• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以無機(jī)硫?yàn)樵现苽淞蚧U量子點(diǎn)及其表征

    2011-11-30 10:42:08張建文張敬波
    物理化學(xué)學(xué)報(bào) 2011年5期
    關(guān)鍵詞:北京化工大學(xué)硫化鈉光化學(xué)

    岳 棟 張建文 張敬波 林 原

    (1北京化工大學(xué)流體力學(xué)與傳熱研究室,北京100029;2中國(guó)科學(xué)院化學(xué)研究所光化學(xué)重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100190)

    以無機(jī)硫?yàn)樵现苽淞蚧U量子點(diǎn)及其表征

    岳 棟1,2張建文1,*張敬波2,*林 原2

    (1北京化工大學(xué)流體力學(xué)與傳熱研究室,北京100029;2中國(guó)科學(xué)院化學(xué)研究所光化學(xué)重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100190)

    根據(jù)高溫下快速成核低溫下慢速生長(zhǎng)的量子點(diǎn)制備原理,采用膠體化學(xué)的方法成功制備了不同粒徑的硫化鉛半導(dǎo)體量子點(diǎn).這種方法的特點(diǎn)是以無味和低毒的硫化鈉作為制備硫化鉛量子點(diǎn)硫的前驅(qū)物,因此這是一種量子點(diǎn)的綠色化學(xué)合成方法.油酸作為穩(wěn)定劑控制硫化鉛的粒徑.采用X射線衍射和高分辨透射電鏡表征了量子點(diǎn)的晶體結(jié)構(gòu)、形貌和粒徑,采用可見-近紅外吸收光譜研究了硫化鉛量子點(diǎn)的量子尺寸效應(yīng).通過降低油酸的添加量可以促進(jìn)量子點(diǎn)的生長(zhǎng),得到較大粒徑量子點(diǎn).并探討了量子點(diǎn)的生長(zhǎng)機(jī)理.

    量子點(diǎn);硫化鉛;硫化鈉;綠色合成;粒徑分布

    1 Introduction

    In recent years,scientists have followed awfully with interest of semiconductor quantum dots(QDs)due to their unique properties,such as the mechanical,chemical,optical,electrical,electro-optical,and magneto-optical properties,which are fully different from those of bulk semiconductors.In principle, electro-optical properties of quantum dots are intensively size and shape dependent.As the size of quantum dot is reduced to its exciton Bohr radius,its band structure begins to change, known as the quantum size effect.1

    Lead sulfide(PbS)is an important IV-VI semiconductor material with a directly narrow bulk band gap of 0.41 eV at 300 K.Compared to other semiconductors,its exciton Bohr radius of 18 nm is relatively large,which results in a significant quantum confinement.Its optical absorption band is ease to be tuned from 0.4 to 1.5 eV.2Because PbS quantum dots can provide the luminescence over the whole visible and near-infrared (NIR)regions,this nanoscale materials can be potentially used for the universal optical applications,such as Pb2+ion-selective sensors,3photography,4IR detectors,5solar absorbers,6and optical switch.7Recently,efficient multiple exciton generation has been detected in PbS quantum dots,making it a promising candidate for highly efficient photovoltaic conversion devices.8

    Various methods have been rapidly developed to fabricate PbS nanocrystals in recent years such as solution or interface route,9,10hydrothermal or solvothermal process,11-14sonochemical method,15and microemulsion technique.16,17Organometallic method has also been used to prepare PbS nanocrystals in an organic solution.18,19Hines and Scholes18reported the organometallic synthesis of PbS nanocrystals with size-tunable NIR emission.The best size distribution can be obtained by this method,and based on these samples,many novel properties of PbS quantum dots were studied further.20,21However,the formation of PbS nanocrystals synthesized by such methods is still challengeable,because these reported methods usually involve some dangerous and unstable chemicals such as(TMS)2S (bis(trimethylsilyl)sulfide)and trioctylphosphine.It is very meaningful to find a synthesis route of the narrow size distribution quantum dots based on environmentally benign precursors.

    Here,we focused on the controlled synthesis of PbS quantum dots using relatively green inorganic sulfide,sodium sulfide,which is inodorous and less noxious than organic S.A successful PbS quantum dot synthesis depends on two key elements,a controlled nucleation event and subsequent particle growth.We gained a narrow size distribution of PbS quantum dots by adjusting the added amount of oleic acid(OA).As a stabilizing ligand in this system,OA influences the reactivity of the precursors and hence controls the nanoparticle growth.

    2 Experimental

    Oleic acid(Fluka)and phenylate(Aldrich)were used without further purification.Na2S·9H2O was purchased from Shanghai Mei Xing Chemical Co.,Ltd.,Pb(AC)2·5H2O,methanol,and carbon tetrachloride was obtained from Beijing Chemical Reagent Plant.All chemicals used in the synthesis were of analytical grade.

    PbS quantum dots were synthesized using phenylate as a reaction solvent and OA as a stabilizing ligand.In a typical process,408.3 mg Na2S·9H2O,10 mL OA,and 10 mL phenylate were loaded into a 50 mL three-neck flask at room temperature.The mixture was purged by Ar to remove oxygen and then heated to 180°C to form the S precursor.Meanwhile,the Pb precursor was prepared by heating 644.9 mg Pb(AC)2·5H2O in 2 mL OA and 4 mL phenylate under Ar at 80°C for 30 min. Then,a solution of Pb precursor was injected quickly into the vigorously stirring sodium sulfide solution at 180°C with a 1:1 molar ratio of Pb to S.Upon injection,the mixed solution became black instantly meaning that PbS nucleation occurred quickly.The temperature of the reaction vessel was decreased to 150°C and maintained for the remaining growth time,then cooled to room temperature.Purification of PbS quantum dots was done by precipitation of quantum dots with ethanol.This precipitation was repeated for several times to completely remove the unreacted precursors and solvents.Finally,black products were dried in vacuum at 80°C.The synthesis process was also carried out at different temperatures and with different concentrations of OAto adjust the size of quantum dots.

    Absorption spectra of quantum dots solution were acquired with NIR-900 spectro-photometer.The crystalline structure of the as-prepared powders was characterized by X-ray powder diffraction(XRD)on a Rigaku X-ray diffractometer with Cu Kαradiation(λ=0.15406 nm).High-resolution transmission electron microscope(HRTEM)images of PbS quantum dots were performed on a FEI-TecnaiG2 20 S-TWIN TEM(Fei Co., Ltd.)operated at 150 or 300 kV,and the sample was loaded on amorphous carbon-coated copper grids(Ernest F.Fullam Inc. No.14560)by drop casting a very dilute solution of QDs in 90%ethanol and allowing the film to assemble and dry in vacuum drying oven under room-temperature.

    3 Results and discussion

    The syntheses of sulfide semiconductor quantum dots using inorganic S in aqueous or organic solvent have been reported.22,23But it is difficult to control the size distribution of quantum dots prepared by these reported methods.In this experiment, we chose sodium sulfide as a sulfur source to combine with lead acetate in order to acquire best purity and granularity of PbS quantum dots.There are three reasons to use sodium sulfide.First,sodium sulfide is less noxious than organic S such as(TMS)2S,and it is more feasible to deal with than other inorganic S such as H2S.Second,sodium sulfide is apt to dissolve in mixture of oleic acid and phenyl ether to form transparent and viscous solution,which can release S2-ions to react with lead cation after injection of sodium sulfide precursor solution. Finally,this sulfur source mixes well with lead acetate and there are no precipitates or stable complexes formed at room temperature,and the residuum can be completely removed during purification process of quantum dots with organic reagents such as methanol or ethanol.The coordinating agent plays an important role in controlling the growth process,stabilizing the resulting colloidal dispersion,and electronically passivating the semiconductor surface.According to the reported synthetic route of PbS nanocrystals,24OAwas usually regarded as the stabilizing ligand to control the short burst of homogeneous nucleation with the injection of reagents into the hot reaction flask. Therefore,OA was used as a size-controlling agent to adjust the size of quantum dots and their size distribution.The reaction equation to synthesize the PbS nanoparticles could be described as following,

    Vis-NIR absorption spectra of the as-prepared PbS nanocrystals were measured at room temperature and are shown in Fig.1.It can be seen that,the optical absorption spectra for two sizes of PbS nanocrystals samples prepared with different amounts of OA at 180°C show two clear exciton absorption peaks at 1720 and 1790 nm,respectively.The clear exciton absorption peak of PbS quantum dots reflects the narrow size distribution achieved without any post size-selective precipitation, which is usually used to optimize the size distribution of quantum dots according to the fact that larger particles are easier to precipitate than the smaller ones as the anti-solvent is added into the quantum dots solution.The blue shift of optical absorption edge shows low dimension of PbS nanoparticles obtained in present way is attributed to the size dependent band gap structure,which is reflected by the blue shifting toward short wavelength of the absorption edge with decreasing particle size.The effect of different OA amounts on the syntheses of PbS nanocrystals is obviously observed from Fig.1.The absorption edge shifts to blue in the NIR region with increasing addition amount of OA from 8 mL(a)to 12 mL(b).OA serves well in the capacity to influence the reactivity of the monomer species and to control the growth of nanocrystals.The higher concentration of OA will induce the lower precursor reactivity. Furthermore,the absorption spectrum of PbS quantum dots prepared with 8 mL OA displays a narrower size-distribution compared to that of the as-obtained samples prepared with 12 mL OA.Peng et al.24reported that the narrowly size-dispersed CdS nanocrystals can be successfully synthesized in high concentrations of OA.A rapid nucleation event occurs upon injection of lead acetate into the inorganic precursor S as evidenced by an immediate black color change in the reaction container.The rapid injection is critical to achieve a narrow size distribution. If the concentration of OA is too high,the rapid nucleation will be impressed and thus worsening size distribution.

    Fig.1 Absorption spectra of PbS quantum dots prepared with addition of 12 mL(a)and 8 mL(b)OAat 180°C and with 3.5 mL OAat 150°C(c)

    When the concentration of OA was decreased to 3.5 mL,the reaction of Pb2+and S2-ions becomes very fast,because the amount of OA is not enough to control the growth of nanocrystals.An alternate way to slow down the reaction is to decrease the reaction temperature.PbS quantum dots with smaller size and narrower size distribution were successfully synthesized with addition of 3.5 mL OA at 150°C and its absorption line (c)is showed in Fig.1.Therefore,the concentration of OA is not the only factor to control the growth of quantum dots.The monodisperse quantum dots with other particle sizes can be prepared by system optimization of synthesis conditions such as reaction temperature and time,added amount of OA,and ratio of S2-to Pb2+.

    Fig.2 shows transmission electron microscope(TEM)images of PbS quantum dots prepared with addition of 12 mL OA. In low-resolution TEM(Fig.2(a)),regular circular spots were observed,which indicated that the tailoring of OA created to control the growth of PbS quantum dots with the mean size of about 5 nm.High-resolution TEM image,as shown in Fig.2(b), displays some well-defined crystal lattices.According to the distance of these lattices(0.34 nm),we can determine that PbS single crystals grow along the[111]direction.It is well known, nucleation is generally referred to the formation of seeds with a stable structure,and the shape of seeds is primarily determined by the minimization of surface energy,the growth rates on different facets are also dominated by the surface energy.25After nucleation process,the growth in the lower surface energy[111]direction is faster than others with higher surface energy.This favors the growth of the[111]facet leading to a spherical morphology with the lowest total surface energy.

    Fig.2 Low(a)and high(b)resolution TEM images of 5 nm PbS quantum dots synthesized with 12 mLOA

    The crystalline structure of the synthesized PbS nanocrystals prepared with 12 mL OA is shown in Fig.3.It is obvious that all of the XRD peaks of the sample are consistent with the values in the standard card(JCPDS No.5-592).Its main diffraction peaks at 26.1°,29.9°,43.0°,50.7°,53.2°,62.9°,71.1°,and 79.1°are indexed as(111),(200),(220),(311),(222),(400), (420),and(422)planes of the cubic crystalline structure of PbS.Other as-prepared samples show same crystalline structure.It is well known,the average crystallite sizes D can be estimated from the half-width of the diffraction peaks according to Debye-Scherrer formula,26

    where,D is the mean particle size,α is a geometric factor(here equals to 1.00),λ is the X-ray wavelength used in experiments (here equals to 0.154178 nm),β is the half-peak width of diffraction peak and can be measured from XRD pattern,and θ is the angle of the corresponding diffraction peak.The average crystallite size was estimated as 5.4 nm from the half-width of the diffraction peaks according to Debye-Scherrer formula. This estimated mean size is consistent with the result from the TEM observation.

    PbS quantum dots have ability to extend their absorption range to near-IR region,emphasizing their application in solar cell.Recently,PbS quantum dots as photo sensitizer were intensively studied in different structural solar cells such as Schottky cell,depleted heterojuction cell,and quantum dots sensitized solar cell.27-30We fabricated PbS quantum dots sensitized TiO2porous thin film solid state solar cell with poly(3-hexylthiophene)(P3HT)as hole transport material(HTM).The light to electricity conversion efficiency of the device is not satisfied now.We wish to enhance its performance by optimizing the fabrication process,nanocrystalline film structure,layer thickness of HTM,and interfacial modification.

    Fig.3 X-ray powder diffraction pattern of PbS quantum dots synthesized with 12 mLOA

    4 Conclusions

    A relatively novel route to synthesize macroscopic quantities of PbS quantum dots with uniform diameters was presented to use sodium sulfide as the ideal resource of S precursor due to its cost-effective,low toxicity,and stability.According to this synthetic way,the narrowly dispersed colloidal PbS nanocrystals with different sizes were successfully prepared by changing the concentration of oleic acid or temperature of nucleation and growth.It is expected that this approach may open new avenues for the green chemical synthesis of size-controlled semiconductor nanocrystallites,which would have potential applications in fabricating devices with special optical,electrical,and magnetic properties.

    (1) Henglein,A.Chem.Rev.1989,89,1861.

    (2) Dutta,A.K.;Ho,T.;Zhang,L.;Stroeve,P.Chem.Mater.2000, 12,1042.

    (3)Wang,Y.;Suna,A.;Mahler,W.;Kasowski,R.J.Chem.Phys. 1987,87,7315.

    (4) Hirata,H.;Higashiyama,K.Bull.Chem.Soc.Jpn.1971,44, 2420.

    (5) Nair,P.K.;Gomezdaza,O.;Nair,M.T.S.Adv.Mater.Opt. Electron.1992,1,139.

    (6) Gadenne,P.;Yagil,Y.;Deutscher,G.J.Appl.Phys.1989,66, 3019.

    (7) Chaudhuri,T.K.;Chatterjes,S.Proc.Int.Conf.Thermoelectr. 1992,11,40.

    (8) Kane,R.S.;Cohen,R.E.;Silbey,R.J.J.Phys.Chem.1996, 100,7928.

    (9) Ellingson,R.J.;Beard,M.C.;Johnson,J.C.;Yu,P.;Micic,O. I.;Nozik,A.J.;Shabaev,A.;Efros,A.L.Nano Lett.2005,5, 865.

    (10) Zeng,Z.;Wang,S.;Yang,S.Chem.Mater.1999,11,3365.

    (11)Wang,S.;Yang,S.Langmuir 2000,16,389.

    (12)Yu,D.;Wang,D.;Zhang,S.Liu,X.;Qian,Y.J.Cryst.Growth 2003,249,195.

    (13)Trindade,T.;O′Brien,P.;Zhang,X.M.;Motevalli,M.J.Mater. Chem.1997,7,1011.

    (14)Wang,D.;Yu,D.;Shao,M.S.;Liu,X.;Yu,W.;Qian,Y. J.Cryst.Growth 2003,257,384.

    (15)Wang,S.F.;Gu,F.;Lu,M.K.Langmuir 2006,22,398.

    (16) Ding,Y.H.;Liu,X.X.;Guo,R.J.Cryst.Growth 2007,307, 145.

    (17) Ding,Y.H.;Liu,X.X.;Guo,R.Colloid.Surf.A-Physicochem. Eng.Asp.2007,296,8.

    (18) Hines,M.A.;Scholes,G.D.Adv.Mater.2003,15,1844.

    (19) Rogach,A.L.;Eychmüller,A.;Hickey,S.G.;Kershaw,S.V. Small 2007,3,536.

    (20) Hyun,B.;Zhong,Y.;Bartnik,A.C.;Sun,L.;Abruna,H.D.; Wise,F.W.;Goodreau,J.D.;Matthews,J.R.;Leslie,T.M.; Borrelli,N.F.ACS Nano 2008,2,2206.

    (21) Leventis,H.C.;O′Mahony,F.;Akhtar,J.;Afzaal,M.;O′Brien, P.;Haque,S.A.J.Am.Chem.Soc.2010,132,2743.

    (22) Lee,H.;Wang,M.;Chen,P.;Gamelin,D.R.;Zakeeruddin,S. M.;Gr?tzel,M.;Nazeeruddin,M.K.Nano Lett.2009,9,4221.

    (23)Wang,P.;Wang,L.;Ma,B.;Li,B.;Qiu,Y.J.Phys.Chem.B 2006,110,14406.

    (24)Yu,W.W.;Peng,X.Angew.Chem.Int.Edit.2002,41,2368.

    (25) Zhou,G.J.;Lu,M.K.;Xiu,Z.L.;Wang,S.F.;Zhang,H.P.; Zhou,Y.Y.;Wang,S.M.J.Phys.Chem.B 2006,110,6543.

    (26) Wilson,A.J.C.Proc.Phys.Soc.London 1962,80,286.

    (27) Zhao,N.;Osedach,T.P.;Chang,L.Y.;Geyer,S.M.;Wanger, D.;Binda,M.T.;Arango,A.C.;Bawendi,M.G.;Bulovic,V. ACS Nano 2010,4,3743.

    (28) Pattantyus-Abraham,A.G.;Kramer,I.J.;Barkhouse,A.R.; Wang,X.;Konstantatos,G.;Debnath,R.;Levina,L.;Raabe,I.; Nazeeruddin,M.K.;Gr?tzel,M.;Sargent,E.H.ACS Nano 2010,4,3374.

    (29) Ju,T.;Graham,R.L.;Zhai,G.;Rodriguez,Y.W.;Breeze,A.J.; Yang,L.;Alers,G.B.;Carter,S.A.Appl.Phys.Lett.2010,97, 043106.

    (30) Luther,J.M.;Gao,J.;Lloyd,M.T.;Semonin,O.E.;Beard,M. C.;Nozik,A.J.Adv.Mater.2010,22,3704.

    January 14,2011;Revised:March 8,2011;Published on Web:March 31,2011.

    Preparation of PbS Quantum Dots Using Inorganic Sulfide as Precursor and Their Characterization

    YUE Dong1,2ZHANG Jian-Wen1,*ZHANG Jing-Bo2,*LIN Yuan2
    (1Laboratory of Computational Fluid Dynamics and Heat Transfer,Beijing University of Chemical Technology,Beijing 100029,P.R. China;2Beijing National Laboratory for Molecular Sciences,Key Laboratory of Photochemistry,Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190,P.R.China)

    PbS semiconductor quantum dots with different particle sizes were successfully prepared by the colloidal chemistry method according to the theory of fast nucleation at high temperature and slow growth at low temperature.Sodium sulfide was used as a sulfur precursor because it is odorless and is less noxious,which allows it to be classified as a green precursor.Oleic acid was used as a stabilizing agent to control the particle growth and it thus assisted in the formation of monodisperse PbS quantum dots.The crystalline structures,morphology,and particle size of the quantum dots were characterized by powder X-ray diffraction and high-resolution transmission electron microscopy.The quantum size effect of the PbS nanoparticles was analyzed by visible near-infrared(Vis-NIR)absorption spectroscopy.The mean size of the PbS quantum dots increased with a decrease in the concentration of oleic acid.A possible growth mechanism for the PbS nanoparticles was also discussed.

    Quantum dots;Lead sulfide;Sodium sulfide;Green synthesis;Size distribution

    O649

    *Corresponding authors.ZHANG Jian-Wen,Email:zhangjw@mail.buct.edu.cn;Tel:+86-10-64436277.

    ZHANG Jing-Bo,Email:jbzhang@iccas.ac.cn;Tel:+86-10-82615031.

    The project was supported by the National Natural Science Foundation of China(20873162)and State Key Laboratory of Pollution Control and Resource Reuse Foundation of China(PCRRF09006).

    國(guó)家自然科學(xué)基金(20873162)和污染控制與資源化研究國(guó)家重點(diǎn)實(shí)驗(yàn)室開放課題(PCRRF09006)資助項(xiàng)目

    猜你喜歡
    北京化工大學(xué)硫化鈉光化學(xué)
    光化學(xué)蒸汽發(fā)生法在分析化學(xué)實(shí)驗(yàn)教學(xué)中的應(yīng)用
    云南化工(2021年9期)2021-12-21 07:44:10
    硫氫化鈉處理含銅砷廢酸的探討
    揮發(fā)性硫化物測(cè)定法中標(biāo)準(zhǔn)硫化鈉溶液的標(biāo)定
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    煤粉還原芒硝法制無水硫化鈉工業(yè)化實(shí)踐
    欧美性猛交╳xxx乱大交人| 中文字幕制服av| 80岁老熟妇乱子伦牲交| 大话2 男鬼变身卡| 日韩不卡一区二区三区视频在线| 亚洲最大成人av| 午夜老司机福利剧场| 久热久热在线精品观看| 亚洲性久久影院| 男的添女的下面高潮视频| 亚洲av.av天堂| av在线天堂中文字幕| 精品一区二区三区视频在线| 国产免费又黄又爽又色| 亚洲电影在线观看av| 久久国产乱子免费精品| 久久久精品欧美日韩精品| av女优亚洲男人天堂| 国产高清三级在线| 成年版毛片免费区| 国产精品av视频在线免费观看| 91久久精品国产一区二区三区| 国产精品熟女久久久久浪| 直男gayav资源| 狂野欧美白嫩少妇大欣赏| 干丝袜人妻中文字幕| 国产成人a区在线观看| 精品不卡国产一区二区三区| 日本wwww免费看| 一个人免费在线观看电影| 99热这里只有是精品在线观看| 国产欧美日韩精品一区二区| 国产爱豆传媒在线观看| 国产一区二区亚洲精品在线观看| 久久精品夜色国产| 国产亚洲精品av在线| 日韩av不卡免费在线播放| 久久人人爽人人爽人人片va| 国产黄色视频一区二区在线观看| 日韩欧美一区视频在线观看 | 日本猛色少妇xxxxx猛交久久| 高清欧美精品videossex| 日日啪夜夜爽| 国产有黄有色有爽视频| 亚洲18禁久久av| 床上黄色一级片| 国产视频首页在线观看| 日韩av在线大香蕉| 在现免费观看毛片| 国产69精品久久久久777片| 欧美日韩亚洲高清精品| 日韩欧美国产在线观看| 亚洲av成人精品一区久久| 啦啦啦韩国在线观看视频| 80岁老熟妇乱子伦牲交| 成人亚洲精品一区在线观看 | 亚洲国产精品成人综合色| 色播亚洲综合网| 午夜福利在线观看吧| 日本av手机在线免费观看| 亚洲熟妇中文字幕五十中出| 欧美日韩精品成人综合77777| 久久鲁丝午夜福利片| 亚洲欧美日韩东京热| 大香蕉久久网| 国产免费福利视频在线观看| 日韩欧美 国产精品| 国产亚洲5aaaaa淫片| 亚洲伊人久久精品综合| 成人特级av手机在线观看| 大片免费播放器 马上看| 最近2019中文字幕mv第一页| 久久久久久久大尺度免费视频| 国产成人精品一,二区| kizo精华| 国产熟女欧美一区二区| 国产亚洲5aaaaa淫片| 五月玫瑰六月丁香| 青春草亚洲视频在线观看| 少妇猛男粗大的猛烈进出视频 | 国语对白做爰xxxⅹ性视频网站| 九九爱精品视频在线观看| 伦理电影大哥的女人| 久久这里只有精品中国| 男人和女人高潮做爰伦理| 夜夜爽夜夜爽视频| 只有这里有精品99| 少妇裸体淫交视频免费看高清| 久久精品久久久久久久性| 久久久久久久久久成人| 久久这里只有精品中国| 性色avwww在线观看| av在线老鸭窝| 亚洲激情五月婷婷啪啪| 综合色丁香网| 如何舔出高潮| 免费av不卡在线播放| 亚洲伊人久久精品综合| 久久久久精品性色| 国产成人freesex在线| 日韩中字成人| 亚洲最大成人手机在线| 亚洲在线自拍视频| 成年女人在线观看亚洲视频 | 又粗又硬又长又爽又黄的视频| 少妇丰满av| 一边亲一边摸免费视频| 综合色丁香网| 久久久久精品性色| 日日啪夜夜爽| 国产探花极品一区二区| av网站免费在线观看视频 | 一个人观看的视频www高清免费观看| 亚洲天堂国产精品一区在线| 欧美人与善性xxx| 高清午夜精品一区二区三区| 人体艺术视频欧美日本| 国产 一区精品| 亚洲精品久久午夜乱码| 一本久久精品| 亚洲精品中文字幕在线视频 | 亚洲国产最新在线播放| 蜜桃久久精品国产亚洲av| 国产伦在线观看视频一区| 亚洲激情五月婷婷啪啪| 亚洲精品日韩av片在线观看| 97在线视频观看| 狂野欧美白嫩少妇大欣赏| 国产欧美日韩精品一区二区| 麻豆久久精品国产亚洲av| 我的女老师完整版在线观看| 欧美性感艳星| 97精品久久久久久久久久精品| 午夜免费观看性视频| 天天躁夜夜躁狠狠久久av| 亚洲精品色激情综合| 欧美激情在线99| 婷婷色av中文字幕| 亚洲精华国产精华液的使用体验| 欧美日韩一区二区视频在线观看视频在线 | 久久精品久久久久久久性| 精品久久久久久久人妻蜜臀av| 午夜福利网站1000一区二区三区| 又大又黄又爽视频免费| 高清日韩中文字幕在线| 最近视频中文字幕2019在线8| 久久久精品欧美日韩精品| 97热精品久久久久久| 午夜免费激情av| 精品一区二区免费观看| 亚洲精品久久午夜乱码| 大片免费播放器 马上看| 能在线免费看毛片的网站| 一级毛片久久久久久久久女| 天堂俺去俺来也www色官网 | 永久免费av网站大全| 国产亚洲午夜精品一区二区久久 | 久久草成人影院| 人人妻人人看人人澡| 欧美xxⅹ黑人| 亚洲综合色惰| 国产精品精品国产色婷婷| 亚洲欧美中文字幕日韩二区| 少妇高潮的动态图| 有码 亚洲区| 久热久热在线精品观看| 亚洲国产高清在线一区二区三| 久久久久久久午夜电影| 精品久久久久久成人av| av在线蜜桃| 欧美性猛交╳xxx乱大交人| 欧美高清性xxxxhd video| 两个人的视频大全免费| 欧美性感艳星| 老司机影院成人| 人妻系列 视频| 亚洲精品国产成人久久av| 能在线免费看毛片的网站| 亚洲av电影不卡..在线观看| 色5月婷婷丁香| 国产亚洲5aaaaa淫片| 精品午夜福利在线看| av在线播放精品| 如何舔出高潮| 国产黄片美女视频| 26uuu在线亚洲综合色| 校园人妻丝袜中文字幕| 国产精品一二三区在线看| 小蜜桃在线观看免费完整版高清| 三级经典国产精品| 亚洲激情五月婷婷啪啪| 国产成人91sexporn| 91在线精品国自产拍蜜月| 国产乱来视频区| 久久亚洲国产成人精品v| 国产黄色免费在线视频| 国产一区二区亚洲精品在线观看| 国产老妇伦熟女老妇高清| 亚洲av成人精品一区久久| 夜夜看夜夜爽夜夜摸| 亚洲综合色惰| 丰满少妇做爰视频| 精品亚洲乱码少妇综合久久| 久久久久久久久久久免费av| av免费观看日本| 亚洲av一区综合| 嫩草影院入口| 亚洲怡红院男人天堂| 久久久久久久午夜电影| 男女国产视频网站| 亚洲欧美清纯卡通| 美女cb高潮喷水在线观看| 麻豆av噜噜一区二区三区| 亚洲av中文字字幕乱码综合| 国产av码专区亚洲av| 国产成人a区在线观看| 毛片女人毛片| 久久这里只有精品中国| 在线免费观看的www视频| 欧美zozozo另类| 午夜精品国产一区二区电影 | 在线免费观看不下载黄p国产| 国产伦精品一区二区三区四那| 1000部很黄的大片| 2018国产大陆天天弄谢| 老司机影院成人| 欧美潮喷喷水| 在线观看av片永久免费下载| 日本猛色少妇xxxxx猛交久久| 简卡轻食公司| 十八禁网站网址无遮挡 | 内射极品少妇av片p| 亚洲精品色激情综合| 极品教师在线视频| 国产有黄有色有爽视频| 18禁在线播放成人免费| 国产精品麻豆人妻色哟哟久久 | 中文字幕人妻熟人妻熟丝袜美| 日日啪夜夜撸| 禁无遮挡网站| 黄色日韩在线| 男女国产视频网站| 午夜精品一区二区三区免费看| 国产一区二区在线观看日韩| 色视频www国产| 尾随美女入室| 一级片'在线观看视频| 99热这里只有精品一区| 中文欧美无线码| 亚洲最大成人手机在线| 最近中文字幕2019免费版| 青春草亚洲视频在线观看| 国产日韩欧美在线精品| 99久久精品热视频| 99热这里只有精品一区| 97人妻精品一区二区三区麻豆| 成人av在线播放网站| .国产精品久久| or卡值多少钱| 精品久久久久久久人妻蜜臀av| 久久久久久伊人网av| 女人被狂操c到高潮| 亚洲av日韩在线播放| 亚洲精品影视一区二区三区av| 久久亚洲国产成人精品v| 亚洲av福利一区| 亚洲美女搞黄在线观看| 亚洲精品日韩av片在线观看| 麻豆av噜噜一区二区三区| 成人毛片60女人毛片免费| 美女内射精品一级片tv| 国产白丝娇喘喷水9色精品| 国产高清国产精品国产三级 | 国产乱人偷精品视频| 免费看a级黄色片| 2021少妇久久久久久久久久久| 看十八女毛片水多多多| 91在线精品国自产拍蜜月| 亚洲人成网站在线观看播放| 国产国拍精品亚洲av在线观看| 日日啪夜夜爽| 菩萨蛮人人尽说江南好唐韦庄| 女人被狂操c到高潮| 91午夜精品亚洲一区二区三区| 亚洲国产最新在线播放| 夫妻性生交免费视频一级片| 嫩草影院新地址| 午夜免费男女啪啪视频观看| 男女边吃奶边做爰视频| 日韩电影二区| 日韩av免费高清视频| 观看免费一级毛片| 最近最新中文字幕免费大全7| 特大巨黑吊av在线直播| 国产午夜精品久久久久久一区二区三区| 亚洲精品日本国产第一区| 老司机影院毛片| 91在线精品国自产拍蜜月| 欧美日本视频| 亚洲最大成人av| 美女被艹到高潮喷水动态| 美女国产视频在线观看| 伊人久久国产一区二区| 最新中文字幕久久久久| 如何舔出高潮| 少妇被粗大猛烈的视频| 干丝袜人妻中文字幕| 亚洲av中文av极速乱| 老司机影院成人| 在线天堂最新版资源| 91久久精品国产一区二区成人| 国产精品99久久久久久久久| av一本久久久久| 啦啦啦韩国在线观看视频| 日韩欧美三级三区| 丝袜喷水一区| 国产精品人妻久久久影院| 日本三级黄在线观看| 亚洲成人中文字幕在线播放| 女人被狂操c到高潮| 国产精品国产三级专区第一集| 国产人妻一区二区三区在| 成年女人看的毛片在线观看| 亚洲av免费高清在线观看| 夫妻性生交免费视频一级片| 久久午夜福利片| 欧美不卡视频在线免费观看| 卡戴珊不雅视频在线播放| 成人高潮视频无遮挡免费网站| 免费看美女性在线毛片视频| 亚洲,欧美,日韩| 综合色av麻豆| 看黄色毛片网站| 国产精品三级大全| 中文字幕av在线有码专区| 国产亚洲午夜精品一区二区久久 | 国产爱豆传媒在线观看| 国产黄色视频一区二区在线观看| 日韩精品青青久久久久久| 精品人妻熟女av久视频| 日韩精品青青久久久久久| 国产精品美女特级片免费视频播放器| av网站免费在线观看视频 | 最近中文字幕2019免费版| 男女视频在线观看网站免费| 国产毛片a区久久久久| 综合色丁香网| 九草在线视频观看| 欧美成人a在线观看| 看十八女毛片水多多多| av国产久精品久网站免费入址| 久久久久久久久久久免费av| 一个人观看的视频www高清免费观看| 久久亚洲国产成人精品v| 美女黄网站色视频| 免费在线观看成人毛片| av在线亚洲专区| 国内揄拍国产精品人妻在线| 久久午夜福利片| 久久久精品免费免费高清| 五月伊人婷婷丁香| 五月天丁香电影| 欧美激情久久久久久爽电影| 精品久久久久久久久av| 亚洲精品国产av蜜桃| 我的老师免费观看完整版| 少妇裸体淫交视频免费看高清| 最近最新中文字幕大全电影3| 91aial.com中文字幕在线观看| 18禁裸乳无遮挡免费网站照片| 中国美白少妇内射xxxbb| 国产成人91sexporn| 麻豆av噜噜一区二区三区| 国产女主播在线喷水免费视频网站 | av在线亚洲专区| 免费看美女性在线毛片视频| 免费大片黄手机在线观看| 国产高清有码在线观看视频| 色综合色国产| 成人特级av手机在线观看| 亚洲天堂国产精品一区在线| 自拍偷自拍亚洲精品老妇| 国内精品宾馆在线| 国产成人freesex在线| 在线观看美女被高潮喷水网站| 伦精品一区二区三区| 亚洲最大成人av| 尾随美女入室| 日日摸夜夜添夜夜爱| 女人久久www免费人成看片| 一个人观看的视频www高清免费观看| 国产黄片美女视频| 春色校园在线视频观看| 男的添女的下面高潮视频| 国产黄色视频一区二区在线观看| 亚洲精品久久久久久婷婷小说| 日韩一区二区三区影片| 亚洲精品成人久久久久久| 亚洲国产成人一精品久久久| 国产成人91sexporn| 真实男女啪啪啪动态图| 亚洲av成人av| 成人午夜精彩视频在线观看| 超碰av人人做人人爽久久| 日韩国内少妇激情av| 综合色丁香网| 中文字幕av在线有码专区| 亚洲熟妇中文字幕五十中出| 内地一区二区视频在线| 国产熟女欧美一区二区| 综合色av麻豆| 高清在线视频一区二区三区| 久久99蜜桃精品久久| 成年人午夜在线观看视频 | 亚洲美女视频黄频| 青春草国产在线视频| 寂寞人妻少妇视频99o| 男女视频在线观看网站免费| 欧美日本视频| 高清av免费在线| 高清在线视频一区二区三区| 精品人妻视频免费看| 国产美女午夜福利| av.在线天堂| 午夜福利视频精品| 欧美xxⅹ黑人| 久久人人爽人人片av| 亚洲欧美日韩无卡精品| 直男gayav资源| 国产成年人精品一区二区| 美女被艹到高潮喷水动态| 日本猛色少妇xxxxx猛交久久| 免费看不卡的av| 日本av手机在线免费观看| 国产白丝娇喘喷水9色精品| 亚洲国产最新在线播放| 久久久久久九九精品二区国产| 亚洲欧美中文字幕日韩二区| 亚洲欧美精品专区久久| 色尼玛亚洲综合影院| 久久久久久久久久黄片| 免费少妇av软件| 国产亚洲午夜精品一区二区久久 | 亚洲自拍偷在线| 精品99又大又爽又粗少妇毛片| 七月丁香在线播放| a级一级毛片免费在线观看| 亚洲av一区综合| 亚洲av二区三区四区| 99久国产av精品国产电影| 日韩av在线免费看完整版不卡| 女人被狂操c到高潮| 亚洲欧洲国产日韩| 久久久久久久亚洲中文字幕| 淫秽高清视频在线观看| 欧美激情久久久久久爽电影| 国产亚洲av嫩草精品影院| 国产精品av视频在线免费观看| 亚洲天堂国产精品一区在线| 国产精品日韩av在线免费观看| av在线亚洲专区| 色播亚洲综合网| 天堂中文最新版在线下载 | 亚洲人成网站在线播| 免费电影在线观看免费观看| 中文字幕av在线有码专区| 久久99热这里只频精品6学生| 免费av不卡在线播放| 美女cb高潮喷水在线观看| 亚洲精品亚洲一区二区| 中文字幕制服av| 亚洲av免费在线观看| av专区在线播放| 国产黄色小视频在线观看| 精品不卡国产一区二区三区| 久久精品夜色国产| 免费播放大片免费观看视频在线观看| 国产免费又黄又爽又色| 在线观看美女被高潮喷水网站| 夫妻性生交免费视频一级片| 亚洲va在线va天堂va国产| av天堂中文字幕网| 欧美xxxx黑人xx丫x性爽| 国产黄片美女视频| av卡一久久| 1000部很黄的大片| 一级av片app| 免费电影在线观看免费观看| kizo精华| 97热精品久久久久久| 日韩人妻高清精品专区| 国产91av在线免费观看| 国产黄a三级三级三级人| 欧美激情国产日韩精品一区| 午夜福利视频1000在线观看| 蜜臀久久99精品久久宅男| 亚洲图色成人| 97在线视频观看| 国产精品一区二区三区四区免费观看| 国产老妇伦熟女老妇高清| 国产一区二区三区av在线| 国产综合懂色| 综合色av麻豆| 老司机影院毛片| 最近的中文字幕免费完整| 男女下面进入的视频免费午夜| 又黄又爽又刺激的免费视频.| 听说在线观看完整版免费高清| .国产精品久久| 亚洲欧美一区二区三区国产| 久久精品夜夜夜夜夜久久蜜豆| 亚洲在线自拍视频| 日本免费a在线| 欧美日韩一区二区视频在线观看视频在线 | 欧美成人a在线观看| 日韩欧美 国产精品| 特大巨黑吊av在线直播| 久久久国产一区二区| 日韩,欧美,国产一区二区三区| 国内精品宾馆在线| 亚洲成人中文字幕在线播放| 欧美97在线视频| 一夜夜www| 大话2 男鬼变身卡| 特大巨黑吊av在线直播| 2018国产大陆天天弄谢| 大香蕉久久网| 亚洲欧美中文字幕日韩二区| 久久久久精品久久久久真实原创| 99久久精品一区二区三区| 日日摸夜夜添夜夜爱| 欧美精品一区二区大全| 久久久久久久大尺度免费视频| 天堂√8在线中文| 搞女人的毛片| 在现免费观看毛片| 少妇被粗大猛烈的视频| 99久久精品一区二区三区| 一个人观看的视频www高清免费观看| 国产精品综合久久久久久久免费| 欧美3d第一页| 亚洲熟妇中文字幕五十中出| 九草在线视频观看| 国产美女午夜福利| 亚洲国产精品专区欧美| 日日摸夜夜添夜夜添av毛片| 亚洲欧美清纯卡通| 久久国产乱子免费精品| 国产高清三级在线| 午夜激情久久久久久久| 久久精品熟女亚洲av麻豆精品 | 在线免费十八禁| 日韩精品青青久久久久久| 国产中年淑女户外野战色| 亚洲精品久久久久久婷婷小说| 色视频www国产| 亚洲熟女精品中文字幕| 亚洲av电影不卡..在线观看| 搡女人真爽免费视频火全软件| 丝瓜视频免费看黄片| 美女国产视频在线观看| 男女那种视频在线观看| 久久久国产一区二区| 午夜视频国产福利| av在线天堂中文字幕| 精品少妇黑人巨大在线播放| 天美传媒精品一区二区| 欧美不卡视频在线免费观看| 免费黄色在线免费观看| 九九久久精品国产亚洲av麻豆| 赤兔流量卡办理| 一区二区三区乱码不卡18| 国产精品无大码| 日韩电影二区| 亚洲精品影视一区二区三区av| 日日啪夜夜撸| 国产亚洲av片在线观看秒播厂 | 亚洲三级黄色毛片| 91久久精品国产一区二区成人| 亚洲精品亚洲一区二区| 丝袜喷水一区| 久久97久久精品| 久久久久久九九精品二区国产| 久久久久久久久久久丰满| 18禁在线播放成人免费| 高清午夜精品一区二区三区| 亚洲国产精品成人久久小说| 国产av在哪里看| 亚洲欧美一区二区三区国产| 国产日韩欧美在线精品| 少妇的逼好多水| 国产色爽女视频免费观看| 亚洲一级一片aⅴ在线观看| 日韩在线高清观看一区二区三区| 天美传媒精品一区二区| 成人亚洲欧美一区二区av| 能在线免费观看的黄片| 日本色播在线视频| 久久久a久久爽久久v久久| 久久久久久久午夜电影| 亚洲在久久综合| 婷婷色综合www| 久久久久久久国产电影| 亚洲怡红院男人天堂| 日韩欧美一区视频在线观看 | 毛片女人毛片| 久久久亚洲精品成人影院| 成人二区视频| 亚洲伊人久久精品综合| 黄色欧美视频在线观看| 久久精品综合一区二区三区| 天天一区二区日本电影三级| 日本一二三区视频观看| 蜜臀久久99精品久久宅男| 99热这里只有精品一区|