• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variability of atmospheric freezing level height derived from radiosonde data in China during 1958-2005 and its impact to cryosphere changes

    2011-12-09 09:36:44YanJunGuoYinShengZhang
    Sciences in Cold and Arid Regions 2011年6期

    YanJun Guo , YinSheng Zhang

    1. National Climate Center, China Meteorological Administration, Beijing 100081, China

    2. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China

    Variability of atmospheric freezing level height derived from radiosonde data in China during 1958-2005 and its impact to cryosphere changes

    YanJun Guo1*, YinSheng Zhang2

    1. National Climate Center, China Meteorological Administration, Beijing 100081, China

    2. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China

    Atmospheric air temperature data from 92 stations in China’s radiosonde network were used to analyze changes in the freezing level height (FLH), glacier snow line, and ice edge from 1958-2005 (48 years) and to examine the impact of these changes on the cryosphere. In general, the FLH, glacier snow line, and ice edge exhibited latitudinal zonation, declining from south to north.Trends in the FLH, glacier snow line, and ice edge showed spatial heterogeneity during the study period, with prevailing upward trends. Temporally, the FLH, glacier snow line, and ice edge trends differed on various time scales.

    freezing level height; glacier snow line; permafrost line; cryosphere; China

    1. Introduction

    Air temperature in the troposphere generally decreases with altitude, often reaching 0 °C over ground that is not frozen. The freezing level height (FLH, or 0 °C isotherm of free air) in the atmosphere is a critical parameter that influences the cryosphere in high mountain and high altitude areas by causing phase change in water in the cryosphere(Harriset al., 2000; Hoffmann, 2003; Francouet al., 2004;Coudrainet al., 2005; Vuilleet al., 2008). In particular, the mass balance of glaciers depends on the extent of ice melting and sublimation, and on the correlation of the permafrost distribution with temperature variation. Diaz and Graham(1996) noted a significant rise in FLHs in the tropics during 1958-1990, related to sea surface temperatures (SSTs) in the east-central equatorial Pacific. In the American sector of the tropics, the strongest relationship between FLH and SST was found for the SSTs preceding the FLH by about 3 months (Diazet al., 2003). The largest changes in FLH have been documented in recent decades, along with significant warming in high mountain regions (Diazet al., 2003).

    China’s radiosonde network began observations in the 1950s and now has more than 100 stations. Recent works have examined radiosonde temperature time series from every station in China and have developed techniques to improve the data by quality controlling and homogenizing the time series (Guoet al., 2008; Guo and Ding, 2009). In this study, we examined the variation in FLH over China during 1958-2005, which was calculated from the homogenized radiosonde temperature time series. Furthermore, we studied a number of indicators of climatic variations in the cryosphere of China, including changes in the glacier snow line and ice edge. The data and methods are discussed in the next section, followed by our results. In the final section we discuss and summarize our major findings.

    2. Material and methods

    2.1. Radiosonde data

    The FLH can theoretically be deduced from vertical profiles of temperature and geopotential height in free air. Ra-diosonde observations provided by the Chinese National Metrological Information Center (NMIC)/China Meteorological Administration (CMA) formed the basis of this analysis. Considering the amplitude of FLH variation, we used data for five mandatory pressure levels: the ground surface and 850, 700, 500, and 400 hPa. These levels were observed twice daily at 00 UTC and 12 UTC. The 00 UTC and 12 UTC series were combined into a merged radiosonde time series for the final homogenization procedure; sets of merged series were considered missing if either the 00 UTC or the 12 UTC series were missing. Seasonal anomalies were computed with reference to 1971-2000.

    The 116 stations in the radiosonde network are distributed throughout China (Figure 1). We examined the data availability for each station and included as many stations as possible. Gaffenet al. (2000) demonstrated that the proportion of missing data is a key parameter in the reliability of a radiosonde time series. Guo and Ding (2009) found that 30% missing data is the critical value determining the usability of a time series from the Chinese radiosonde network.Thus, based on a maximum missing data fraction of 30%,we selected the optimal network (Figure 1, open circles).The analysis yielded a nominal radiosonde time series network of 92 stations for 1958-2005.

    Figure 1 Location of radiosonde stations in China

    Heterogeneity often exists in both instrumental climate records and radiosonde time series. Hence quality control(QC) and homogenization are necessary when using radiosonde data (IPCC, 2007). Many statistical methods have been developed to detect and correct inconsistencies in data sets, such as those caused by the use of different instruments and data correction methods. We employed a hydrostatic method (Collins, 2000) for the QC and a two-phase regression method (Easterling and Peterson, 1995) for the data homogenization. Previous studies showed that these methods are suitable for the Chinese radiosonde network (Guoet al., 2008; Guo and Ding, 2009).

    2.2. The freezing level height (FLH)

    The lowest five levels in the radiosonde time series(corresponding to the ground surface, 850, 700, 500, and 400 hPa) were examined for a transition to temperatures below 0 °C. The FLH was estimated for each snapshot by reverse interpolation of the temperature profile at each station to find the geopotential height of the 0 °C isotherm. The algorithm checked for zero crossings in the temperature profile between the ground surface and 400 hPa. If a single zero crossing existed, its altitude was taken as the freezing level. Two additional special cases were considered: no zero crossings (T<0 °C throughout the entire profile) and multiple zero crossings due to temperature inversions. In the case whereT<0 °C throughout the column, the freezing level was flagged as missing. In the case of multiple zero crossings,the locations were flagged and only the lowest FLH value was stored. The height of the freezing level was then obtained through linear interpolation between the geopotential heights of the transition levels. The mean monthly and annual FLH were also calculated.

    2.3. Glacier snow line

    The glacier snow line is defined as the altitude where the glacier mass balance is equal to zero, which means that solid precipitation is consumed by melting. It is also called the equilibrium line altitude (ELA) in glaciology. In this work,we calculated the ELA by a power function using the summer mean FLH as follows:

    herehis the FLH in summer, andaandbare regression coefficients. Liuet al. (2000) found a correlation ofa=2,968.93 andb=0.09888 in the Qilian Mountains in China withR2=0.9877.

    Equation(1)does not account for precipitation, which could cause problems with the resulting estimation. However, precipitation at the ELA has been found to correlate closely with air temperature (Liet al., 2008). In a monsoon climate region such as China, precipitation mainly occurs in summer and is not as important as air temperature to causing glacier fluctuation (Zhang, 1998).

    2.4. Permafrost edge

    Permafrost is defined as soil or rock that remains at or below 0 °C for at least one year. The permafrost edge is the limit of the permafrost distribution. Much effort has been made to deduce air temperature criteria for the existence of permafrost.Jianget al. (2003) demonstrated that annual mean air temperatures of -1.8 °C are required for permafrost to develop. Accordingly, we deduced the following formula for the permafrost edge altitude (PEA) calculation using the FLH:

    here LAP is the lapse rate in free atmosphere, which can be computed from the radiosonde temperature and height.

    3. Results

    3.1. Annual mean FLH, glacier snow line, and permafrost line over China

    Figure 2 shows distributions of the mean FLH, glacier snow line, and ice edge during 1958-2005. White areas in the three panels indicate an absence of stations (Figure 1).Generally, the FLH showed latitudinal zonation and declined from south to north. The FLH averaged about 1,000 m over most of northern China and rose steeply to 5,000 m at the margins of the tropics.

    Figure 2 Distribution of mean freezing level height, glacier snow line, and ice edge in China during 1958-2005

    The glacier snow line declined from south to north with a similar latitudinal dependence on the FLH. Several glaciers are closely monitored in China (WGMS, 2008). The average ELA of Glacier No. 1, located at 86.49°E, 43.06°N,was 4,049 meters above sea level (m a.s.l.); that of the July 1 Glacier, located at 99.45°E, 39.14°N, was 4,670 m a.s.l.; and that of the Donkemadi Glacier, located at 92.05°E, 33.04°N,was 5,600 m a.s.l. Compared with the climatology of the glacier snow line (shown in Figure 2), our results closely match the observations.

    The averaged IEA during 1958-2005 ranged from 1,000 to 5,500 m a.s.l. The spatial pattern of the IEA also exhibited latitudinal zonation like that of the FLH and glacier snow line. Due to topographic effects, the spatial variation was rather homogenous in northeastern China, but sharp in central China. The IEA maximum reached 5,500 m a.s.l. in the central Tibetan Plateau.

    3.2. Trend during 1958-2005

    Linear trends of the FLH, glacier snow line, and ice edge over the last 48 years (1958-2005) were computed and are shown in Figure 3 (in units of m/decade). Over the whole of China, 72 stations showed positive trends and 20 showed negative trends in FLH during 1958-2005. Significant positive trends were irregularly distributed over the area. Extreme positive trends (more than 50 m/decade) were found at several stations in Inner Mongolia and northeastern and southern China. An extreme negative trend was found in western China, with a rate of -30 m/decade.

    Figure 3 Distribution of linear trend during 1958-2005 for freezing level height, glacier snow line, and ice edge in China.Blue or red color denotes negative or positive with significance level above 95%.

    The positive and negative trends of the glacier snow line during 1958-2005 varied in distribution across China. Fifty-four stations (59%) in the network had positive trends.The most pronounced rise in the glacier snow line was found over the Tibetan Plateau and far northwestern China.

    More significant positive trends were found for the change in the permafrost edge over China. During the study period, the ice edge showed a positive trend at 76 stations(83%), and at 60% of these stations the positive trend was significant at the 95% level. The most extreme positive trend was 12 m/decade in central eastern China.

    3.3. Decadal changes

    To investigate the interannual changes in the FLH, glacier snow line, and ice edge in China, we summarized the decadal mean changes relative to those in 1971-2000 during the decades of 1960-1969, 1970-1979, 1980-1989,1990-1999, and 2000-2005 (Figure 4). Compared to the glacier snow line, the FLH and ice edge showed isochronous variation on decadal scales. Since 1980, both the FLH and glacier snow line maintained positive increases up to 2005.Average anomalies of FLH were 37.0 m and 41.0 m for 1990-1999 and 2000-2005, respectively. Average anomalies of the ice edge were 59.8 m and 37.0 m for 1990-1999 and 2000-2005, respectively.

    The glacier snow line fluctuations were rather gentle and irregular on decadal scales compared to those of the FLH and ice edge. Average anomalies of the glacier snow line were 2.6, -14.2, 2.3, 6.4, and -7.0 m for 1960-1969,1970-1979, 1980-1989, 1990-1999, and 2000-2005, respectively, much lower than those of the FLH and ice edge in the same decades.

    3.4. Nationwide average time series of FLH, glacier snow line, and ice edge

    We averaged the time series of annual FLH, glacier snow line, and ice edge anomalies during 1958-2005 over the selected 92 stations in China (Figure 1). Nationwide, the FLH, glacier snow line, and ice edge showed similar variations during 1958-2005. All of the time series had downward trends from 1958 to 1968 and upward trends up to 2005. We calculated the trends by least-squares linear fitting derived from averaged time series; the results indicated trends of 13.5, 1.2, and 28.8 m/decade for the FLH, glacier snow line, and ice edge, respectively.

    Figure 4 Decadal mean anomalies of the freezing level height, glacier snow line, and ice edge in China during 1960-2005

    Figure 5 Variation in the anomalies of the freezing level height, glacier snow line, and ice edge in China during 1958-2005

    4. Discussion and summary

    Several previous works in western China suggested that the FLH might serve as an indicator of climate change through its impact on the cryosphere. Zhanget al. (2009)found that the sudden increase in the FLH over the western Tianshan Mountains was correlated with rapid glacier melt and maximal negative balance in glacial amount. Maoet al.(2004) demonstrated that the FLH could be an important factor for forecasting flooding in the Aksu River, where glacier and snow covers exist in headwater regions. Furthermore, Wanget al. (2008) concluded that the average discharge in the Hotan River Basin in western China responded on interannual and interdecadal scales to changes in regional FLH.

    We used air temperature at four levels from China’s radiosonde network to analyze changes in the FLH, glacier snow line, and ice edge during a recent 48-year period and investigated the impact of these changes on the cryosphere.We examined radiosonde time series from 92 stations selected from the entire national network. Generally, the FLH,glacier snow line, and ice edge exhibited latitudinal zones and declined from south to north. The trends in the FLH,glacier snow line, and ice edge during 1958-2005 showed spatial heterogeneity and prevailing upward trends. Temporally, the FLH, glacier snow line, and ice edge trends varied on different time scales.

    This study was funded by the Major State Basic Research Development Program of China (973 Program) under Grant No. 2010CB951701 and No. 2010CB428606, and by the Natural Science Foundation of China (No. 41071042 and No. 40775045). It was also supported by the Innovation Project of the Chinese Academy of Sciences(KZCX2-YW-BR-22), and special finance support from the China Meteorological Administration (GYHY200906017).

    Collins WG, 2000. The operational complex quality control of radiosonde heights and, temperatures at the national centers for environmental prediction, Part I: Description of the method. Journal of Applied Meteorol ogy and Climatology, 40: 137-151.

    Coudrain A, Francou B, Kundewicz ZW, 2005. Glacier shrinkage in the Andes and consequences for water resources. Hydrol. Sci. J., 50:925-932.

    Diaz HF, Graham NE, 1996. Recent changes in tropical freezing heights and the role of sea surface temperature. Nature, 383: 152-155.

    Diaz HF, Eischeid JK, Duncan C, Bradley RS, 2003. Variability of freezing levels, melting season indicators, and snow cover for selected high-elevation and continental regions in the last 50 years. Clim. Change,59: 33-52.

    Easterling DR, Peterson TC, 1995. A new method for detecting undocumented discontinuities in climatological time series. Int. J. Climatol., 15:369-377.

    Francou B, Vuille M, Favier V, Cáceres B, 2004. New evidence for an ENSO impact on low latitude glaciers: Antizana 15, Andes of Ecuador,280S. J. Geophys. Res., 109: D18106. DOI:10.1029/2003JD004484.

    Gaffen DJ, Santer BD, Boyle JS, Christy JR, Graham NE, Ross RJ, 2000.Multidecadal changes in the vertical temperature structure of the tropical troposphere. Science, 287: 1242-1245.

    Guo Y, Thorne P, McCarthy P, 2008. Radiosonde temperature trends and their uncertainties over eastern China. Int. J. Climatol., 28: 1269-1281.

    Guo Y, Ding Y, 2009. Long-term free-atmosphere temperature trends in China derived from homogenized in situ radiosonde temperature series. J.Clim., 22(4): 1037-1051.

    Harris NG, Gettys N, Bowman KP, Shin DB, 2000. Comparison of freezing-level ALHitudes from NCEP Reanalysis with TRMM precipitation radar brightband data. J. Clim., 13: 4137-4148.

    Hoffmann G, 2003. Taking the pulse of the tropical water cycle. Science, 301:776-778.

    Intergovernmental Panel on Climate Change (IPCC), 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, U.K.

    Jiang FC, Wu XH, Wang SB, Zhao ZZ, Fu JL, 2003. Basic features of spatial distribution of the limits of permafrost in China. Journal of Geomechanics, 19(14): 12-22.

    Li X, 2008. Cryospheric change in China. Global and Planetary Change, 62:210-218.

    Liu C, 2000. Glaciers and their distribution in China. In: Shi YF (Ed.). Glaciers and Their Environments in China: The Present, Past and Future.Science Press, Beijing. 9-53.

    Mao W, 2004. Relationship of 0 °C level height and summer flood of Aksu River, Xinjiang. Journal of Glaciology and Geocryology, 26(6): 117-123.

    Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS,2008. Climate change and tropical Andean glaciers—Past, present and future. Earth Sci. Rev., 89: 79-96.

    Wang Y, 2008. Response of summer average discharge in the Hotan River to changes in regional 0 °C Level Height. Advances in Climate Change Research, 4(3): 151-155.

    WGMS, 2008. Global Glacier Changes: Facts and Figures. In: Zemp M,Roer I, K??b A, Hoelzle M, Paul F, Haeberli W (Eds.). UNEP. World Glacier Monitoring Service, Zurich, Switzerland.

    Zhang G, 2009. The response of the Glacier No. 1 to the height change of the 0 °C Level in summer at the riverhead of the Urümqi River, Tianshan Mountains. Journal of Glaciology and Geocryology, 31(6): 117-123.

    Zhang Y, 1998. The response of glacier ELA response to climatic fluctuation on high Asia. Bulletin of Glacier Research, 16: 1-11.

    10.3724/SP.J.1226.2011.00485

    *Correspondence to: Dr. YanJun Guo, National Climate Center, China Meteorological Administration. No. 46, Zhongguancun Nandajie, Haidian District, Beijing 100081, China. Email: gyj@cma.gov.cn

    11 June 2011 Accepted: 12 August 2011

    亚洲av免费高清在线观看| 欧美一级a爱片免费观看看| 水蜜桃什么品种好| 精品少妇黑人巨大在线播放| 一级毛片我不卡| 亚洲国产av新网站| 亚洲av欧美aⅴ国产| 久久精品国产亚洲av涩爱| 新久久久久国产一级毛片| 免费看日本二区| 国产淫片久久久久久久久| 一级毛片我不卡| 亚洲国产欧美人成| 日韩精品有码人妻一区| 在线观看免费日韩欧美大片 | 精品一区二区三卡| 久久人人爽人人片av| 王馨瑶露胸无遮挡在线观看| 国产亚洲午夜精品一区二区久久| 精华霜和精华液先用哪个| 亚洲av中文av极速乱| 在线观看av片永久免费下载| 国产精品一区www在线观看| 波野结衣二区三区在线| av线在线观看网站| 亚洲国产色片| 我要看日韩黄色一级片| 中国三级夫妇交换| 男女边摸边吃奶| freevideosex欧美| 欧美精品一区二区大全| av福利片在线观看| 久久久久久久久久人人人人人人| 99热这里只有是精品50| 中文字幕亚洲精品专区| 麻豆精品久久久久久蜜桃| 最近手机中文字幕大全| 欧美日韩视频高清一区二区三区二| 日本av免费视频播放| 欧美精品人与动牲交sv欧美| 国产黄片美女视频| 日本黄色日本黄色录像| 成人一区二区视频在线观看| 亚洲人成网站高清观看| 内地一区二区视频在线| 国产乱人偷精品视频| 国产淫片久久久久久久久| 在线观看国产h片| 2018国产大陆天天弄谢| 久久精品久久久久久噜噜老黄| 国产精品麻豆人妻色哟哟久久| 亚洲四区av| 啦啦啦视频在线资源免费观看| 一级片'在线观看视频| 嫩草影院新地址| 大码成人一级视频| 国产一区二区在线观看日韩| 在线观看免费日韩欧美大片 | 中文精品一卡2卡3卡4更新| 我的女老师完整版在线观看| 精品久久久久久久久av| 青青草视频在线视频观看| 卡戴珊不雅视频在线播放| 国产亚洲精品久久久com| 狂野欧美激情性bbbbbb| 国产深夜福利视频在线观看| 日韩电影二区| 在线播放无遮挡| 国产免费福利视频在线观看| 蜜臀久久99精品久久宅男| 久久久成人免费电影| 一本色道久久久久久精品综合| 亚洲国产欧美在线一区| 嫩草影院新地址| av不卡在线播放| 一级av片app| 国产欧美日韩精品一区二区| 久久亚洲国产成人精品v| www.av在线官网国产| 日韩一本色道免费dvd| 亚洲欧洲国产日韩| 国内揄拍国产精品人妻在线| 亚洲综合色惰| 欧美性感艳星| 天天躁日日操中文字幕| 色婷婷久久久亚洲欧美| 毛片女人毛片| 夜夜骑夜夜射夜夜干| 国产成人a∨麻豆精品| 丰满迷人的少妇在线观看| 色哟哟·www| 国产一区亚洲一区在线观看| 18禁裸乳无遮挡动漫免费视频| 国产精品国产三级专区第一集| 五月玫瑰六月丁香| 国产永久视频网站| 黄色一级大片看看| h日本视频在线播放| 亚洲中文av在线| 老司机影院毛片| 全区人妻精品视频| 国产精品久久久久久久电影| 成人亚洲精品一区在线观看 | 午夜免费男女啪啪视频观看| 午夜免费观看性视频| 人人妻人人看人人澡| 国产淫语在线视频| 亚洲国产毛片av蜜桃av| 80岁老熟妇乱子伦牲交| 中国美白少妇内射xxxbb| 国产日韩欧美在线精品| 久久久a久久爽久久v久久| 欧美高清性xxxxhd video| 秋霞伦理黄片| 亚洲av成人精品一区久久| 午夜精品国产一区二区电影| 中文字幕免费在线视频6| 蜜桃久久精品国产亚洲av| 国产视频内射| 大片免费播放器 马上看| 噜噜噜噜噜久久久久久91| 亚洲国产欧美在线一区| 色婷婷av一区二区三区视频| 日韩精品有码人妻一区| 日韩强制内射视频| 午夜激情久久久久久久| 国产精品爽爽va在线观看网站| 一级毛片 在线播放| 久久久久久久久大av| 中国三级夫妇交换| 深爱激情五月婷婷| 亚洲色图综合在线观看| 亚洲美女黄色视频免费看| 99视频精品全部免费 在线| 一级毛片黄色毛片免费观看视频| 99热这里只有是精品在线观看| 免费大片18禁| 一边亲一边摸免费视频| 国产精品一区二区在线不卡| 最近中文字幕高清免费大全6| 成人影院久久| 男女下面进入的视频免费午夜| 亚洲精品自拍成人| 成人毛片a级毛片在线播放| 久久久久久久久久人人人人人人| 不卡视频在线观看欧美| 女人久久www免费人成看片| 亚洲第一区二区三区不卡| 你懂的网址亚洲精品在线观看| 我的老师免费观看完整版| 亚洲精品日韩在线中文字幕| 深夜a级毛片| 自拍欧美九色日韩亚洲蝌蚪91 | 免费av不卡在线播放| 亚洲精品视频女| 黑人高潮一二区| 亚洲国产欧美人成| 久久综合国产亚洲精品| 久久青草综合色| 少妇猛男粗大的猛烈进出视频| 久久国产亚洲av麻豆专区| 性色avwww在线观看| 2021少妇久久久久久久久久久| 亚洲欧美中文字幕日韩二区| 新久久久久国产一级毛片| 亚洲人成网站在线观看播放| 亚洲电影在线观看av| 深夜a级毛片| 国产欧美另类精品又又久久亚洲欧美| 黑人高潮一二区| 观看美女的网站| 色婷婷久久久亚洲欧美| 超碰97精品在线观看| 久久精品久久久久久久性| 中文在线观看免费www的网站| 日韩视频在线欧美| 在线精品无人区一区二区三 | 一级毛片电影观看| 亚洲国产色片| 晚上一个人看的免费电影| 国产欧美日韩精品一区二区| 久久精品国产亚洲av涩爱| 黄色日韩在线| 欧美丝袜亚洲另类| 99久久精品国产国产毛片| 又爽又黄a免费视频| 亚洲国产精品成人久久小说| 午夜福利视频精品| 一区二区三区乱码不卡18| 乱系列少妇在线播放| 国产v大片淫在线免费观看| 免费在线观看成人毛片| 欧美3d第一页| 久久久久久久大尺度免费视频| 免费黄频网站在线观看国产| 80岁老熟妇乱子伦牲交| www.av在线官网国产| 久久热精品热| 美女国产视频在线观看| 日本爱情动作片www.在线观看| 激情 狠狠 欧美| 日本一二三区视频观看| 国产精品蜜桃在线观看| 欧美日本视频| 永久网站在线| 国内揄拍国产精品人妻在线| 王馨瑶露胸无遮挡在线观看| 成人二区视频| 亚洲国产精品999| 亚洲久久久国产精品| 身体一侧抽搐| 亚洲欧美精品专区久久| 日韩三级伦理在线观看| 最近中文字幕高清免费大全6| 欧美zozozo另类| 久久久久性生活片| 免费看日本二区| 国产精品不卡视频一区二区| 国产一区二区三区综合在线观看 | 国产成人精品一,二区| www.av在线官网国产| 边亲边吃奶的免费视频| 少妇人妻久久综合中文| 高清不卡的av网站| 超碰97精品在线观看| 内射极品少妇av片p| 欧美亚洲 丝袜 人妻 在线| 久久影院123| 亚洲精品第二区| 日本欧美视频一区| 永久免费av网站大全| 亚洲av福利一区| 久久久色成人| 少妇 在线观看| av在线app专区| 亚洲欧美成人精品一区二区| 国产在线视频一区二区| 国产高清不卡午夜福利| 国产成人91sexporn| 国产精品一区二区在线不卡| av国产精品久久久久影院| 最后的刺客免费高清国语| 热99国产精品久久久久久7| 久久人人爽人人片av| 久久久久久久国产电影| 91狼人影院| 久久人妻熟女aⅴ| 日韩三级伦理在线观看| 一本久久精品| 免费少妇av软件| 夫妻性生交免费视频一级片| 中国三级夫妇交换| 女人十人毛片免费观看3o分钟| 国产老妇伦熟女老妇高清| 久久久久久久久久久丰满| 永久网站在线| 亚洲综合色惰| 一区二区三区四区激情视频| 国产乱来视频区| 日韩在线高清观看一区二区三区| 黑丝袜美女国产一区| 少妇被粗大猛烈的视频| 成人特级av手机在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品中文字幕在线视频 | 啦啦啦在线观看免费高清www| 精品一区在线观看国产| 国产免费一区二区三区四区乱码| 亚洲国产色片| 精品人妻一区二区三区麻豆| 网址你懂的国产日韩在线| 最黄视频免费看| 超碰av人人做人人爽久久| 简卡轻食公司| 在线观看人妻少妇| 一个人看视频在线观看www免费| 人体艺术视频欧美日本| 欧美日韩精品成人综合77777| 免费大片18禁| 狂野欧美白嫩少妇大欣赏| 一级毛片aaaaaa免费看小| 97超碰精品成人国产| 老司机影院毛片| 只有这里有精品99| 日韩成人av中文字幕在线观看| 久久久色成人| 久久久久久久大尺度免费视频| 一个人免费看片子| 人妻一区二区av| 久久人妻熟女aⅴ| 亚洲成人中文字幕在线播放| 国产欧美另类精品又又久久亚洲欧美| 观看美女的网站| 成年人午夜在线观看视频| av专区在线播放| 久久99精品国语久久久| 观看美女的网站| 狠狠精品人妻久久久久久综合| 看免费成人av毛片| 少妇人妻一区二区三区视频| 国产视频首页在线观看| 亚洲精品乱码久久久久久按摩| 亚洲熟女精品中文字幕| 国产亚洲最大av| 国产片特级美女逼逼视频| 久久久久久久国产电影| 亚洲精华国产精华液的使用体验| 国产白丝娇喘喷水9色精品| 哪个播放器可以免费观看大片| 99久久精品热视频| 亚洲精品国产色婷婷电影| 美女cb高潮喷水在线观看| 纯流量卡能插随身wifi吗| 亚洲人成网站在线观看播放| 高清午夜精品一区二区三区| 精品久久国产蜜桃| 国产精品熟女久久久久浪| 亚洲三级黄色毛片| 国产一区二区在线观看日韩| 婷婷色综合www| 国产伦理片在线播放av一区| 精品人妻偷拍中文字幕| 国国产精品蜜臀av免费| 免费观看的影片在线观看| 尾随美女入室| 久久精品国产自在天天线| 最近中文字幕高清免费大全6| 少妇 在线观看| 亚洲性久久影院| 深夜a级毛片| 久久青草综合色| 纯流量卡能插随身wifi吗| av福利片在线观看| 黑人高潮一二区| 美女cb高潮喷水在线观看| 亚洲av成人精品一区久久| 人妻夜夜爽99麻豆av| 精品久久国产蜜桃| 国产精品久久久久久久久免| 色5月婷婷丁香| 亚洲熟女精品中文字幕| 日日摸夜夜添夜夜爱| 亚洲图色成人| 在线天堂最新版资源| 国产欧美另类精品又又久久亚洲欧美| 好男人视频免费观看在线| 久久婷婷青草| 日韩精品有码人妻一区| 亚洲精品第二区| 国产精品一区二区在线观看99| 亚洲怡红院男人天堂| 美女内射精品一级片tv| 在线观看人妻少妇| 亚洲天堂av无毛| 毛片女人毛片| 男人添女人高潮全过程视频| 只有这里有精品99| 精品久久久精品久久久| 国产精品不卡视频一区二区| 中文字幕av成人在线电影| 成人无遮挡网站| 在线观看免费视频网站a站| 伦精品一区二区三区| 精品国产乱码久久久久久小说| 黄色怎么调成土黄色| 老师上课跳d突然被开到最大视频| 肉色欧美久久久久久久蜜桃| 免费久久久久久久精品成人欧美视频 | 男人狂女人下面高潮的视频| 99re6热这里在线精品视频| 五月伊人婷婷丁香| 久久6这里有精品| 国产成人精品一,二区| 午夜福利高清视频| 91精品国产国语对白视频| 乱码一卡2卡4卡精品| 在线看a的网站| 久久99热这里只频精品6学生| 国产爽快片一区二区三区| 人人妻人人澡人人爽人人夜夜| 久久精品久久久久久噜噜老黄| 精品久久久精品久久久| 高清视频免费观看一区二区| 午夜福利在线在线| 欧美另类一区| 熟女人妻精品中文字幕| 国产在线男女| 国产黄频视频在线观看| 日韩欧美精品免费久久| 免费看不卡的av| 亚洲天堂av无毛| 久久99热这里只频精品6学生| 一级黄片播放器| 熟女av电影| 国产精品偷伦视频观看了| 男男h啪啪无遮挡| 精品一区二区三卡| 久久99精品国语久久久| 国模一区二区三区四区视频| 男女无遮挡免费网站观看| 欧美日韩在线观看h| 99久久精品国产国产毛片| 久久久欧美国产精品| 日韩伦理黄色片| 热99国产精品久久久久久7| 久久av网站| 中国三级夫妇交换| 欧美 日韩 精品 国产| 夜夜看夜夜爽夜夜摸| 亚洲欧洲日产国产| 欧美极品一区二区三区四区| 日韩人妻高清精品专区| 女人十人毛片免费观看3o分钟| 国产精品久久久久久精品古装| 中国美白少妇内射xxxbb| 亚洲欧美成人综合另类久久久| 亚洲成人手机| 在线观看一区二区三区激情| 交换朋友夫妻互换小说| 欧美性感艳星| 精品99又大又爽又粗少妇毛片| 国产精品一区二区在线观看99| 一区二区av电影网| 久久久色成人| 国产精品不卡视频一区二区| 久久精品久久久久久噜噜老黄| 亚洲国产最新在线播放| 成年女人在线观看亚洲视频| 国产精品偷伦视频观看了| 国产免费视频播放在线视频| 亚洲国产毛片av蜜桃av| 亚洲av国产av综合av卡| 91久久精品国产一区二区成人| 亚洲国产毛片av蜜桃av| 国内少妇人妻偷人精品xxx网站| videos熟女内射| 日本午夜av视频| 久久99热6这里只有精品| 国产女主播在线喷水免费视频网站| av卡一久久| 亚洲最大成人中文| 亚洲精品国产色婷婷电影| 99久久精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 女的被弄到高潮叫床怎么办| 亚洲真实伦在线观看| 久久精品夜色国产| 边亲边吃奶的免费视频| 国产片特级美女逼逼视频| 身体一侧抽搐| 免费观看的影片在线观看| 人体艺术视频欧美日本| 国模一区二区三区四区视频| 成人亚洲精品一区在线观看 | 亚洲国产精品成人久久小说| av福利片在线观看| 欧美一区二区亚洲| 又黄又爽又刺激的免费视频.| 中文欧美无线码| 我要看黄色一级片免费的| 亚洲无线观看免费| 亚州av有码| 极品教师在线视频| 精品人妻偷拍中文字幕| 欧美xxxx黑人xx丫x性爽| 亚洲国产日韩一区二区| 亚洲国产欧美人成| 晚上一个人看的免费电影| 在线天堂最新版资源| 2018国产大陆天天弄谢| 国产v大片淫在线免费观看| 亚洲电影在线观看av| 成人影院久久| 国产大屁股一区二区在线视频| 久久99蜜桃精品久久| 成人国产av品久久久| 国产爱豆传媒在线观看| 亚洲婷婷狠狠爱综合网| 91狼人影院| 色哟哟·www| 亚洲av在线观看美女高潮| freevideosex欧美| 夜夜骑夜夜射夜夜干| 免费大片黄手机在线观看| 午夜免费鲁丝| 91精品一卡2卡3卡4卡| 各种免费的搞黄视频| 免费看日本二区| 日韩av不卡免费在线播放| 午夜福利影视在线免费观看| 免费看光身美女| 黄色怎么调成土黄色| 国产午夜精品一二区理论片| 国产精品秋霞免费鲁丝片| 99热6这里只有精品| 免费观看在线日韩| av国产精品久久久久影院| 亚洲人成网站在线观看播放| av免费在线看不卡| 国产69精品久久久久777片| 午夜福利在线观看免费完整高清在| 搡老乐熟女国产| av专区在线播放| 国产国拍精品亚洲av在线观看| 晚上一个人看的免费电影| 婷婷色麻豆天堂久久| 国内精品宾馆在线| 伊人久久精品亚洲午夜| 丰满人妻一区二区三区视频av| 国产 精品1| 亚洲经典国产精华液单| 青春草亚洲视频在线观看| 免费黄频网站在线观看国产| 日本午夜av视频| 乱系列少妇在线播放| 欧美区成人在线视频| 观看美女的网站| 精品久久久噜噜| 视频区图区小说| a级毛色黄片| 三级国产精品欧美在线观看| 在线观看免费高清a一片| 亚洲久久久国产精品| 激情五月婷婷亚洲| 夜夜爽夜夜爽视频| 国产精品国产三级国产av玫瑰| 干丝袜人妻中文字幕| 中文欧美无线码| 久久久久久久国产电影| 亚洲怡红院男人天堂| 精品亚洲成国产av| 日本vs欧美在线观看视频 | 一区二区三区乱码不卡18| 岛国毛片在线播放| 人人妻人人添人人爽欧美一区卜 | 欧美区成人在线视频| 男男h啪啪无遮挡| 国产白丝娇喘喷水9色精品| 毛片一级片免费看久久久久| 亚洲欧美成人精品一区二区| 黑人猛操日本美女一级片| 国产日韩欧美在线精品| 亚洲综合色惰| 亚洲精品乱码久久久v下载方式| 欧美bdsm另类| 精品99又大又爽又粗少妇毛片| 亚洲精品亚洲一区二区| 中文乱码字字幕精品一区二区三区| 五月开心婷婷网| 观看美女的网站| 亚洲精华国产精华液的使用体验| 七月丁香在线播放| 亚洲精品乱码久久久v下载方式| 男人舔奶头视频| 中文乱码字字幕精品一区二区三区| 国产白丝娇喘喷水9色精品| 综合色丁香网| 尾随美女入室| 一级二级三级毛片免费看| 十八禁网站网址无遮挡 | 亚洲国产欧美在线一区| 国产 一区 欧美 日韩| 又大又黄又爽视频免费| 国产v大片淫在线免费观看| 国产一区二区三区av在线| 国产乱来视频区| 亚洲精品自拍成人| 精品人妻熟女av久视频| 国产女主播在线喷水免费视频网站| 大香蕉97超碰在线| 国内少妇人妻偷人精品xxx网站| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 最近的中文字幕免费完整| 成人黄色视频免费在线看| 99久久人妻综合| 国产男人的电影天堂91| 免费看不卡的av| 久久 成人 亚洲| 欧美三级亚洲精品| 狂野欧美白嫩少妇大欣赏| 久久久亚洲精品成人影院| 国产精品99久久99久久久不卡 | 亚洲欧美中文字幕日韩二区| 一区二区三区精品91| 国产无遮挡羞羞视频在线观看| 欧美精品人与动牲交sv欧美| 男人爽女人下面视频在线观看| 欧美最新免费一区二区三区| 美女内射精品一级片tv| 国产高清不卡午夜福利| 97热精品久久久久久| 亚洲经典国产精华液单| 亚洲婷婷狠狠爱综合网| 免费观看av网站的网址| 亚洲欧美日韩另类电影网站 | 舔av片在线| 国产又色又爽无遮挡免| 久久ye,这里只有精品| 亚洲国产精品999| 综合色丁香网| 人妻制服诱惑在线中文字幕| 高清不卡的av网站| 成人亚洲精品一区在线观看 | 精品亚洲成国产av| 亚洲国产欧美在线一区| 成人一区二区视频在线观看| 久久久国产一区二区| 亚洲av中文字字幕乱码综合| 国产精品爽爽va在线观看网站| 日韩一区二区视频免费看| a级毛片免费高清观看在线播放| 成人一区二区视频在线观看| 久久影院123| 成人亚洲欧美一区二区av|