese Academy of Sciences, Beijing 100101, China)

    To understand metabolic adaptations, the basal metabolic rate (BMR) of Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (Syrmaticus ellioti) were investigated. Metabolic rate (MR), body temperature (Tb) and thermal conductance (C) were determined in both species at a temperatrue range of 5 ? 35 ℃, respectively. Oxygen consumption was measured with a closed circuit respirometer. The thermal neutral zones (TNZ) were 24.5 ? 31.6℃, and 23.0 ?29.2 ℃, respectively. With a temperature range of 5 ? 35 ℃, Mrs Hume’s Pheasant and Elliot’s Pheasant could maintained stable Tbat a mean of (40.47±0.64) and (40.36±0.10) ℃, respectively. Mean BMRs within TNZs were (1.36±0.84) mLO2/(g·h) for Mrs Hume’s Pheasant and (2.03±0.12) mLO2/(g·h) for Elliot’s Pheasant, which were 77% and 86% of the expected value based on their body mass, respectively. Thermal conductance of Mrs Hume’s Pheasant and Elliot’s Pheasant were (0.12±0.01) and (0.17±0.01) mLO2/(g·h·℃), below the lower critical temperature, respectively, which were 119% and 124% of the expected value based on their body mass, respectively. The ecophysiological characteristics of these species were low metabolic rate, high body temperature, and high thermal conductance, which allow both species to better adapt to the warmer climate environment in south China.

    Syrmaticus humiae;Syrmaticus ellioti; Body temperature; Basal metabolic rate; Thermal conductance

    Metabolism is one of the most basic animal characteristics, going with energy flowing and information communion in the course of substance metabolism. Metabolism is a major factors in all life processes, including energy utilization, and important part of life history (Williams & Tieleman, 2000). Bird metabolism affects distribution and abundance, which are considered major survival countermeasures (Weathers, 1997; Lovegrove, 2003). Basal metabolic rate (BMR) is the rate of energy transformation in a rested, awake and fasted state in the absence of thermal stress, and is the minimum metabolic rate of animals maintaining normal physiological function. It is important parameters of energy metabolism comparison (Jessen, 2001). The use of BMR as an index of energy expenditure has received a great deal of attention from environmental physiologists, ecophysiologists and comparative physiologists (Reynolds & Lee, 1996).

    Comparative physiological ecology is important for developing general rules about birds through comparison. Most basal rate variation in bird metabolism can be explained by the combined influences of body size, phylogeny, climate condition, activity and feeding habits (McNab, 2000; McKechnie & Wolf, 2004; Canterbury, 2002; Weathers, 1979). Comparing small birds from different habitats and with different habits highlights, the ecological significance of BMRs (Rezende et al, 2002) is shown. Take the small-sized birds living in cold environments as an example, though feather growth is limited due to body size, they can resist the cold by increasing heat production (Stokkan, 1992; Liknes et al, 2002); birds living in high latitude temperate zones remain active in winter, mainly through behavioral, formal and physiology mechanical changes (Corp et al, 1997); and birds retain hypothermia in tropical areas (Weathers, 1997).

    Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (Syrmaticus ellioti) are threatenedSymmaticus,Phasianidae,Galliformesspecies (Baillie et al, 2004), within Cenwanglaoshan Nature Reserve in China, they are National level protected animals (Zhang et al, 2003). In China, Mrs Hume’s Pheasant is only found in Yunnan and Guangxi provinces, but are also found in Northeast India, Northwest Thailand, and the west, north and east Burma. It is a typical species for the southwest subregion mountain areas of the Oriental Realm (Liu et al, 2008). Mrs Hume’s Pheasant mainly inhabit broad-leaved forest at an altitude of 780?1 800 m, mixed coniferous broad-leaved forest, scrub woodland, grassland and forest edge areas. It is omnivorous, mainly eating acorns, berries, seeds, roots, leaves, buds and other plant food. It also eats insects and other animalbased food, and occasionally targets cultivated crops at the forest edge (Mackinnon et al, 2000). Elliot’s Pheasant, a species peculiar to China, is distributed in Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, and Guizhou provinces. It is a typical species of eastern hilly subregion in Central China of the Oriental Realm (Shi & Zheng, 1997). Elliot’s Pheasant mainly inhabit rugged mountains and the jungle of valleys at an altitude of 200 ? 1 500 m, more commonly in mixed coniferous broad-leaved forests. It can also be found in dense bamboo and understory. It is omnivorous, mainly eating plant leaves, stems, buds, flowers, fruits, seeds and other plant food crops, athough it also eats insects and other animal-based food (Mackinnon et al, 2000). While limited work has been done on habitat selection and artificial propagation of the two species, no research has been conducted on their energy metabolism. The purpose of this study was to measure the BMR of the two endangered species and research their adaptability to the warm wet climate of Southeast and Southwest China.

    1 Materials and Methods

    1.1 Animals

    Six Mrs Hume’s Pheasants (3 males, 3 females) and 6 Elliot’s Pheasants (3 males, 3 females) hatched in May 2010 were housed at the Biological Park of Guangxi Normal University. The birds were kept in a closed aviary (95.0 cm × 45.0 cm × 45.0 cm) where the temperature was maintained at approximately 38°C in the first two weeks of their life, and at approximately 35°C in the following two weeks. After one month of age, the birds spent most of the day in open aviaries (5.4 m×2.8 m×1.9 m) , which allowed free movement and feeding (food and water suppliedadlimbitum). The experiments were carried out in July 2010 when the birds were 80 days old, the mean body mass of Mrs Hume’s Pheasant and Elliot’s Pheasant were (398.83±22.93) g and (388.25±14.58) g, respectively.

    1.2 Metabolic trials

    Oxygen consumption was measured using a closed circuit respirometer (Górecki, 1975). Temperatures in a water bath inside the animal chambers were measured and maintained at a constant level (to ± 0.5 °C). Volume of the metabolic chamber was 5.8 L. Oxygen consumption rates were measured over a temperature range of 5 ? 35 °C, with each trial conducted 45 min after the animals had been in the metabolic chamber for 1 h to stabilize its environment. Food was removed 15 h before each test to minimize the heat increment of feeding and animals were weighed to the nearest ± 0.1 g. Both H2O and CO2were absorbed by silica gel and NaOH. Recording of oxygen consumption due to animal activity in the chamber were discarded when computing the metabolic rate of each individual. All measurements were made daily between 8:00 and 15:00. The metabolic rates (MR) of birds were measured in the rest phase under natural light conditions. The birds were wrapped with gauze to restrict their activities. Reading interval of O2consumption was 5 min. Two consecutive, stable and minimum recording were used to calculate metabolic rates as mLO2/(g·h). Body temperatures (Tb) of all individuals were recorded before and after each measurement, and Tbwas measured with a digital thermometer (Beijing Normal University Instruments Co.) in the cloaca at a depth of 1.5 cm. Body mass was measured before and after the experiments.

    1.3 Thermal conductance

    Over thermal conductance (C, mLO2/g·h·°C) was calculated at temperature below the thermal neutral zone using the formula as:

    Where MR is metabolic rate (mLO2/g·h), Tais ambient temperature (°C),Tbis body temperature (°C). This formula was suggested by Aschoff (1981) for calculating conductance at any givenTa.

    Aschoff & Pohl (1970) reviewed the BMRs of bird species, and obtained the allometric equations for birds. Expectation ration ofBMRandCpredicted by the appropriate equation of Aschoff & Pohl (1970 ) and Aschoff (1981), respectively, uses the following formulas:

    1.4 Statistics

    Data were analyzed using the SPSS11.5 statistical package. Differences between temperature treatments were determined by repeated measures ANOVA andP<0.05 is taken to be statistically significant. All results were expressed as mean±SE, and linear regression analysis was used to analyze the relationship between energetic parameters andTa.

    2 Results

    2.1 Mrs Hume’s Pheasant

    Mean Tbof Mrs Hume’s Pheasant ranged from a mean of (40.6±0.07) ℃ at 24.5 ℃ to (41.4±0.11) ℃ at 35 ℃. The Tbof Mrs Hume’s Pheasant remained almost constant from 5 to 35℃ Tas, with a mean value of (40.47±0.64) ℃ (Fig. 1a).

    Fig. 1 Changes in body temperature(a), metabolic rate(b) and thermal conductance(c) with ambient temperature in Mrs Hume’s Pheasant

    There was no significant difference for metabolic rates between 24.5 ℃ and 31.6 ℃ (Fig. 1b). The thermal neutral zone (TNZ) was from 24.5℃ to 31.6 ℃. Mean BMR was (1.36±0.84) mLO2/(g·h) (n= 24). Metabolic rates between 20 ℃ and 24.5 ℃ showed a significant difference (t= 4. 148,df= 28,P= 0.000<0.0001), with the difference between 31.6 ℃ and 35 ℃ also significant (t= 6.473,df= 28,P= 0.000<0.0001). The metabolism rate was variable at temperatures below 24.5℃ and dependent onTa.

    Thermal conductance (C) was calculated as (0.12± 0.01) mLO2/(g·h·℃) which was 119% of the predicted value by Aschoff (1981). Within and above the TNZ,Cincreased significantly withTa, and reached to (0.37± 0.03) mLO2/(g·h·℃) at 35 ℃ (Fig. 1c).

    2.2 Elliot’s Pheasant

    Elliot’s Pheasant maintained stableTbs withinTarange of 5 ? 35℃, at which the meanTbwas (40.36± 0.10) ℃ (Fig. 2a).

    Fig. 2 Changes in body temperature(a), metabolic rate(b) and thermal conductance(c) with ambient temperature in Elliot’s Pheasant

    There was no significant difference for metabolic rates between 23 and 29.2℃ (Fig. 2b). The thermal neutral zone (TNZ) was from 23 to 29.2 ℃. MeanBMRwas (2.03±0.12) mLO2/(g·h) (n= 18). Metabolic rates between 20 and 23 ℃ showed a significant difference (t= 4.690,df= 22,P= 0.000<0.0001), with the difference between 29.2 ℃ and 33 ℃ also significant (t= 3.407,df= 22,P= 0.03<0.05). Rate of metabolism was variable at temperature below 23℃ and dependent onTa.

    Thermal conductance (C) was calculated as (0.17± 0.01) mLO2/(g·h·℃), which was 124% of the predicted value by Aschoff (1981). Within and above the TNZ,Cincreased significantly withTa, and reached to (0.44± 0.06) mLO2/(g·h·℃) at 35 ℃ (Fig. 2c).

    3 Discussion

    3.1 Body temperature

    The samples collected in this experiment were relatively small. According to Zhao (2009), the body temperature of Mrs Hume’s Pheasant and Elliot’s Pheasant nestings changes with ages. Specifically at 60 days of age the body temperature of the two nestlings fluctuates, while after 60 days of age body temperature stabilizes close to the adult level. This shows that the ability of chemical thermoregulation of Mrs Hume’s Pheasant and Elliot’s Pheasant is developed to stablity level after being hatched for a certain age, usually about 60 days, which is consistent with previous studies onTragopan caboti(Li et al, 1993). Therefore, we measured the metabolites of 80-day-old Mrs Hume’s Pheasant and Elliot’s Pheasant.

    Fig. 3 Changes in body temperature with age in nestling of Mrs Hume’s Pheasant and Elliot’s Pheasant

    Compared with mammals, birds have relatively high Tbs, due to higher energy metabolism needed for bird flight (Prinzinger et al, 1991). Birds can usually maintain body temperature at 40 ? 42 ℃, and in the TNZ, most birds have a Tbof 38.4 ℃. In this study, the Tbs of Mrs Hume’s Pheasant (40.47 ℃) and Elliot’s Pheasant (40.36℃) were higher thanCrossoptilon mantchuricum(38.7℃) andLyruruste trix baikallensis(39.5 ℃)(Jia et al, 2003; Zhang et al, 2001), similar toCoturnix coturnix(41.5 ℃) andAcridotheres cristatellus(41.4 ℃)(Wang & Zhang, 1986; Lin et al, 2010), but lower thanErythrura gouldiae(42.7 ℃)(Burton & Weathers, 2003). This has great adaptive significance because the high Tbincreases the temperature difference between the body and their environments and increases the ability to dissipate heat in summer (McNab, 2000).

    3.2 Basal metabolic rate (BMR)

    Many factors affect basal metabolism in birds, such as body mass, climate condition, food habits, season, activity and feeding habits (AL-Mansour, 2004; Weathers, 1979; Liknes et al, 2002; McKechnie &Wolf, 2004; McNab, 1988). In this study, the BMR of Mrs Hume’s Pheasant and Elliot’s Pheasant were 77% and 86% of the expected value from Ashoff & Pohl (1970), respectively (Tab. 1). The BMRs of Mrs Hume’s Pheasant and Elliot’s Pheasant were lower thanPrunella rubeculoides(115%)(Deng & Zhang, 1990),Prunella montanella(168%)(Liu et al, 2004a), andFringilla montifringilla(135%)(Liu et al, 2004b); but close toErythrura gouldiae(81%)(Burton & Weathers, 2003),Estrida melpodaandChloebia gouldiae(82% and 80% respectively)(Marschall & Prinzinger, 1991), andPycnonotus sinensisandSturnus sericeus(79% and 90% respectively) (Zhang et al, 2006).Prunella rubeculoideslive in the Qinghai-Tibet Plateau, which experience an average summer temperature of 8.7 ℃;Prunella montanellaandFringillamontif ringillabreed in Siberia and other northern regions, whose heat regulation has obvious high altitudes and cold animals metabolic characteristics.Erythrura gouldiaelives in California and other hot and humid regions, where the average winter temperature is 24.4℃;Estrida melpodaandChloebia gouldiaelive in the humid tropical environment;Pycnonotus sinensisandSturnus sericeuslive mainly in the tropical south and southern subtropical monsoon zone of China, and exhibit energy metabolism characteristics typical of tropical birds. The lower BMR of tropical birds is an adaptation to heat stress and water maintenance (Williams & Tieleman, 2000; Tieleman et al, 2002). The BMRs of Mrs Hume’s Pheasant (77%) were lower than Elliot’s Pheasant (86%), which may relate to the geographical and latitudinal distribution of the two birds as generally a 1℃ increase with latitude causes a 1% higher average metabolic rate (Zhang et al, 2001). Mrs Hume’s Pheasant and Elliot’s Pheasant show characterisitcs of southern humid zone animals, with their lower metabolic levels a strategy for adapting to the environment. In addition, these two different experimental birds were able to maintain constant body temperatures, that is, when the ambient temperature increased, the body temperature did not increase. To maintain a constant body temperature in a high-temperature environment is one reason why the metabolic rate was relatively low (Rozman et al, 2003; Schleucher, 2002).

    Tab. 1 Parameters of energetics in Mrs Hume’s Pheasant and Elliot’s Pheasant

    3.3 Thermal neutral zone

    The thermal neutral zone (TNZ) is difineas as the range of temperatrues where production of surplus heat is sufficient to compensate for heat loss, without regulatory changes in metabolic heat production or evaporative heat loss (McNamara et al, 2004). In the TNZ, metabolic rate is independent of Taand animals can regulate temperature by controlling heat loss instead of metabolic heat production and evaporative heat regulation (Schmidt-Nielsen, 1997). This study showed that the TNZ for Mrs Hume’s Pheasant was 24.5 ? 31.6 ℃ and for Elliot’s Pheasant was 23.0 ? 29.2 ℃ (Tab. 1). The lower critical temperatures of both these special were higher thanCrossoptilon mantchuricum(20 ℃)(Jia et al, 2003),Lyruruste trix baikallensis(20 ℃)(Zhang et al, 2001),Bombycilla garrulusandEmberiza spodocephala(18 ℃and 20 ℃ respectively)(Li et al, 2005); and similar toCoturnix coturnix(25℃)(Wang & Zhang, 1986), but were lower thanErythrura gouldiae(31.7 ℃)(Burton & Weathers, 2003), andAlaemon alaudipes(32.7℃) (Tieleman et al, 2002). A birds’ high thermal conductance and high temperature can increases both lower and the upper critical temperatures, thus reducing evaporative water loss and reduce energy consumption (Burton & Weathers, 2003). Both Mrs Hume’s Pheasant and Elliot’s Pheasant had high thermal conductivity and narrow TNZ, which is conducive to the protection of water evaporation and loss and it is an adaptive characteristics to help survive in hot and humid environments.

    3.4 Thermal conductance

    Overall conductance depends on body weight because of the size dependent changes in the ratio of surfacevolume, and the dependence of plumage thichness on size (Aschoff, 1981). In the present study, conductance of Mrs Hume’s Pheasant and Elliot’s Pheasant were (0.12±0.01) mLO2/(g·h·℃) and (0.17±0.01) mLO2/ (g·h·℃) (Tab. 1), which were 119% and 124% of the expected (Aschoff, 1981) values respectively. As the birds were 80 days old in the experiment and were still in the long feathers period, insulation was relatively poor, and therefor heat dissipation and thermal conductivity were relatively high. In addition, thermal conductivity (C) of birds in tropical areas is relatively high but is relatively low for bird in cold regions (Weathers, 1997) . For Mrs Hume’s Pheasant and Elliot’s Pheasant, the high C observed in summer is adaptation to the hot environment as it is conductive for high heat dissipation to avoid overheating.

    In short, the ecological characteristics of Mrs Hume’s Pheasant and Elliot’s Pheasant are in accordance with the metabolic characteristics of southern birds, that is higher body temperature, lower metabolic rate, and higher thermal conductivity. They can better adapt to hot and humid environments through good physical and chemical regulation.

    Acknowledgements:We are grateful to Professor LIU Jin-Song of Wenzhou University for providing valuable suggestions and references during this experiment.

    AL-Mansour MI. 2004. Seasonal variation in basal metabolic rate and body composition within individual sanderling birdCalidris alba[J].J Biol Sci, 4: 564-567.

    Aschoff J. 1981. Thermal conductance in mammals and birds: its dependence on body size and circadian phase[J].Comp Biochem Physiol, 69A: 611-619.

    Aschoff J, Pohl H. 1970. Metabolism at rest of birds as function of time of day and body size[J].Ornithol, 111: 38-47.

    Baillie JEM, Hiltorr Taylor C, Stuart SN. 2004. 2004 IUCN Red List of Threatened Species: A Globe Species Assessment[M]. Switzerland: IUCN.

    Burton CT, Weathers WW. 2003. Energetics and thermoregulation of the Gouldian finchErythrura gouldiae[J].Emu, 103: 1-10.

    Canterbury G. 2002. Metabolic adaptation and climatic constraints on winter birds distribution[J].Ecology, 83: 946-957.

    Corp N, Goman ML, Speakman JR. 1997. Seasonal variation in the resting metabolic rate of male wood miceApodemus sylvaticusfrom two contrasting habitats 15km apart[J].J Comp Physiol, 167: 229-239.

    Deng HL, Zhang XA. 1990. Standard metabolic rate in several species of passerine birds in alpine meadow[J].Acta Zool Sin, 36(4): 377-384. (in Chinese)

    Górecki A. 1975. Kalabukhov-Skvortsov. Respirometer and Resting Metabolic Rate Measurement[M] // Grodziński W. IBP Handbook, No. 24: Methods for Ecological Energetics. Oxford: Blackwell, 309-313.

    Jessen C. 2001. Temperature Regulation in Humans and other Mammals[M]. New York: Springer - Verlag Berlin Heidelberg, 1-193.

    Jia F, Wu YF, Wu ML, Guo SB, An CL, Pang XB. 2003. Study on the resting metabolic rate (RMR) for the caged female brown eared pheasant (Crossoptilon mantchuricum)[J].Chn J Zool, 38(6): 52-56. (in Chinese)

    Li J, Li QF, Zheng GM. 1993. Studies on the resting metabolic rate of the yellow-bellied tragopan[J].Zool Res, 14(4): 341-345. (in Chinese)

    Li M, Liu JS, Han HL, Zhang HJ, Fang H. 2005. Metabolism and thermoregulation in waxwingsBombycilla garrulousand blackfaced buntingsEmberiza spodocephala[J].Zool Res, 26: 287-293. (in Chinese)

    Liknes ET, Scott SM, Swanson DL. 2002. Seasonal acclimatization in the American goldfinch revisited: to what extent do metabolic rates vary seasonally[J].Condor, 104: 548-557.

    Lin L, Wang LH, Liu JS. 2010. Metabolism and thermoregulation in Crested Mynas (Acridotheres cristatellus)[J].Chn J Zool, 45(5): 47-53. (in Chinese)

    Liu JS, Chen MR, Wang Y, Wang XH, Song CG. 2004a. Metabolic thermogenesis of Siberian accentor (Prunella montanella) [J].Zool Res, 25(2): 117-121. (in Chinese)

    Liu JS, Wang DH, Wang Y, Chen MH, Song CG, Sun RY. 2004b. Energetics and thermoregulation of theCarpodacus roseus,Fringilla montifringillaandAcanthis flammea[J].Acta Zool Sin, 50: 357-363.

    Liu Z, Zhou W, Zhang Q, Li JX, Ling N, Zhang RE. 2008. Selection and plant community characteristics of foraging sites for Hume’s Pheasant (Syramticus humiae) in Nanhua part of Ailaoshan National Nature Reserve[J].Zool Res, 29(6): 464-452. (in Chinese) Lovegrove BG. 2003. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum[J].J Comp Physiol, 173: 87-112.

    Mackinnon J, Phillipps, K, He FQ. 2000. A Field Guide toThirds of China[M]. Oxford University Press, 35: 15-30.

    Marschall U, Prinzinger R. 1991. Verleichende okophysiologie von funf prachtfinkenarten (Estrididae) [J].Fur Orni, 132: 319-323.

    McKechnie AE, Wolf BO. 2004. The allometry of avian basal metabolic rate: good predictions need good data[J].Physiol Biochem Zool, 77: 502-521.

    McNab BK. 1988. Food habits and the basal rate of metabolism in birds[J].Oecologia, 77: 343-349.

    McNab BK. 2000. The influence of body mass, climate, and distribution on the energetic of south pacific pigeons[J].Comp Biochem Physiol. 127A: 309-329.

    McNamara JM, Ekman J, Houston AI. 2004. The effect of thermoregulatory substitution on optimal energy reserves of small birds in winter[J].Oikos, 105: 192-196.

    Prinzinger R, Prebmar A, Schleucher E. 1991. Body temperature in Birds[J].Comp Biochem Physiol, 89: 499-506.

    Reynolds PS, Lee RM. 1996. Phylogenetic analysis of avian energetics Passerines and non-passerines do not differ[J].Am Nat, 147: 735-759.

    Rezende EL, Swanson DL, Novoa FF. 2002. Passerines versus nonpasserines: so far, no statistical differences in the scaling of avian energetics[J].J Exp Biol, 205: 101-107.

    Rozman J, Runciman D, Zann RA. 2003. Seasonal variation in body mass and fat of Zebra Finches in south-eastern Australia[J].Emu, 103: 11-19.

    Schleucher E. 2002. Metabolism, body temperature and thermal conductance of fruit-doves (Aves: Columbidae, Treronidae) [J].Comp Biochem Physiol,131: 417-428.

    Schmidt-Nieisen K, 1997. Animal Physiology [M]. 5th ed. London: Cambridge University Press. 169-214.

    Shi JB, Zheng GM. 1997. The seasonal changes of habitats of Elliot’s pheasant[J].Zool Res, 18(3): 275-283. (in Chinese)

    Stokkan KA. 1992. Energetics and adaptation to cold in ptarmigan in winter[J].Ornis Scandinavica, 22: 366-370.

    Tieleman BI, Willians JB, Buschur ME. 2002. Physiological adjustments to arid mesic environments in larks (Alaudidae) [J].Physiol Biochem Zool, 75: 305-313.

    Wang PC, Zhang P. 1986. Resting metabolic rates and homoeothermic level of different aged Eastern Ouill[J].J East China Normal Univ:Natural Science Ed, 4: 108-112. (in Chinese)

    Weathers WW. 1979. Climatic adaptation in avian standard metabolic rate[J].Oecologia, 42: 81-89.

    Weathers WW. 1997. Energetics and thermoregulation by small passerines of the humid, lowland tropics[J].Auk, 114: 341-353.

    Williams JB, Tieleman BI. 2000. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperature[J].J Exp Biol, 203(20): 3153-3159.

    Zhang LQ, Yang ZC, Wu YF, Li CQ, Sun RY. 2001. Study on the resting metabolic rate (RMR) of caged black grouse (Lyrurus tetrix baikallensis)[J].J Hebei Normal Univ:Nat Sci Ed, 25(3): 381-384. (in Chinese)

    Zhang YP, Liu JS, Hu XJ, Yang Y, Chen LD. 2006. Metabolism and thermoregulation in two species of passerines from south-eastern China in summer[J].Acta Zool Sin, 52(4): 641-647. (in Chinese)

    Zhang ZW, Ding CQ, Ding P, Zheng GM. 2003. The current status and a conservation strategy for species of Galliformes in China[J].J Biodiver Sci, 11: 414-421. (in Chinese)

    Zhao T. 2009. Comparison of Nestlings Growth betweenSyrmaticus elliotiandSyrmaticus humiaein Captivity[D]. Ph.D. College of Life Science, Guangxi Normal University. (in Chinese)

    籠養(yǎng)黑頸長尾雉和白頸長尾雉代謝產(chǎn)熱特征及體溫調(diào)節(jié)

    駱 鷹1, 庾太林2,*, 黃乘明3,*, 趙 彤2, 李漢華2, 李常健1

    (1.湖南科技學院 生命科學與化學工程系,湖南 永州425100; 2.廣西師范大學 生命科學學院,廣西 桂林541004; 3.中國科學院動物研究所,北京100101)

    采用封閉式流體壓力呼吸儀, 在5~35 ℃的環(huán)境溫度范圍內(nèi)測定了黑頸長尾雉(Syrmaticus humiae)和白頸長尾雉(Syrmaticus ellioti)的代謝率(MR)、熱傳導(C) 和體溫(Tb)等指標, 探討了其代謝產(chǎn)熱特征。結(jié)果顯示:黑頸長尾雉和白頸長尾雉的熱中性區(qū)(TNZ)分別為24.5~31.6 ℃和23.0~29.2 ℃。在5~35 ℃的溫度范圍內(nèi), 黑頸長尾雉和白頸長尾雉能保持穩(wěn)定的體溫, 分別為(40.47±0.64)和(40.36±0.10) ℃; 在熱中性區(qū)內(nèi), 黑頸長尾雉和白頸長尾雉的平均基礎(chǔ)代謝率(BMR)分別為(1.36±0.84)和(2.03±0.12 ) mLO2/(g·h),分別是體重預期值的77 %和86%。在下臨界溫度以下, 黑頸長尾雉和白頸長尾雉的最小熱傳導分別是(0.12±0.01)和(0.17±0.01) mLO2/(g·h·℃), 分別是體重預期值的119%和124%。這兩種鳥的生理生態(tài)學特征是:黑頸長尾雉和白頸長尾雉都具有較低的代謝率, 較高的體溫和熱傳導, 能較好地適應南方濕熱的氣候特征。

    黑頸長尾雉; 白頸長尾雉; 體溫; 基礎(chǔ)代謝率; 熱傳導

    Q959.725; Q958.112.4

    A

    0254-5853-(2011)04-0396-07

    2011-01-17;接受日期:2011-05-19

    駱鷹(1979-),男,講師,碩士研究生。研究方向:動物生理生態(tài)學

    10.3724/SP.J.1141.2011.04396

    date: 2011-01-17; Accepted date: 2011-05-19

    s: This research was funded by the National Natural Science Foundation of China (30760039), the Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China, and the projects of Science and Technology Bureau of Yongzhou, Hunan (201019)

    *Corresponding authors (通信作者), E-mail: yutail@163.com; cmhuang@ioz.ac.cn

    猜你喜歡
    基礎(chǔ)代謝率代謝率產(chǎn)熱
    中國人群代謝率數(shù)據(jù)庫的建立與應用
    世界建筑(2022年11期)2022-12-05 06:56:02
    人要活得“涼爽”
    知識窗(2022年6期)2022-07-08 23:40:36
    夜晚長時間開燈容易長胖
    工會博覽(2022年9期)2022-06-30 09:30:48
    中年“發(fā)福”別怪代謝率
    鋰動力電池電化學-熱特性建模及仿真研究
    森林工程(2020年6期)2020-12-14 04:26:52
    小氣候環(huán)境對肉雞能量代謝的影響研究進展
    幸福·婚姻版(2018年3期)2018-03-22 08:06:48
    解讀“大胃王”的秘密
    飲食科學(2016年10期)2016-11-19 08:50:29
    健康之家(2016年10期)2016-10-28 22:21:28
    云南不同地區(qū)大絨鼠體重、產(chǎn)熱和肥滿度的研究
    免费黄网站久久成人精品 | 丰满的人妻完整版| 久久精品综合一区二区三区| 岛国在线免费视频观看| 成人性生交大片免费视频hd| 亚洲久久久久久中文字幕| 亚洲男人的天堂狠狠| 精品人妻一区二区三区麻豆 | 成年女人永久免费观看视频| 麻豆久久精品国产亚洲av| 自拍偷自拍亚洲精品老妇| 最好的美女福利视频网| 国产精品综合久久久久久久免费| 夜夜看夜夜爽夜夜摸| 亚洲无线观看免费| 丁香六月欧美| 一区二区三区激情视频| 婷婷色综合大香蕉| 麻豆国产97在线/欧美| 十八禁网站免费在线| 97人妻精品一区二区三区麻豆| av国产免费在线观看| 深夜精品福利| 久久久久久久亚洲中文字幕 | 亚洲七黄色美女视频| 男人和女人高潮做爰伦理| 成年女人毛片免费观看观看9| 中文字幕人妻熟人妻熟丝袜美| 91狼人影院| 亚洲中文字幕日韩| 午夜福利在线在线| www.色视频.com| 国产主播在线观看一区二区| 色噜噜av男人的天堂激情| 好男人电影高清在线观看| 看免费av毛片| 亚洲欧美日韩高清在线视频| 男女那种视频在线观看| 久久伊人香网站| 亚洲av电影不卡..在线观看| 国产日本99.免费观看| 真人一进一出gif抽搐免费| 午夜福利在线观看吧| 69av精品久久久久久| 精品免费久久久久久久清纯| 狠狠狠狠99中文字幕| 在现免费观看毛片| 久久精品国产亚洲av天美| 观看免费一级毛片| 欧美不卡视频在线免费观看| 亚洲av成人不卡在线观看播放网| 女同久久另类99精品国产91| 午夜福利欧美成人| 国产精品爽爽va在线观看网站| a在线观看视频网站| or卡值多少钱| 欧美成狂野欧美在线观看| 亚洲av日韩精品久久久久久密| 亚洲精华国产精华精| 三级毛片av免费| 亚洲av日韩精品久久久久久密| 性插视频无遮挡在线免费观看| 男插女下体视频免费在线播放| 性色av乱码一区二区三区2| 男女之事视频高清在线观看| av视频在线观看入口| 嫩草影院新地址| 1024手机看黄色片| 亚洲av成人精品一区久久| 两性午夜刺激爽爽歪歪视频在线观看| 不卡一级毛片| 日本熟妇午夜| 无遮挡黄片免费观看| 色哟哟·www| 国模一区二区三区四区视频| 男人和女人高潮做爰伦理| 亚洲avbb在线观看| 亚洲最大成人中文| 永久网站在线| 久久久精品欧美日韩精品| 免费搜索国产男女视频| 九九热线精品视视频播放| 午夜老司机福利剧场| 中国美女看黄片| x7x7x7水蜜桃| 国产探花在线观看一区二区| 午夜免费男女啪啪视频观看 | 国产精品人妻久久久久久| 白带黄色成豆腐渣| 夜夜看夜夜爽夜夜摸| 网址你懂的国产日韩在线| 精品福利观看| 国产极品精品免费视频能看的| 午夜影院日韩av| 一a级毛片在线观看| 男女做爰动态图高潮gif福利片| 久久99热这里只有精品18| 国产主播在线观看一区二区| 亚洲国产欧洲综合997久久,| 九九热线精品视视频播放| 俄罗斯特黄特色一大片| 一区二区三区四区激情视频 | 精品久久久久久久久久免费视频| 三级男女做爰猛烈吃奶摸视频| 亚洲一区二区三区色噜噜| 亚洲成人久久性| 人人妻人人澡欧美一区二区| 午夜免费成人在线视频| 国产三级中文精品| a级毛片a级免费在线| 给我免费播放毛片高清在线观看| 欧美一级a爱片免费观看看| 小说图片视频综合网站| 88av欧美| 简卡轻食公司| 高潮久久久久久久久久久不卡| 在线a可以看的网站| 午夜福利高清视频| 亚洲最大成人av| 成人性生交大片免费视频hd| 国产精品美女特级片免费视频播放器| 中文字幕av在线有码专区| 亚洲精品一卡2卡三卡4卡5卡| 日韩中字成人| 嫩草影院入口| 亚洲aⅴ乱码一区二区在线播放| 国产v大片淫在线免费观看| 18+在线观看网站| 好男人电影高清在线观看| 久久久久久久久大av| 啪啪无遮挡十八禁网站| 国产精品三级大全| 欧美日韩福利视频一区二区| 日日夜夜操网爽| 国产亚洲精品综合一区在线观看| 久久精品人妻少妇| 国产国拍精品亚洲av在线观看| 久久久久久久亚洲中文字幕 | 国产大屁股一区二区在线视频| 看黄色毛片网站| 又黄又爽又刺激的免费视频.| 好男人在线观看高清免费视频| av在线老鸭窝| 亚洲精品在线美女| 日本免费一区二区三区高清不卡| www.999成人在线观看| 男女视频在线观看网站免费| 亚洲人成伊人成综合网2020| 久久久久国产精品人妻aⅴ院| 亚洲成人精品中文字幕电影| 深夜精品福利| 亚州av有码| 免费搜索国产男女视频| 亚洲久久久久久中文字幕| 成人国产综合亚洲| 色综合亚洲欧美另类图片| 日韩高清综合在线| 看免费av毛片| 国产又黄又爽又无遮挡在线| 三级男女做爰猛烈吃奶摸视频| 免费在线观看影片大全网站| 精品人妻偷拍中文字幕| 日韩欧美一区二区三区在线观看| 色精品久久人妻99蜜桃| 免费在线观看亚洲国产| 久久久久国产精品人妻aⅴ院| 黄色配什么色好看| 久久国产乱子伦精品免费另类| 天美传媒精品一区二区| 色尼玛亚洲综合影院| 亚洲国产精品合色在线| 少妇被粗大猛烈的视频| 97热精品久久久久久| 久久伊人香网站| 亚洲最大成人中文| 美女免费视频网站| 国产精品久久视频播放| 老司机午夜十八禁免费视频| 搡老熟女国产l中国老女人| 日本熟妇午夜| 午夜福利高清视频| av欧美777| 淫秽高清视频在线观看| 免费大片18禁| 99久国产av精品| 亚洲第一区二区三区不卡| 精品免费久久久久久久清纯| 久久久成人免费电影| 久久久久久大精品| 亚洲av成人不卡在线观看播放网| 五月伊人婷婷丁香| 国产一区二区在线av高清观看| 最近中文字幕高清免费大全6 | 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美精品v在线| 中国美女看黄片| 又黄又爽又刺激的免费视频.| 国产视频一区二区在线看| 热99在线观看视频| 日韩亚洲欧美综合| 在线国产一区二区在线| 免费av毛片视频| 亚洲最大成人手机在线| 亚洲中文日韩欧美视频| 国产av在哪里看| 国产成年人精品一区二区| 在线观看午夜福利视频| 美女高潮喷水抽搐中文字幕| 国产精品女同一区二区软件 | 欧美日本视频| 欧美最新免费一区二区三区 | 一区二区三区高清视频在线| 中文字幕精品亚洲无线码一区| 久久久久精品国产欧美久久久| 国内少妇人妻偷人精品xxx网站| 岛国在线免费视频观看| 9191精品国产免费久久| 香蕉av资源在线| 给我免费播放毛片高清在线观看| 欧美日韩国产亚洲二区| 丁香欧美五月| 三级毛片av免费| 好看av亚洲va欧美ⅴa在| 搡老岳熟女国产| 欧美成人a在线观看| 国产高清三级在线| 丁香欧美五月| 最近在线观看免费完整版| 亚洲人成网站高清观看| 日韩人妻高清精品专区| 日韩av在线大香蕉| 国产精品不卡视频一区二区 | 亚洲黑人精品在线| 怎么达到女性高潮| 日本撒尿小便嘘嘘汇集6| 欧美高清成人免费视频www| 搡老岳熟女国产| 国产精品久久久久久人妻精品电影| 99久久成人亚洲精品观看| 亚洲一区二区三区色噜噜| 深夜精品福利| 少妇人妻精品综合一区二区 | 国产激情偷乱视频一区二区| 欧美日韩瑟瑟在线播放| 成人国产一区最新在线观看| 久久精品国产自在天天线| 免费看美女性在线毛片视频| 免费观看的影片在线观看| 欧美日韩黄片免| 久久香蕉精品热| 欧美一区二区精品小视频在线| av欧美777| 日本免费a在线| 91在线精品国自产拍蜜月| 亚洲aⅴ乱码一区二区在线播放| 一个人观看的视频www高清免费观看| 熟女人妻精品中文字幕| 中文字幕高清在线视频| 精品一区二区三区人妻视频| 波多野结衣高清作品| 成人无遮挡网站| 变态另类丝袜制服| 男人狂女人下面高潮的视频| 永久网站在线| 日日干狠狠操夜夜爽| 欧美潮喷喷水| 18禁黄网站禁片免费观看直播| 男人的好看免费观看在线视频| 成人精品一区二区免费| 亚洲av.av天堂| 桃红色精品国产亚洲av| 亚洲国产精品合色在线| 久久精品国产亚洲av香蕉五月| 亚洲最大成人手机在线| 国产色爽女视频免费观看| 亚洲真实伦在线观看| 国产蜜桃级精品一区二区三区| 美女高潮的动态| 欧美日韩综合久久久久久 | 亚洲成av人片在线播放无| 精品久久久久久久久亚洲 | 久久性视频一级片| 色5月婷婷丁香| 免费高清视频大片| 久久精品国产亚洲av天美| 国内少妇人妻偷人精品xxx网站| 制服丝袜大香蕉在线| 国产探花在线观看一区二区| 欧美bdsm另类| 很黄的视频免费| 国产亚洲精品综合一区在线观看| av国产免费在线观看| 久久久久性生活片| 国产精品一区二区性色av| 久久这里只有精品中国| 99热这里只有是精品在线观看 | 精品久久国产蜜桃| 欧美成狂野欧美在线观看| 亚洲一区二区三区不卡视频| 五月玫瑰六月丁香| 色尼玛亚洲综合影院| 人人妻,人人澡人人爽秒播| 老鸭窝网址在线观看| 中文字幕av在线有码专区| 免费av毛片视频| 热99re8久久精品国产| 国产成+人综合+亚洲专区| avwww免费| 1024手机看黄色片| 国产乱人伦免费视频| 亚洲无线在线观看| 欧美国产日韩亚洲一区| 男人舔奶头视频| 亚洲av熟女| 一本精品99久久精品77| av天堂中文字幕网| 搡女人真爽免费视频火全软件 | 又黄又爽又免费观看的视频| 欧美黄色片欧美黄色片| 桃色一区二区三区在线观看| 99久久久亚洲精品蜜臀av| 亚洲av第一区精品v没综合| 乱码一卡2卡4卡精品| 国产三级中文精品| 午夜福利视频1000在线观看| 伦理电影大哥的女人| 国产精品日韩av在线免费观看| 91麻豆av在线| 18禁黄网站禁片免费观看直播| 国产真实乱freesex| 757午夜福利合集在线观看| 国产伦精品一区二区三区视频9| 亚洲精品久久国产高清桃花| 亚洲av二区三区四区| 九九热线精品视视频播放| 一本精品99久久精品77| 国产主播在线观看一区二区| 99久国产av精品| 91字幕亚洲| 国模一区二区三区四区视频| 国产精品国产高清国产av| 亚洲美女视频黄频| 男人的好看免费观看在线视频| 特级一级黄色大片| 国产蜜桃级精品一区二区三区| 亚洲欧美激情综合另类| 亚洲第一区二区三区不卡| 一本久久中文字幕| 日本熟妇午夜| av在线天堂中文字幕| 亚洲美女搞黄在线观看 | 香蕉av资源在线| 99精品久久久久人妻精品| 91狼人影院| 免费电影在线观看免费观看| 午夜福利成人在线免费观看| 中文字幕av成人在线电影| 两个人视频免费观看高清| 内射极品少妇av片p| 90打野战视频偷拍视频| 精品无人区乱码1区二区| 欧美日韩瑟瑟在线播放| 亚洲自拍偷在线| 亚洲五月婷婷丁香| 精品久久久久久久人妻蜜臀av| 免费电影在线观看免费观看| 亚洲黑人精品在线| 久久天躁狠狠躁夜夜2o2o| 长腿黑丝高跟| 亚洲av熟女| 中文字幕免费在线视频6| 黄色配什么色好看| 国产不卡一卡二| 最后的刺客免费高清国语| 色综合欧美亚洲国产小说| 激情在线观看视频在线高清| 热99在线观看视频| 性色avwww在线观看| 欧美成人免费av一区二区三区| 9191精品国产免费久久| 国产午夜精品久久久久久一区二区三区 | 亚洲av免费在线观看| 搡老妇女老女人老熟妇| 日本在线视频免费播放| 精品一区二区三区人妻视频| 久久久久久久久久黄片| 国产欧美日韩一区二区精品| 久久久久久久久久成人| 欧美午夜高清在线| 国产单亲对白刺激| 成人三级黄色视频| 久久精品国产亚洲av天美| 国产三级在线视频| 免费在线观看亚洲国产| 在线观看av片永久免费下载| 亚洲av日韩精品久久久久久密| 国产在线精品亚洲第一网站| 国内揄拍国产精品人妻在线| 特大巨黑吊av在线直播| 日本五十路高清| 日本黄大片高清| 日韩有码中文字幕| 国产乱人伦免费视频| 亚洲av第一区精品v没综合| 9191精品国产免费久久| 噜噜噜噜噜久久久久久91| 国内精品久久久久精免费| 女生性感内裤真人,穿戴方法视频| 久久伊人香网站| 久久精品国产自在天天线| 性欧美人与动物交配| 国产精品综合久久久久久久免费| 18禁黄网站禁片午夜丰满| 日本黄色视频三级网站网址| 国产成人aa在线观看| 午夜福利在线在线| 欧美极品一区二区三区四区| 国产精品一及| 免费人成在线观看视频色| 长腿黑丝高跟| 18+在线观看网站| 制服丝袜大香蕉在线| 国产伦一二天堂av在线观看| 欧美在线一区亚洲| 亚洲精品在线美女| 国内精品久久久久久久电影| 色噜噜av男人的天堂激情| 在线播放国产精品三级| 国产高清视频在线观看网站| 9191精品国产免费久久| 女人十人毛片免费观看3o分钟| 亚洲av二区三区四区| 十八禁人妻一区二区| 国产精品亚洲一级av第二区| 最后的刺客免费高清国语| 国产免费一级a男人的天堂| 一本久久中文字幕| 亚洲第一区二区三区不卡| 亚洲七黄色美女视频| 又爽又黄a免费视频| 久久久久久久久大av| 丰满人妻熟妇乱又伦精品不卡| 无人区码免费观看不卡| 欧美激情国产日韩精品一区| 免费搜索国产男女视频| 婷婷精品国产亚洲av| 狠狠狠狠99中文字幕| 老女人水多毛片| 久久婷婷人人爽人人干人人爱| 毛片女人毛片| 不卡一级毛片| 精品久久久久久久末码| 欧美最黄视频在线播放免费| 国产精品日韩av在线免费观看| 99精品在免费线老司机午夜| 午夜福利18| 日本在线视频免费播放| 亚洲激情在线av| 尤物成人国产欧美一区二区三区| 精品一区二区免费观看| 蜜桃亚洲精品一区二区三区| 亚洲成人中文字幕在线播放| 亚洲人成伊人成综合网2020| 3wmmmm亚洲av在线观看| 欧美成人免费av一区二区三区| 五月伊人婷婷丁香| 欧美国产日韩亚洲一区| 国产国拍精品亚洲av在线观看| av专区在线播放| 亚州av有码| 久久久久精品国产欧美久久久| 99在线人妻在线中文字幕| 一本精品99久久精品77| 美女高潮喷水抽搐中文字幕| 真实男女啪啪啪动态图| 国产一区二区亚洲精品在线观看| 看片在线看免费视频| 欧美一区二区国产精品久久精品| 成人美女网站在线观看视频| 国产精品一区二区三区四区久久| 啦啦啦韩国在线观看视频| 久久人人爽人人爽人人片va | 一区二区三区激情视频| 久久久国产成人免费| 午夜福利高清视频| 日韩有码中文字幕| av在线观看视频网站免费| 亚洲精品乱码久久久v下载方式| 精品一区二区免费观看| 国内精品久久久久久久电影| 2021天堂中文幕一二区在线观| 色尼玛亚洲综合影院| 精品久久久久久,| 亚洲不卡免费看| 美女大奶头视频| 中出人妻视频一区二区| 男人舔女人下体高潮全视频| 久久人妻av系列| 美女高潮喷水抽搐中文字幕| 啦啦啦韩国在线观看视频| 嫩草影院精品99| 欧美+日韩+精品| 国产黄色小视频在线观看| 99视频精品全部免费 在线| 久久九九热精品免费| 日本黄色视频三级网站网址| 欧美丝袜亚洲另类 | 波多野结衣巨乳人妻| 国产一区二区亚洲精品在线观看| 亚洲va日本ⅴa欧美va伊人久久| 色播亚洲综合网| 又黄又爽又免费观看的视频| 国产精品久久久久久人妻精品电影| 国产免费一级a男人的天堂| 俺也久久电影网| 夜夜看夜夜爽夜夜摸| 久久午夜亚洲精品久久| 少妇人妻一区二区三区视频| 精品久久久久久成人av| 色综合亚洲欧美另类图片| 看片在线看免费视频| 俄罗斯特黄特色一大片| 人妻制服诱惑在线中文字幕| 69av精品久久久久久| 午夜两性在线视频| 成人性生交大片免费视频hd| 男人舔女人下体高潮全视频| 日本一本二区三区精品| 国产黄a三级三级三级人| 91在线观看av| 超碰av人人做人人爽久久| 国产精品人妻久久久久久| 亚洲无线在线观看| 欧美绝顶高潮抽搐喷水| 久久午夜亚洲精品久久| 人人妻,人人澡人人爽秒播| 两人在一起打扑克的视频| 国产爱豆传媒在线观看| 亚洲一区高清亚洲精品| 男人舔女人下体高潮全视频| 中文字幕精品亚洲无线码一区| 亚洲美女视频黄频| 国产久久久一区二区三区| 免费电影在线观看免费观看| 国产伦在线观看视频一区| 亚洲欧美日韩卡通动漫| 女同久久另类99精品国产91| 午夜激情欧美在线| 精品人妻视频免费看| 日韩欧美在线二视频| 深夜a级毛片| 日韩大尺度精品在线看网址| 五月伊人婷婷丁香| 99热这里只有精品一区| 亚洲无线在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区国产精品久久精品| 两性午夜刺激爽爽歪歪视频在线观看| 中国美女看黄片| 身体一侧抽搐| 成人av在线播放网站| 色噜噜av男人的天堂激情| 国产高清三级在线| 一个人免费在线观看的高清视频| 亚洲在线自拍视频| 国产一区二区三区在线臀色熟女| 免费看光身美女| 亚洲真实伦在线观看| 亚洲最大成人手机在线| 国产精品久久久久久亚洲av鲁大| 一级av片app| 国产高潮美女av| 成熟少妇高潮喷水视频| 宅男免费午夜| 少妇的逼水好多| 亚洲七黄色美女视频| av福利片在线观看| 国产成人aa在线观看| 国产真实伦视频高清在线观看 | 欧美xxxx黑人xx丫x性爽| 亚洲精品亚洲一区二区| 精品久久久久久成人av| 综合色av麻豆| 网址你懂的国产日韩在线| 天美传媒精品一区二区| 日本免费一区二区三区高清不卡| 国产精品久久久久久久久免 | 午夜激情欧美在线| 亚洲自拍偷在线| 可以在线观看毛片的网站| 欧美性感艳星| 久久久久国产精品人妻aⅴ院| 午夜激情福利司机影院| avwww免费| 国产又黄又爽又无遮挡在线| 国产一区二区激情短视频| 欧美潮喷喷水| 亚洲国产欧美人成| 国产免费男女视频| 久久午夜亚洲精品久久| 国产av在哪里看| 婷婷丁香在线五月| 一个人免费在线观看的高清视频| 成年版毛片免费区| 亚洲成a人片在线一区二区| 精华霜和精华液先用哪个| 精品人妻一区二区三区麻豆 | 久久性视频一级片| 日韩人妻高清精品专区| 国内久久婷婷六月综合欲色啪| 床上黄色一级片| 国产免费男女视频| 成人国产综合亚洲| 一个人免费在线观看的高清视频| 亚洲va日本ⅴa欧美va伊人久久|