• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complete mitochondrial genome of the laced fritillary Argyreus hyperbius (Lepidoptera: Nymphalidae)

    2011-12-25 06:41:12WANGXiaoCanSUNXiaoYanSUNQianQianZHANGDaXiuHUJingYANGQunHAOJiaSheng
    Zoological Research 2011年5期
    關(guān)鍵詞:富集區(qū)鱗翅目蛺蝶

    WANG Xiao-Can, SUN Xiao-Yan, SUN Qian-Qian, ZHANG Da-Xiu , HU Jing, YANG Qun,*, HAO Jia-Sheng,,*

    (1. College of Life Science, Anhui Normal University, Wuhu 241000, China; 2. LPS, Institute of Geology and Paleontology, the Chinese Academy of Sciences, Nanjing 210008, China)

    Complete mitochondrial genome of the laced fritillaryArgyreus hyperbius(Lepidoptera: Nymphalidae)

    WANG Xiao-Can1, SUN Xiao-Yan2, SUN Qian-Qian1, ZHANG Da-Xiu1, HU Jing1, YANG Qun2,*, HAO Jia-Sheng1,2,*

    (1. College of Life Science, Anhui Normal University, Wuhu 241000, China; 2. LPS, Institute of Geology and Paleontology, the Chinese Academy of Sciences, Nanjing 210008, China)

    We investigated the complete mitochondrial genome (mitogenome) ofArgyreus hyperbius. The 15 156 bp long genome harbored the gene content (13 protein coding genes, 22 tRNA genes, 2 rRNA genes and an A+T-rich region) and the gene arrangement was identical to all known lepidopteran mitogenomes. Mitogenome sequence nucleotide organization and codon usage analyses showed that the genome had a strong A+T bias, accounting for A+T content of 80.8%, with a small negative AT skew (?0.019). Eleven intergenic spacers totaling 96 bp, and 14 overlapping regions totaling 34 bp were scattered throughout the whole genome. As has been observed in other lepidopteran species, 12 of the 13 protein-coding genes (PCGs) were initiated by ATN codons, while the COI gene was tentatively designated by the CGA codon. A total of 11 PCGs harbored the complete termination codon TAA, while the COI and COII genes ended at a single T residue. All of the 22 tRNA genes showed typical clover structures except that the tRNASer(AGN)lacks the dihydrouridine (DHU) stem which is replaced by a simple loop. The intergenic spacer sequence between the tRNASer(AGN)and ND1 also contained the ATACTAA motif, which is conserved in all other lepidopterans as well. Additionally, the 349 bp A+T-rich region was not comprised of large tandem repetitive sequences, but harbored a few structures common to other lepidopteran insects, such as the motif ATAGA followed by a 20 bp poly-T stretch, a microsatellite-like (AT)9element preceded by the ATTTA motif, and a 5 bp poly-A site present immediately upstream of tRNAMet. The mitochondrial genomic sequence features found in this study not only contribute to genetic diversity information of the group, but also are useful in future studies of the endangered nymphalid butterfly in population genetic dynamics, species conservation, phylogeography and evolution.

    Argyreus hyperbius; Nymphalidae; Lepidoptera; Mitochondrial genome

    The laced fritillary,Argyreus hyperbiusLinnaeus, is an oriental nymphalid butterfly species distributed in areas of south-east Asia, India, and north-east Africa. In recent decades, mainly owing to habitat destruction, numerous local populations have shown a sharp decline, and thus this species is considered endangered in some countries including China. Known as the “flying flower”,A. hyperbiuswas once wide-spread but is now rarely found in any large cities, such as Nanjing (Wu, 2008). To date, however, this once widely distributed species has received little attention. Detailed research focusing on aspects such as population genetic divergence, phylogeography and other relevant areas are required; thus, our study was conducted to assist in the protection and better understanding of this butterfly species.

    Animal mitochondrial genomes are generally a circular molecule, ranging from 15?20 kb in size, and with a few exceptions, they all encode 37 genes: 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (lrRNA and srRNA), and 22 transfer RNA genes and non-coding control elements regulating the transcription and replication of the mitochondrial genome (Taanman, 1999). Maternally inherited mtDNA is simple and stable in structure. These genes are predominantly encoded on both strands and are compactly arranged, with coding segments separated by none or only very short (a few base pairs) non-coding spacers, and in rare cases, a few genes overlap. Therefore, mitochondrial genes or genomes have been used as potential tools in studies of phylogenetics, phylogeography, phylogenetic chronology, and molecular diagnostics (Nardi et al, 2005; Simonsen et al, 2006) especially with the aid of PCR methodologies (Kocher et al, 1989; Yamauchi et al, 2004).

    Within the Lepidoptera order, the butterflies (Rhopalocera) account for nearly 16 000 species, and its largest subgroup (Nymphalidae) contain approximately 5000 species (DeVries, 2001). Despite this large taxonomic diversity, information about the nymphalid butterfly mitogenome is still limited, and to the best of our knowledge, only a few complete or nearly complete mitogenomes of nymphalid species are currently available on GenBank (Tab.1). Thus, newly added mitogenome sequences of nymphalid species can providefurther insights into their diversity and evolution. In this study, we sequenced the entire mitogenome of the nymphalid butterflyArgyreus hyperbiusand analyzed its nucleotide organization and major characteristics compared with those of other butterfly species to increase of understanding of mitogenomes and phylogenies of correlative butterflies.

    Tab. 1 Mitochondrial genomes employed in this study

    1 Materials and Methods

    1.1 Sample and DNA extraction

    AdultA. hyperbiusindividuals were collected on Huangshan Mountain in Anhui Province, China, on August 2006 (specimen voucher ZWX09). After collection, the fresh materials were preserved in 100% ethanol immediately and stored in a ?20 °C refrigerator before genomic DNA extraction.

    Whole genomic DNA was extracted and purified by the modified glass powder method, whereby rice-sharp thorax muscle taken and put into one 10 mL Eppendorf tube, washed twice with ddH2O, soaked for about 2?3 h, and then incubated with 500 μL DNA liquid (5 mmol/L of NaCl, 0.5% SDS, 15 mmol/L of EDTA, 10 mmol/L of Tris-HCl, pH 7.6) and 40 μL of Proteinase-K (20 mg/ml), After this, the muscle was bathed at 55 °C for 10?12 h and centrifuged at 4 000 rpm for 2 min. The liquid supernatant was diverted into a new 10 mL Eppendorf tube, to which 500 μL of 8 mol/L GuSCN and 40 μL of 50% clean glass liquid mixture was added and the solution was then bathed at 37 ℃ for 1?2 h, rocked for 1 h, and centrifuged at 4 000 r/min for 1 min. The supernatant was then removed and the sediments were twice cleaned with 75% alcohol and once with acetone, and dried thoroughly in a vacuum dryer at 45 °C. Then 60 μL of TE (10 mmol/L Tris-Cl, 1 mmol/L EDTA, pH 8.0) was added into the Eppendorf tube with powder, and bathed at 56 °C for 30 min, then finally speed up slowly till 4 000 r/min and centrifuged for 1 min. The supernatant containing the genomic DNA was then transferred into a clean 1.5 mL Eppendorf tube and preserved at ?20 °C till use (Hao et al, 2007).

    1.2 PCR amplification and sequencing

    Some universal primers for short fragment amplifications of 12S rRNA, COI, Cyt b genes were used for PCR (Simon et al, 1994; Simons & Weller, 2001). Long primers and some short ones including COIII and ND5 were designed by the multiple sequence alignments of all the available complete lepidopteran mitochondrial genomes (Tab. 1) using ClustalX1.8 (Thompson et al, 1997) and Primer Premier 5.0 software (Singh et al, 1998).

    Long PCRs were performed using TaKaRa LA Taq polymerase with the following cycling parameters: initial denaturation for 5 min at 95 °C, followed by 30 cycles at 95 °C for 50 s, 50 °C for 50 s, 68 °C for 2 min and 30 s; and a final extension step of 68 °C for 10 min. Short fragments were amplified with TaKaRa Taq polymerase: initial denaturation for 5 min at 94 °C, followed by 35 cycles at 94 °C for 1 min, 45?53 °C for 1 min, 72 °C for 2 min, and a final extension step of 72 °C for 10 min. The PCR products were detected via electrophoresis in 1.2% agarose gel, purified using the 3S Spin PCR Product Purification Kit and sequenced directly with an ABI-3730 automatic DNA sequencer.

    1.3 Sequence analysis

    The determined sequences were checked firstly with the NCBI Internet BLAST search function. Raw sequence files were proof read and assembled in BioEdit version 7.0 (Hall, 1999) as well as ClustalX 1.8 (Thompson et al, 1997). Transfer RNA gene analysis was conducted using tRNAscan-SE software v.1.21 (Lowe & Eddy, 1997). Putative tRNA genes not found by tRNAscan-SE were confirmed by sequence comparison betweenA. hyperbiusand other lepidopterans. Both PCGs and ribosomal RNA genes were identified by ClustalX1.8 software, and the PCGs nucleotide sequences were translated on the basis of the Invertebrate Mitochondrial Genetic Code. Nucleotide composition skewness (AT skew=(A?T)/(A+T), GC skew=(G?C)/(G+C) (Irwin et al, 1991)) and codon usage were calculated in MEGA 4.0 software (Kumar et al, 2004). TheA. hyperbiusmitogenome sequence data were deposited into the GenBank database under the accession number JF439070.

    2 Results

    2.1 Genome organization

    The mitogenome ofA. hyperbiuswas 15 156 bp in length (Fig. 1) and encoded 37 genes totally 13 PCGs (ATP6, ATP8, COI-III, ND1-6, ND4L, Cyt b), 2 ribosomal RNA genes for small and large subunits (srRNA and lrRNA), and 22 transfer RNA genes) and a non-coding A+T-rich region (the control region) (Tab. 2). Among these, 14 genes were encoded on the N strand, including 4 PCGs (ND1, ND4, ND4L, ND5), 2 ribosomal RNA genes for small and large subunits, and 8 transfer RNA genes (tRNAGln, tRNACys, tRNATyr, tRNAPhe, tRNAHis, tRNAPro, tRNALeu(CUN), tRNAVal). The remaining 22 genes and A+T-rich region were encoded on the J strand. Eleven intergenic spacers totaling 96 bp, and 14 overlapped regions totaling 34 bp were scattered throughout the whole genome.

    Fig. 1 Circular map of the Argyreus hyperbius mitochondrial genome

    2.2 PCGs, tRNA and rRNA genes, A+T-rich region

    Twelve of the 13 PCGs were initiated by ATN codons, while the COI gene was tentatively designated by the CGA codon; eleven PCGs harbored the complete termination codon TAA, while the COI and COII genes ended at a single T residue.

    Results showedA. hyperbiusharbored the typical set of 22 tRNA genes ranging from 61 to 71 bp in size. All the predicted secondary structures of theA. hyperbiustRNAs are shown in Fig. 2. Some 22 tRNA genes showed typical clover structures except that the tRNASer(AGN)lacked the dihydrouridine (DHU) stem, which was replaced by a simple loop. Seventeen tRNA genes has a total of 26 pair mismatches in their stems, among which, seven were in the DHU stems, nine in the amino acid acceptor stems, one in the TΨC stem, and nine in the anticodon stems, respectively.

    Based on the mitogenomes of the other insects, two rRNA genes (lrRNA and srRNA) were present inA. hyperbius. The 1 330 bp lrRNA and 778 bp srRNA were located between tRNALeu(CUN) and tRNAVal, and between tRNAValand the A+T-rich region, respectively.

    The 349 bp A+T-rich region was not comprised of large tandem repetitive sequences, but harbored a few structures common to other lepidopteran insects, such as motif ATAGA followed by a 20 bp poly-T stretch, a microsatellite-like (AT)9element preceded by the ATTTA motif, and a 5 bp poly-A site present immediately upstream of tRNAMet.

    2.3 Sequence variation and codon usage

    The A+T content of theA. hyperbiuswas 80.8%, and the whole mitogenome showed obvious A+T bias (Tab. 3). The relative synonymous codon usage (RSCU) in theA. hyperbiusmitochondrial PCGs was investigated and the results are summarized in Tab. 4. The four most frequently used codons were TTA (leucine, Leu), ATT (isoleucine, Ile), TTT (phenylalanine, Phe), and ATA (methionine, Met), accounting for 40.4% of all the codons in theA. hyperbiusmitogenome. These four codons were composed of A or T nucleotides, indicating their biased usage. The total number of non-stop codons (CDs) of theA. hyperbiusmitochondrial PCGs was 3 718. Among these amino acid codons, the Leu (14.20%), Ile (12.80%), Phe (10.27%), and Ser (8.50%) were the most frequently used.

    3 Discussion

    3.1 Genome organization

    The size of the mitogenome was congruent with the sizes of other known lepidopteran mitogenomes, ranging from 15 122 bp inMelanitis leda(unpublished, GenBank accession number JF905446) to 16 094 bp inPapilio maraho(unpublished, NC_014055). The gene content of theA. hyperbiusmitogenome was the same as the typical animal mitogenome, and the gene order and orientation were identical to the already determined lepidopteran mitogenomes. Compared with other lepidopterans, however, theA. hyperbiusmitogenome was relatively more compacted, with a total of only 96 bp intergenic spacers ranging from 2?52 bp in length. Additionally, a total of 34 bp overlapped regions were scattered throughout the whole genome. Its tRNA cluster existing ahead of NADH dehydrogenase subunit 2 (ND2) was arranged in M-I-Q order, which means the tRNAMet(M) was followed by tRNAIle(I) and tRNAGln(Q), which was similar to lycaenidCoreana raphaelis(Kim et al, 2006) and the noctuidOchrogaster lunifer(Salvato et al, 2008). As far as we know, all determined lepidopteran genomes, including that ofA. hyperbius, share the same order of gene arrangement but differ from that of hypothesized ancestral insects. This confirms the suggestion proposed by Boore et al (1998) that the Lepidoptera may have diverged from other insect orders for a certain period of time, forming an independent evolutionary lineage.

    Tab. 2 Organization of the Argyreus hyperbius mitochondrial genome

    Fig. 2 Predicted secondary clover-leaf structure of the Argyreus hyperbius 22 tRNA genes

    Tab. 3 Nucleotide composition and skewness in different regions of the Argyreus hyperbius mitogenome

    Tab. 4 The codon number and RSCU in the Argyreus hyperbius mitochondrial PCGs

    3.2 Protein-coding genes

    All protein-coding sequences except COI gene use standard ATN start codon inA. hyperbius(Tab. 2). Three PCGs (ND5, ND1 and ND6) were initiated by ATA (Met); six PCGs (COII, ATP6, COIII, ND4, ND4L and Cyt b) were initiated by ATG (Met), and three PCGs (ND2, ATP8 and ND3) were initiated by ATT (Ile), respectively. However, the COI gene generally uses noncanonical initial codons across different insect groups. The use of non-canonical initial codons for the COI gene has been reported in a number of other insect species. For example, Junqueira et al (2004) and Friedrich & Muqim (2003) proposed AAA or TCG as the initial site for COI in dipteranChrysomya chloropygaand in coleopteranTribolium castanaeum, respectively. Other studies have determined that TTG is the initiation codon for COI in some invertebrates such asAnopheles quadrimaculatus(Mitchell et al, 1993),Pyrocoelia rufa(Bae et al, 2004),Caligula boisdnvalii(Hong et al, 2008) andAcraea issoria(Hu et al, 2010). In addition, the tetranucleotide TTAG inCoreana raphaelis(Kim et al, 2006), the hexanucleotide TATTAG inOstrinia nubilalisandOstrinia furnicalis(Coates et al, 2005), TTTTAG inBombyx mori(Yukuhiro et al, 2002), ATTACG inPapilio xuthus(Feng et al, 2010), and TTAAAG inPieris rapae(Mao et al, 2010) have also been proposed as the COI start codon. In the case ofA. hyperbius, we tentatively presumed CGA as the start codon for COI, which was congruent withParnassius bremeri(Kim et al, 2009),Eumenis autonoe(Kim et al, 2010), andHyphantria cunea(Liao et al, 2010). Besides ATN, GTN has also been reported in Heterocera as the initiation codon for some PCGs. For instance, GTG has been reported as the start codon for COII inCaligula boisduvalii(Hong et al, 2008) andEriogyna pyretorum(Jiang et al, 2009), and for ND1 inOchrogaster lunifer(Salvato et al, 2008).Furthermore, ND4 and ND4L inOchrogaster luniferuse GTT as their initiation codon.

    Eleven of the 13 protein-coding genes had the common stop codon (TAA), while COI and COII terminated with a single T residue in theA. hyperbiusmitogenome. Similar cases have been found in most insect mitogenomes including all known lepidopteran mitogenomes. For example, a single T residue has been deemed the stop codon for COI, COII, ND5 and Cyt b, and a dinucleotide residue TA has been deemed the stop codon for ATP6, ND4, ND4L, ND6 inCoreana raphaelis(Kim et al, 2006); similarly, a single T has been considered the stop codon for COI, COII and ND4, while TA residue is considered the stop codon for ATP6 inHyphantria cunea(Liao et al, 2010). Incomplete stop codons produce functional stop codons in polycistronic transcription cleavage and polyadenylation processes (Ojala et al, 1981).

    Three of the 13 PCGs (ATP8, ATP6, ND6) inA. hyperbiuswere flanked by other PCGs at the 3' end: ATP8-ATP6, ATP6-COIII, and ND6-Cyt b were overlapped by seven (ATGATAA), one (A) and one (A) nucleotide, respectively. The 3' end region of these three genes had the potential to form hairpin-like structures, which are crucial for precise mRNA cleavage to generate mature PCGs (Kim et al, 2006; Fenn et al, 2007).

    Those genes encoded by the N strand are underlined. The tRNA genes are designated by single letter amino acid codes. L* and S* denote the tRNALeu(UUR)and tRNASer(UCN), respectively.

    3.3 Transfer RNA and ribosomal RNA genes

    All the tRNA genes showed typical clover structure, with the exception of the tRNASer(AGN)gene which lacks the dihydrouridine (DHU) stem and was replaced by a simple loop. This phenomenon has also been detected in other insect groups (Wolstenholme, 1992) including lepidopterans (Hong et al, 2008; Kim et al, 2006; Salvato et al, 2008; Liao et al, 2010). Seventeen tRNA genes had a total of 26 pair mismatches in their stems, among which eighteen G·U, seven U·U, and one A·C were present. These mismatches found in tRNAs can be corrected through RNA-editing mechanisms (Lavrov et al, 2000). To date, however, these modifications in insect tRNA genes are not well understood in light of their mechanism, although some researchers propose there to be a connection with rapid species evolution of insects (Takashi et al, 1991; Watanabe & Watanabe , 1994).

    Two rRNA genes were in the observed size range of known lepidopteran mitogenomes. For example, the 1 330 bp lrRNA was well within the range of other known lepidopterans (from 1 319 bp inA. melete(Hong et al, 2009) to 1 426 bp inH. cunea(Liao et al, 2010)). The case was similar with srRNA, in which size was also within the observed size range of other lepidopteran insects (from 434 bp inOstrinia nubilalis(Coates et al, 2005) to 808 bp inH. cunea)).

    3.4 Intergenic spacer sequences

    Because of their rapid evolutionary rates, intergenic spacer sequences (IGS) show remarkable differences even among closely related insect species. Except for the A+T-rich region, theA. hyperbiusmitogenome in this study was interleaved with 11 intergenic spacers totaling 96 bp and ranging in size from 2?52 bp (Fig. 1). The longest spacer (52 bp) located between the tRNAGlnand ND2 genes is a common feature to all lepidopteran mitogenomes, but has not yet been detected in nonlepidopteran species. This spacer showed a relatively high level of homology (62%) with its ND2 gene, which is similar to the 70% detected inParnassius bremeri(Kim et al, 2009) but significantly different from the 32% inSasakia charonda(unpublished, NC_014224). Accordingly, this spacer is thought to have originated from a partial duplication of the ND2 gene and undergone rapid sequence divergence for their noncoding nature among even closely related taxa (Kim et al, 2009). The other IGS more than 10 bp was present between the ND5 and tRNAHis, and this 15 bp long intergenic spacer exists in 15 of the 27 determined lepidopteran mitogenomes. Furthermore, a relatively conservative element of the nucleotides ATTTT was present within this spacer, which has also been found in determined insect species in the overwhelming majority of conditions. The IGS between tRNASer(UCN) and ND1 is common among lepidopteran insects, spanning from 9 bp inDiatraea saccharalis(unpublished, NC_013274) to 38 bp inOstrinia nubilalis(Coates et al, 2005). In the present study, however, it wsa nearly absent inA. hyperbiuswith only a 2 bp overlap, which is similar to findings onAcraea issoria(Hu et al, 2010),Sasakia charonda(unpublished, NC_014224), andCalinaga davidis(Xia et al, HQ658143) with 2-, 1-, 1- overlaps respectively. The conserved ATACTAA motif is regarded as a possible recognition site for the transcription termination peptide (mtTERM protein) and is usually located in the IGS between the tRNASer(UCN) and ND1 genes. However, this motif was detected within the NDI genes ofA. hyperbius. This is same asS. charondaandC. davidis, but it is present within the tRNASer(UCN) inEumenis autonoe(Kim et al, 2010) and absent in theSasakia charonda kuriymaensis(unpublished, NC_014223).

    3.5 A+T-rich region

    The A+T-rich region harbors the origin sites for transcription and replication (Taanman, 1999). InDrosophilaspecies, this region includes the replication origin for mtDNA heavy-strands and minor-strands (Clary & Wolstenholme, 1987). Saito et al (2005) precisely determined that the replication origin site for mtDNA minor-strand was located in this region inBombyx mori(Yukuhiro et al, 2002). In the present study, the A+T-rich region of theA. hyperbiusmitochondrial genome was located between the srRNA and tRNAMetgenes (Tab. 2) and was 349 bp in length. This was well within the range observed in the completely sequenced lepidopteran insects from 317 bp inMelanitis leda(unpublished, by our lab) to 747 bp inBombyx mandarina(Liao et al, 2010). The A+T-rich region exhibited a remarkably high A+T content (95.41%) and did not contain macrorepeat units. However, it included some microsatellite-like repeats (e.g. polyT, (AT)9, (TA)8and poly-A), as seen in other insect species. For example, the polyT stretch (20 bp), which is considered the structural signal for recognizing proteins in the mtDNA minor-strand initiation (Kim et al, 2009), was located 24 bp downstream from srRNA preceded by the motif ATAGA, which is conserved across the lepidoptera orders as well. The microsatellite-like repeat (AT)9element, located 235 bp downstream from srRNA, was preceded by the conserved motif ATTTA, which is similar to ATTTA(TA)8inManduca sexta(Cameron et al, 2008), ATTTA(AT)8inHyphantria cunea(Liao et al, 2010), ATTTA(AT)7inCoreana raphaelis(Kim et al, 2006), and ATTTA(AT)9inPieris rapae(Mao et al, 2010). Thus, this phenomenon may be characteristic of the insect AT-rich regions. Additionally, another microrepeat unit (TA)8and a 5 bp long poly-A stretch were situated at the 284 bp site downstream from srRNA, and immediately upstream tRNAMet, respectively.

    3.6 Sequence variation and codon usage

    The AT-skewness values of the J strand (majority or heavy strand) and N strand (minority or light strand) were ?0.135 and ?0.163, respectively, indicating the occurrence of more Ts than As in both the J and N strands; whereas, the GC skewness about the J and N strands were ?0.149 and 0.322, respectively, suggesting a contrary condition of Gs and Cs.

    For the 13 PCGs, the A+T content at the third codon position (92.9%) was higher than the first (74.5%) and second position (70.8%). The value of the A+T content of PCGs was 79.4% with a strong A+T bias. This result has been observed in other insects species, for examples, the AT contents ofSasakia charonda,Coreana raphaelis,Parnassius bremeriandHelicoverpa armigeraPCGs have been reported to be 78.2%, 81.5%, 80.1% and 79.4%, respectively.

    The relative synonymous codon usage (RSCU) analysis showed that TTA, ATT, TTT, and ATA were the four most frequently used codons, accounting for 40.4% of all codons in theA. hyperbiusmitogenome. These four codons were all composed of A or T nucleotides, which indicated their biased usage. Such results have also been detected in other sequenced lepidopteran insects. For example, these four codons account for 39.1% inTeinopalpus aureus, 44.1% inCoreana raphaelis, and 40.7% inHelicoverpa armigera. For amino acids, the Leu, Ile, Phe, and Ser were the most frequently used in theA. hyperbiusmitogenome PCGs, which is in agreement with findings for other lepidopteran insects (Fig. 3). The total number of nonstop codons (CDs) for theA. hyperbiusmitochondrial PCGs was 3 718, which accords with the range for other known butterfly species, from 3 695 inSasakia charondato 3 737 inCalinaga davidis. The codons per thousands codons(CDspT) of the Ile, Leu2 and Phe were more than 100, the CDspT of Met, Asn (asparagine), Gly (glycine), Ser2 and Tyr (tyrosine) were more than 50, and the Arg (arginine), Asp (aspartic acid), Glu (glutamic acid), Gln (glutamine), His (histidine) and Leu1 were below 20, with Cys (cysteine) the lowest at 8.61 inA. hyperbiusmitochondrial PCGs. Both the CDs and CDspT of theA. hyperbiusin this study shared similar patterns with those of other Papilionoidea butterfly species (Fig. 3).

    Fig. 3 Codon distribution in Papilionoidea mtDNAs

    Boore JL, Lavrov D, Brown WM. 1998. Gene translocation links insects and crustaceans [J].Nature, 393: 667-668.

    Bae JS, Kim I, Sohn HD, Jin BR. 2004. The mitochondrial genome of the firefly,Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects [J].Mol Phylogenet Evol, 32: 978-985

    Cameron SL, Whiting MF. 2008. The complete mitochondrial genome of the tobacco hornworm,Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths [J].Gene, 408: 112-123.

    Clary DO, Wolstenholme DR. 1987.Drosophilamitochondrial DNA: conserved sequences in the AT-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA [J].J Mol Evol,25: 116-125.

    Coates BS, Sumerford DV, Hellmich RL, Lewis LC. 2005. Partial mitochondrial genome sequences ofOstrinia nubilalisandOstrinia furnicalis[J].Int J Biol Sci, 1: 13-18.

    DeVries PJ. 2001. Nymphalidae. In: Levin SA (ed). Encyclopedia of Biodiversity[M]. Academic Press.

    Fenn JD, Cameron SL, Whiting MF. 2007. The complete mitochondrial genome of the Mormon cricket (Anabrussimplex: Tettigoniidae: Orthoptera) and an analysis of control region variability [J].Insect Mol Biol, 16: 239-252.

    Feng X, Liu DF, Wang NX, Zhu CD, Jiang GF. 2010. The mitochondrial genome of the butterflyPapilio xuthus(Lepidoptera: Papilionidae) and related phylogenetic analyses [J].Mol Biol Rep, 37: 3877-3888.

    Friedrich M, Muqim N. 2003. Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetleTribolium castanaeum[J].Mol Phylogenet Evol, 26(3):502-512.

    Hao JS, Su CY, Zhu GP, Chen N, Wu DX, Zhang XP. 2007. The molecular morphologies of mitochondrial 16S rDNA of the main butterfly lineages and their phylogenetic significances [J].Genet Mol Biol, 18(2): 111-123.

    Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [J].Nucleic Acid Symp Ser, 41: 95-98.

    Hong G, Jiang S, Yu M, Yang Y, Li F, Xue F, Wei Z. 2009. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly,Artogeia melete(Lepidoptera: Pieridae) [J].Acta Biochim Biophys Sin,41: 446-455.

    Hong MY, Lee EM, Jo YH, Park HC, Kim SR, Huang JS, Jin BR, Kang PD, Kim K, Han YS, Kim I. 2008. Complete nucleotide sequence and organization of the mitogenome of the silk mothCaligula biosducalii(Lepidoptera: Saturniidae) and comparison with other lepidopteran insects [J].Gene, 413: 49-57.

    Hu J, Zhang DX, Hao JS, Huang DY, Cameron S, Zhu CD. 2010. The complete mitochondrial genome of the yellow coaster,Acraea issoria(Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): sequence, gene organization and a unique tRNA translocation event [J].Mol Biol Rep, 37(7): 3431-3438.

    Irwin DM, Kocher TD, Wilson AC. 1991. Evolution of the cytochrome b gene of mammals [J].Mol Evol, 32:128-144.

    Jiang ST, Hong GY, Yu M, Li N, Yang Y, Liu YQ, Wei ZJ. 2009. Characterization of the complete mitochondrial genome of the giant silkworm moth,Eriogyna pyretorum(Lepidoptera: Saturniidae) [J].Int J Biol Sci, 5(4): 351-365.

    Junqueira ACM, Lessingera AC, Torresa TT, Silvab FR, Vettorec AL, Arrudad P, Espin AMA. 2004. The mitochondrial genome of the blowflyChrysomya chloropyga(Diptera: Calliphoridae) [J].Gene, 339: 7-15.

    Kim I, Lee EM, Seol KY, Yun EY, Lee YB, Hwang JS, Jin BR. 2006. The mitochondrial genome of the Korean hairstreak,Coreana raphaelis(Lepidoptera: Lycaenidae) [J].Insect Mol Biol, 15: 217-225.

    Kim MI, Beak JY, Kim MJ, Jeong HC, Kim KJ, Bae CH, Han YS, Jin BR, Kim I. 2009. Complete nucleotide sequence and organization of the mitogenome of the red-spotted Apollo butterfly,Parnassius bremeri(Lepidoptera: Papilionidae) and comparison with other lepidopteran insects [J].Mol Cell, 28: 347-363.

    Kim MJ, Wan XL, Kim KG, H JS, Kim I. 2010. Complete nucleotide sequence and organization of the mitogenome of endangeredEumenis autonoe(Lepidoptera: Nymphalidae) [J].Afr J Biotechnol, 9 (5): 735-754.

    Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC. 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers [J].Proc Natl Acad Sci USA, 86: 6196-6200.

    Kumar S, Tamura K, Nei M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment [J].Brief Bioinform, 5: 150-163.

    Lavrov DV, Brown WM, Boore JL. 2000. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipedeLithobius forficatus[J].Proc Natl Acad Sci USA, 97: 13738-13742.

    Liao F, Wang L, Wu S, Li YP, Zhao L, Huang GM, Niu CJ, Liu YQ, Li MG. 2010. The complete mitochondrial genome of the fall webworm,Hyphantria cunea(Lepidoptera: Arctiidae) [J].Int J Biol Sci, 6(2):172-186.

    Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence [J].Nucleic Acids Res, 25: 955-964.

    Mao ZH, Hao JS, Zhu GP, Hu J, Si MM, Zhu CD. 2010. Sequencing and analysis of the complete mitochondrial genome ofPeris rapaeLinnaeus (Lepidoptera: Peridae) [J].Acta Entomol Sin, 53(11): 1295-1304.

    Mitchell SE, Cockburn AF, Seawright JA. 1993. The mitochondrial genome ofAnopheles quadrimaculatusspecies A: complete nucleotide sequence and gene organization [J].Genome, 36: 1058-1073.

    Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria [J].Nature, 290: 470-474.

    Saito S, Tamura K, Aotsuka T. 2005. Replication origin of mitochondrial DNA in insects [J].Genetics, 171(4): 1695-1705.

    Salvato P, Simonato M, Battisti A, Negrisolo E. 2008. The complete mitochondrial genome of the bag-shelter mothOchrogaster lunifer(Lepidoptera, Notodontidae) [J].BMC Evol Biol, 9:331.

    Simon C, Frati F, Bekenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial genesequences and a compilation of conserved polymerase chainreaction primers [J].Ann Entomol Soc Am, 87: 651-701.

    Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT. 2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA [J].Ann Rev Ecol Evol Syst, 37: 545-579.

    Simons RB, Weller SJ. 2001. Utility and evolution of cytochrome b in insects [J].Mol Phylogenet Evol, 20: 196-210.

    Simonsen TJ, Wahlberg N, Brower AVZ, Jong R. 2006. Morphology, molecules and fritilllaries: approaching a stable phylogeny for Argynnini (Lepidoptera: Nymphalidae)[J].Insect Syst Evol, 37: 405-418.

    Singh VK, Mangalam AK, Dwivedi S, Naik S. 1998. Primer premier: Program for design of degenerate primers from a protein sequence [J].Biol Techniques, 24:318-319.

    Taanman JW. 1999. The mitochondrial genome: structure, transcription and replication [J].Biochem Biophys Acta, 1410: 103-123

    Takashi Y, Yohichi W, Kimitsuna W. 1991. A novel clover leaf structure found in mammalian mitochondrial tRNASer[J].Nucl Acid Res, 19: 6101-6105.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The Clustal X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools [J].Nucl Acids Res, 24: 4876-4882.

    Watanabe Y, Watanabe K. 1994. Higher order structure of bovine mitochondrial tRNASerUGAchemical modification and computer modeling [J].Nucleic Acids Res, 22: 5378-5384.

    Wolstenholme DR. 1992. Animal mitochondrial DNA: structure and evolution [J].Int Rev Cytol, 141:173-216.

    Wu Q. 2008.Argyreus hyperbius[J].Chn Nat, 1: 74-77.(in Chinese)

    Xia J, Hu J, Zhu GP, Zhu CD, Hao JS. 2011. Sequencing and analysis of the complete mitochondrial genome ofCalinaga davidisOberthür (Lepidoptera: Nymphalidae) [J].Acta Entomol Sin, 54(5): 555-565.

    Yamauchi MM, Miya MU, Nishida M. 2004. Use of a PCR-based approach for sequencing whole mitochondrial genomes of insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans [J].Insect Mol Biol, 13: 435-442.

    Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y. 2002. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth,Bombyx mandarinaand its close relative, the domesticated silkmoth,Bombyx mori[J].Mol Biol Evol, 19: 1385-1389.

    斐豹蛺蝶線粒體基因組全序列的測定和分析

    王曉燦1, 孫曉燕2, 孫倩倩1, 張大秀1, 胡 靜1, 楊 群2,*, 郝家勝1,2,*

    (1.安徽師范大學(xué) 生命科學(xué)學(xué)院分子進(jìn)化與生物多樣性研究室,安徽 蕪湖241000;
    2.中國科學(xué)院南京地質(zhì)古生物研究所 現(xiàn)代古生物學(xué)與地層學(xué)國家重點(diǎn)實(shí)驗(yàn)室,江蘇 南京210008)

    該研究對(duì)斐豹蛺蝶(Argyreus hyperbius)(鱗翅目:蛺蝶科)線粒體基因組全序列進(jìn)行了測定和初步分析。結(jié)果表明:斐豹蛺蝶線粒體基因全序列全長為15 156bp, 包含13個(gè)蛋白質(zhì)編碼基因、22個(gè)tRNA和2個(gè)rRNA基因以及1個(gè)非編碼的A+T富集區(qū), 基因排列順序與其它鱗翅目種類一致; 線粒體全序列核苷酸組成和密碼子使用顯示出明顯的A+T偏好(80.8%)和輕微的AT 偏移(AT skew, ?0.019)?;蚪M中共存在11個(gè)2~52 bp不等的基因間隔區(qū), 總長96 bp; 以及14個(gè)1~8 bp不等的基因重疊區(qū), 總長34 bp。除COI以CGA作為起始密碼子外, 13個(gè)蛋白質(zhì)編碼基因中的其余12個(gè)基因是以ATN作為起始密碼子。除COI和COII基因是以單獨(dú)的一個(gè)T為終止密碼子, 其余11個(gè)蛋白質(zhì)編碼基因都是以TAA結(jié)尾的。除了缺少DHU臂的tRNASer(AGN), 其余的tRNA基因都顯示典型的三葉草結(jié)構(gòu)。tRNA(AGN)和ND1之間的基因間隔區(qū)包含一個(gè)ATACTAA結(jié)構(gòu)域, 這個(gè)結(jié)構(gòu)域在鱗翅目中是保守的。A+T富集區(qū)沒有較大的多拷貝重復(fù)序列, 但是包含一些微小重復(fù)結(jié)構(gòu):ATAGA結(jié)構(gòu)域下游的20 bp poly-T結(jié)構(gòu), ATTTA結(jié)構(gòu)域后的(AT)9重復(fù), 以及位于tRNAMet上游的5 bp poly-A結(jié)構(gòu)等。這項(xiàng)研究所揭示的斐豹蛺蝶的線粒體基因組特征, 不僅為認(rèn)識(shí)蛺蝶科的遺傳多樣性貢獻(xiàn)數(shù)據(jù), 而且對(duì)于該物種的保護(hù)生物學(xué)、群體遺傳學(xué)、譜系地理及演化研究等具有重要意義。

    2011-04-11;接受日期:2011-07-01

    安徽省高校省級(jí)自然科學(xué)研究重點(diǎn)項(xiàng)目(KJ 2010A 142);中國科學(xué)院知識(shí)創(chuàng)新工程重要方向項(xiàng)目( KZCX22YW2JC104);現(xiàn)代古生物學(xué)和地層學(xué)國家重點(diǎn)實(shí)驗(yàn)室開放基金(104143)

    斐豹蛺蝶; 蛺蝶科; 鱗翅目; 線粒體基因組

    Q969.42; Q969.439.2

    A

    0254-5853-(2011)05-0465-11

    10.3724/SP.J.1141.2011.05465

    date: 2011-04-11; Accepted date: 2011-07-01

    s: This work was supported by the Provincial Key Project of the Natural Science Foundation from Anhui Province, China (KJ2010A142), the Chinese Academy of Sciences (KZCX22YW2JC104), the CAS/SAFEA International Partnership Program for Creative Research Teams, and the State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (104143)

    *Corresponding authors (通信作者), E-mail: qunyang@nigpas.ac.cn; jshaonigpas@sina.com

    猜你喜歡
    富集區(qū)鱗翅目蛺蝶
    低階煤煤層氣富集區(qū)預(yù)測方法研究與應(yīng)用
    貓蛺蝶和黑脈蛺蝶
    幼兒100(2020年25期)2020-10-22 05:25:20
    礦床富集區(qū)的控礦規(guī)律與找礦勘查實(shí)踐
    金堇蛺蝶
    寶清東升自然保護(hù)區(qū)鱗翅目昆蟲資源及蝶類多樣性分析
    括蒼山自然保護(hù)區(qū)鱗翅目昆蟲數(shù)據(jù)庫的構(gòu)建
    鱗翅目可食用昆蟲研究進(jìn)展
    鱗翅目昆蟲觸角感器研究進(jìn)展
    孔雀蛺蝶
    能源富集區(qū)資源紅利與民生問題——以晉、陜、蒙為例
    少妇人妻 视频| 熟女少妇亚洲综合色aaa.| 亚洲精品av麻豆狂野| 久久久久网色| 男女午夜视频在线观看| 久久女婷五月综合色啪小说| 国产精品秋霞免费鲁丝片| 成人影院久久| 日韩中文字幕欧美一区二区 | 一级,二级,三级黄色视频| 成人国语在线视频| 咕卡用的链子| 免费黄频网站在线观看国产| 19禁男女啪啪无遮挡网站| 嫁个100分男人电影在线观看 | 91麻豆精品激情在线观看国产 | 啦啦啦在线观看免费高清www| 亚洲国产欧美网| 晚上一个人看的免费电影| kizo精华| 两性夫妻黄色片| 精品一区在线观看国产| 超碰成人久久| 国产淫语在线视频| a级毛片在线看网站| 大码成人一级视频| 亚洲精品国产av成人精品| 97在线人人人人妻| 少妇裸体淫交视频免费看高清 | 婷婷丁香在线五月| 97人妻天天添夜夜摸| 亚洲成人免费av在线播放| 成人免费观看视频高清| 国产国语露脸激情在线看| 久久久久国产一级毛片高清牌| 日韩大片免费观看网站| 黄色一级大片看看| 久久国产精品大桥未久av| 男女之事视频高清在线观看 | 国产高清不卡午夜福利| 少妇被粗大的猛进出69影院| 看免费av毛片| 亚洲精品国产色婷婷电影| 成人18禁高潮啪啪吃奶动态图| 国产成人av激情在线播放| 亚洲精品第二区| 国产精品国产av在线观看| 伊人亚洲综合成人网| 可以免费在线观看a视频的电影网站| 99九九在线精品视频| 久久久久久久大尺度免费视频| 亚洲精品美女久久av网站| 如日韩欧美国产精品一区二区三区| 国产一区二区 视频在线| 曰老女人黄片| 亚洲 国产 在线| 伊人久久大香线蕉亚洲五| videos熟女内射| 午夜免费观看性视频| 国产免费又黄又爽又色| 在线天堂中文资源库| 午夜av观看不卡| 久久久久久久久免费视频了| 美女视频免费永久观看网站| 日韩,欧美,国产一区二区三区| 欧美日韩视频精品一区| 亚洲成人手机| 国产一区有黄有色的免费视频| 亚洲欧美一区二区三区黑人| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩av久久| 80岁老熟妇乱子伦牲交| 午夜福利免费观看在线| 国产伦人伦偷精品视频| 久久精品国产亚洲av高清一级| 母亲3免费完整高清在线观看| 久久精品国产亚洲av高清一级| 国产精品 国内视频| 亚洲熟女精品中文字幕| 女警被强在线播放| 大码成人一级视频| 免费一级毛片在线播放高清视频 | av电影中文网址| 国产片特级美女逼逼视频| 国产淫语在线视频| 中文字幕人妻丝袜制服| 国产黄频视频在线观看| xxx大片免费视频| 日韩免费高清中文字幕av| 成人国产一区最新在线观看 | 久久久久国产一级毛片高清牌| 男女高潮啪啪啪动态图| 看免费av毛片| 一本久久精品| 亚洲精品日本国产第一区| 蜜桃国产av成人99| 精品人妻一区二区三区麻豆| 赤兔流量卡办理| 看免费成人av毛片| 伊人亚洲综合成人网| 亚洲综合色网址| 777久久人妻少妇嫩草av网站| 精品人妻在线不人妻| 一级,二级,三级黄色视频| 亚洲国产精品一区三区| 十八禁高潮呻吟视频| 最近中文字幕2019免费版| 十分钟在线观看高清视频www| 无限看片的www在线观看| 国产淫语在线视频| 欧美人与性动交α欧美精品济南到| 国产99久久九九免费精品| 在线亚洲精品国产二区图片欧美| 成人亚洲欧美一区二区av| 国产97色在线日韩免费| 久久久久国产精品人妻一区二区| 久久精品熟女亚洲av麻豆精品| 亚洲国产欧美一区二区综合| 亚洲 欧美一区二区三区| 老司机深夜福利视频在线观看 | 亚洲专区中文字幕在线| 校园人妻丝袜中文字幕| 一级黄片播放器| 亚洲欧美色中文字幕在线| 精品亚洲乱码少妇综合久久| 美女脱内裤让男人舔精品视频| 桃花免费在线播放| 亚洲自偷自拍图片 自拍| 97在线人人人人妻| 国产精品麻豆人妻色哟哟久久| 黄色一级大片看看| 各种免费的搞黄视频| 欧美国产精品va在线观看不卡| 在线观看一区二区三区激情| 这个男人来自地球电影免费观看| 黑人欧美特级aaaaaa片| 99久久人妻综合| 亚洲九九香蕉| 男女国产视频网站| 亚洲九九香蕉| 国产视频首页在线观看| 精品国产超薄肉色丝袜足j| www.999成人在线观看| av福利片在线| 美国免费a级毛片| 天天影视国产精品| 欧美+亚洲+日韩+国产| 赤兔流量卡办理| 51午夜福利影视在线观看| 欧美精品一区二区免费开放| 久久精品国产综合久久久| 免费黄频网站在线观看国产| 亚洲激情五月婷婷啪啪| 免费一级毛片在线播放高清视频 | 国产视频一区二区在线看| 尾随美女入室| 99热网站在线观看| 久热爱精品视频在线9| 欧美黑人欧美精品刺激| 女人精品久久久久毛片| 丝袜脚勾引网站| 国产一卡二卡三卡精品| e午夜精品久久久久久久| 欧美性长视频在线观看| 亚洲国产精品999| 别揉我奶头~嗯~啊~动态视频 | 精品人妻1区二区| 性色av乱码一区二区三区2| www.熟女人妻精品国产| 伊人久久大香线蕉亚洲五| 久久中文字幕一级| 青春草亚洲视频在线观看| 美女视频免费永久观看网站| 免费观看av网站的网址| 久久久久精品国产欧美久久久 | 午夜视频精品福利| 免费观看av网站的网址| 久久久久久久精品精品| 一区在线观看完整版| 在线观看免费高清a一片| 在线观看人妻少妇| 纵有疾风起免费观看全集完整版| 免费在线观看日本一区| 精品国产一区二区三区四区第35| 波多野结衣一区麻豆| 色播在线永久视频| 另类亚洲欧美激情| 亚洲伊人久久精品综合| 韩国高清视频一区二区三区| 国产精品av久久久久免费| 各种免费的搞黄视频| 秋霞在线观看毛片| 精品国产一区二区三区久久久樱花| 啦啦啦在线观看免费高清www| 高清视频免费观看一区二区| 美女主播在线视频| 亚洲欧美中文字幕日韩二区| 黄色一级大片看看| 男女高潮啪啪啪动态图| 十八禁高潮呻吟视频| 人成视频在线观看免费观看| 啦啦啦在线免费观看视频4| 国产野战对白在线观看| 久久九九热精品免费| 亚洲av片天天在线观看| 亚洲成人国产一区在线观看 | 两个人免费观看高清视频| 欧美成狂野欧美在线观看| 男男h啪啪无遮挡| 精品一区二区三卡| 菩萨蛮人人尽说江南好唐韦庄| 水蜜桃什么品种好| 老司机影院毛片| 国产成人啪精品午夜网站| 999精品在线视频| 叶爱在线成人免费视频播放| 国产成人av激情在线播放| 十八禁高潮呻吟视频| 久久精品成人免费网站| 亚洲精品国产av成人精品| 国产不卡av网站在线观看| 人人妻人人澡人人看| 中文乱码字字幕精品一区二区三区| 99国产精品免费福利视频| 国产成人免费观看mmmm| 国产精品久久久久久精品古装| 国产精品av久久久久免费| 国产精品一区二区在线不卡| 少妇精品久久久久久久| av福利片在线| 亚洲中文字幕日韩| 国产福利在线免费观看视频| 国产成人a∨麻豆精品| 久久久精品免费免费高清| 99香蕉大伊视频| 欧美精品啪啪一区二区三区 | 久久中文字幕一级| 国产成人免费无遮挡视频| 欧美97在线视频| 男人操女人黄网站| 九色亚洲精品在线播放| 欧美日韩亚洲综合一区二区三区_| av一本久久久久| 午夜精品国产一区二区电影| 亚洲精品久久久久久婷婷小说| 亚洲中文日韩欧美视频| 亚洲av美国av| √禁漫天堂资源中文www| 91字幕亚洲| 一级片免费观看大全| 国产免费视频播放在线视频| 亚洲,欧美,日韩| 各种免费的搞黄视频| 美女视频免费永久观看网站| 国产成人影院久久av| 日韩免费高清中文字幕av| 欧美激情 高清一区二区三区| 99热网站在线观看| 天天躁夜夜躁狠狠躁躁| 欧美亚洲 丝袜 人妻 在线| 女人爽到高潮嗷嗷叫在线视频| 国产一卡二卡三卡精品| 亚洲欧洲日产国产| 国产一区有黄有色的免费视频| 香蕉国产在线看| 99国产精品一区二区三区| 九草在线视频观看| 青春草亚洲视频在线观看| 国产成人系列免费观看| 日韩制服骚丝袜av| 欧美 日韩 精品 国产| 天天操日日干夜夜撸| 免费一级毛片在线播放高清视频 | 国产成人系列免费观看| 老司机午夜十八禁免费视频| 狠狠精品人妻久久久久久综合| 亚洲精品日韩在线中文字幕| 五月天丁香电影| av有码第一页| 黄色a级毛片大全视频| 日韩 欧美 亚洲 中文字幕| 日本av免费视频播放| 亚洲精品日本国产第一区| 大香蕉久久网| 我的亚洲天堂| 亚洲精品一二三| 大片电影免费在线观看免费| 国产亚洲av片在线观看秒播厂| 两性夫妻黄色片| 女性被躁到高潮视频| 久久鲁丝午夜福利片| 女性生殖器流出的白浆| 黄片播放在线免费| 熟女av电影| 日韩中文字幕视频在线看片| 国产亚洲av片在线观看秒播厂| 观看av在线不卡| 亚洲欧美精品综合一区二区三区| 国产免费福利视频在线观看| 亚洲欧美清纯卡通| 国产精品一区二区在线观看99| 9色porny在线观看| 亚洲成人国产一区在线观看 | 一二三四社区在线视频社区8| 啦啦啦在线观看免费高清www| 亚洲图色成人| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩另类电影网站| 天天操日日干夜夜撸| 国语对白做爰xxxⅹ性视频网站| 在线天堂中文资源库| 精品一区在线观看国产| h视频一区二区三区| e午夜精品久久久久久久| 三上悠亚av全集在线观看| 大香蕉久久成人网| 侵犯人妻中文字幕一二三四区| 少妇裸体淫交视频免费看高清 | 9热在线视频观看99| 国产熟女欧美一区二区| 色播在线永久视频| 亚洲av电影在线进入| 91老司机精品| 尾随美女入室| 9色porny在线观看| 国产成人一区二区在线| 在线观看国产h片| 男女无遮挡免费网站观看| 极品人妻少妇av视频| 三上悠亚av全集在线观看| 欧美成狂野欧美在线观看| 久久久久国产精品人妻一区二区| 亚洲国产欧美一区二区综合| 女性被躁到高潮视频| 国产熟女欧美一区二区| 国产在视频线精品| 99精国产麻豆久久婷婷| 99国产精品99久久久久| 久久亚洲国产成人精品v| 亚洲综合色网址| av在线老鸭窝| 十分钟在线观看高清视频www| 好男人电影高清在线观看| 亚洲美女黄色视频免费看| 亚洲欧美一区二区三区国产| cao死你这个sao货| 男人爽女人下面视频在线观看| 国产av精品麻豆| 久久 成人 亚洲| 亚洲久久久国产精品| 丰满人妻熟妇乱又伦精品不卡| 在线观看一区二区三区激情| 精品欧美一区二区三区在线| 免费少妇av软件| 亚洲成国产人片在线观看| 男女午夜视频在线观看| 日韩大片免费观看网站| 欧美精品高潮呻吟av久久| 国产一区二区在线观看av| 女人被躁到高潮嗷嗷叫费观| 久久精品久久久久久噜噜老黄| 欧美亚洲日本最大视频资源| 后天国语完整版免费观看| 亚洲欧美激情在线| 嫁个100分男人电影在线观看 | 最黄视频免费看| 精品久久久精品久久久| 午夜免费成人在线视频| 欧美黄色片欧美黄色片| 久久人妻熟女aⅴ| 大香蕉久久成人网| www.精华液| 老司机影院成人| 伊人久久大香线蕉亚洲五| 亚洲,欧美,日韩| 香蕉国产在线看| 性少妇av在线| 亚洲欧洲精品一区二区精品久久久| 午夜91福利影院| 精品少妇一区二区三区视频日本电影| 宅男免费午夜| 久9热在线精品视频| 精品国产国语对白av| 波多野结衣av一区二区av| a级毛片在线看网站| 美女福利国产在线| 久久精品aⅴ一区二区三区四区| 午夜老司机福利片| 建设人人有责人人尽责人人享有的| 色网站视频免费| 久久久久久久精品精品| 一区二区日韩欧美中文字幕| 久久这里只有精品19| 亚洲av综合色区一区| 国产精品 国内视频| 9191精品国产免费久久| 1024香蕉在线观看| 成人三级做爰电影| 2018国产大陆天天弄谢| 久久久久国产精品人妻一区二区| 欧美激情极品国产一区二区三区| 亚洲精品久久午夜乱码| 国产主播在线观看一区二区 | 十八禁人妻一区二区| 国产精品一区二区免费欧美 | 波多野结衣av一区二区av| 国产色视频综合| 九色亚洲精品在线播放| 精品免费久久久久久久清纯 | 手机成人av网站| 色94色欧美一区二区| 欧美精品av麻豆av| 青春草视频在线免费观看| 又大又爽又粗| 亚洲人成电影免费在线| 9热在线视频观看99| 亚洲七黄色美女视频| 久久久国产一区二区| 精品人妻1区二区| 日韩伦理黄色片| 欧美成人午夜精品| 久久久久久久久久久久大奶| 色婷婷久久久亚洲欧美| 女人久久www免费人成看片| 亚洲av电影在线观看一区二区三区| 午夜影院在线不卡| 国产欧美日韩综合在线一区二区| 一区二区三区激情视频| 亚洲国产精品一区二区三区在线| 亚洲 欧美一区二区三区| 久久久欧美国产精品| 亚洲国产av新网站| 水蜜桃什么品种好| 性色av乱码一区二区三区2| 少妇猛男粗大的猛烈进出视频| 欧美老熟妇乱子伦牲交| 亚洲欧洲日产国产| 国产成人系列免费观看| e午夜精品久久久久久久| 晚上一个人看的免费电影| 男的添女的下面高潮视频| 日日摸夜夜添夜夜爱| 另类亚洲欧美激情| 一本—道久久a久久精品蜜桃钙片| 日韩中文字幕欧美一区二区 | 亚洲欧美日韩高清在线视频 | 91精品国产国语对白视频| 老司机靠b影院| 欧美日韩亚洲综合一区二区三区_| 久久青草综合色| 久久精品aⅴ一区二区三区四区| 亚洲伊人久久精品综合| 飞空精品影院首页| 超色免费av| 欧美日韩精品网址| 老司机影院毛片| 啦啦啦中文免费视频观看日本| 午夜福利一区二区在线看| 精品久久蜜臀av无| 91字幕亚洲| 香蕉国产在线看| 国产亚洲av高清不卡| 在线看a的网站| 亚洲中文日韩欧美视频| 深夜精品福利| 美女扒开内裤让男人捅视频| 日韩制服骚丝袜av| 蜜桃国产av成人99| 1024视频免费在线观看| 国产片特级美女逼逼视频| 国产有黄有色有爽视频| av在线播放精品| 国产精品久久久人人做人人爽| 精品久久蜜臀av无| 亚洲,欧美,日韩| av一本久久久久| 国产主播在线观看一区二区 | 精品亚洲成国产av| 日韩伦理黄色片| 蜜桃国产av成人99| 男女边摸边吃奶| 国产老妇伦熟女老妇高清| 99国产综合亚洲精品| 男男h啪啪无遮挡| 精品人妻熟女毛片av久久网站| 欧美国产精品一级二级三级| 欧美97在线视频| 亚洲精品乱久久久久久| 亚洲伊人色综图| 少妇人妻 视频| 少妇粗大呻吟视频| 久久性视频一级片| 亚洲精品第二区| 老鸭窝网址在线观看| 99九九在线精品视频| 国产一区二区三区综合在线观看| 激情五月婷婷亚洲| 欧美精品高潮呻吟av久久| 国产成人91sexporn| 国产三级黄色录像| 国产一区二区 视频在线| 91麻豆精品激情在线观看国产 | 精品免费久久久久久久清纯 | 日韩制服丝袜自拍偷拍| 香蕉国产在线看| 黄网站色视频无遮挡免费观看| 久久天躁狠狠躁夜夜2o2o | 一级,二级,三级黄色视频| 97人妻天天添夜夜摸| 精品免费久久久久久久清纯 | 丝袜喷水一区| 爱豆传媒免费全集在线观看| 国产在线一区二区三区精| 欧美日韩成人在线一区二区| 一边摸一边做爽爽视频免费| 日韩人妻精品一区2区三区| 午夜激情av网站| 一级片免费观看大全| 亚洲欧美一区二区三区国产| 久久久亚洲精品成人影院| 欧美性长视频在线观看| 狠狠婷婷综合久久久久久88av| 91老司机精品| 久久久久精品人妻al黑| svipshipincom国产片| 国产又爽黄色视频| 精品久久蜜臀av无| 青春草视频在线免费观看| 成人三级做爰电影| 欧美av亚洲av综合av国产av| 久久久久视频综合| 人人妻,人人澡人人爽秒播 | 精品少妇内射三级| 国产一区二区激情短视频 | 免费日韩欧美在线观看| 精品免费久久久久久久清纯 | 波多野结衣av一区二区av| 一本色道久久久久久精品综合| tube8黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品高潮呻吟av久久| av网站在线播放免费| 国产真人三级小视频在线观看| 亚洲国产中文字幕在线视频| 日韩欧美一区视频在线观看| 欧美另类一区| 一区二区日韩欧美中文字幕| 色综合欧美亚洲国产小说| 巨乳人妻的诱惑在线观看| 欧美日韩亚洲国产一区二区在线观看 | 香蕉丝袜av| 丰满少妇做爰视频| 精品国产一区二区三区久久久樱花| av不卡在线播放| 一级,二级,三级黄色视频| 黄色视频在线播放观看不卡| 国产女主播在线喷水免费视频网站| 老司机亚洲免费影院| 精品免费久久久久久久清纯 | 黄色 视频免费看| 香蕉国产在线看| 男人舔女人的私密视频| 日本一区二区免费在线视频| 啦啦啦啦在线视频资源| 一区二区av电影网| av天堂在线播放| 777米奇影视久久| 国产av一区二区精品久久| 亚洲av电影在线观看一区二区三区| 国产欧美亚洲国产| 91九色精品人成在线观看| 视频区欧美日本亚洲| 精品久久久精品久久久| 大型av网站在线播放| 一边摸一边抽搐一进一出视频| 又大又爽又粗| 午夜精品国产一区二区电影| 亚洲av男天堂| 日本欧美视频一区| 大片电影免费在线观看免费| 国产免费又黄又爽又色| www.熟女人妻精品国产| 高清视频免费观看一区二区| 久久人人爽av亚洲精品天堂| 亚洲av日韩精品久久久久久密 | 午夜福利视频在线观看免费| 亚洲免费av在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 高清av免费在线| 日韩欧美一区视频在线观看| 人人澡人人妻人| 日本黄色日本黄色录像| 亚洲av片天天在线观看| 最近最新中文字幕大全免费视频 | 亚洲精品久久久久久婷婷小说| 黄网站色视频无遮挡免费观看| 国产黄频视频在线观看| 国产黄色视频一区二区在线观看| 男女边摸边吃奶| 欧美 日韩 精品 国产| 七月丁香在线播放| 在线观看免费视频网站a站| 青青草视频在线视频观看| 99国产精品免费福利视频| av国产精品久久久久影院| 国产av精品麻豆| 国产黄色视频一区二区在线观看| 久9热在线精品视频| 久久久国产欧美日韩av| 国产视频首页在线观看| 亚洲av日韩精品久久久久久密 | 欧美变态另类bdsm刘玥| 国精品久久久久久国模美| 欧美xxⅹ黑人| 久热爱精品视频在线9|