• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以無機(jī)硫?yàn)樵现苽淞蚧U量子點(diǎn)及其表征

    2011-11-30 10:42:08張建文張敬波
    物理化學(xué)學(xué)報(bào) 2011年5期
    關(guān)鍵詞:北京化工大學(xué)硫化鈉光化學(xué)

    岳 棟 張建文 張敬波 林 原

    (1北京化工大學(xué)流體力學(xué)與傳熱研究室,北京100029;2中國(guó)科學(xué)院化學(xué)研究所光化學(xué)重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100190)

    以無機(jī)硫?yàn)樵现苽淞蚧U量子點(diǎn)及其表征

    岳 棟1,2張建文1,*張敬波2,*林 原2

    (1北京化工大學(xué)流體力學(xué)與傳熱研究室,北京100029;2中國(guó)科學(xué)院化學(xué)研究所光化學(xué)重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100190)

    根據(jù)高溫下快速成核低溫下慢速生長(zhǎng)的量子點(diǎn)制備原理,采用膠體化學(xué)的方法成功制備了不同粒徑的硫化鉛半導(dǎo)體量子點(diǎn).這種方法的特點(diǎn)是以無味和低毒的硫化鈉作為制備硫化鉛量子點(diǎn)硫的前驅(qū)物,因此這是一種量子點(diǎn)的綠色化學(xué)合成方法.油酸作為穩(wěn)定劑控制硫化鉛的粒徑.采用X射線衍射和高分辨透射電鏡表征了量子點(diǎn)的晶體結(jié)構(gòu)、形貌和粒徑,采用可見-近紅外吸收光譜研究了硫化鉛量子點(diǎn)的量子尺寸效應(yīng).通過降低油酸的添加量可以促進(jìn)量子點(diǎn)的生長(zhǎng),得到較大粒徑量子點(diǎn).并探討了量子點(diǎn)的生長(zhǎng)機(jī)理.

    量子點(diǎn);硫化鉛;硫化鈉;綠色合成;粒徑分布

    1 Introduction

    In recent years,scientists have followed awfully with interest of semiconductor quantum dots(QDs)due to their unique properties,such as the mechanical,chemical,optical,electrical,electro-optical,and magneto-optical properties,which are fully different from those of bulk semiconductors.In principle, electro-optical properties of quantum dots are intensively size and shape dependent.As the size of quantum dot is reduced to its exciton Bohr radius,its band structure begins to change, known as the quantum size effect.1

    Lead sulfide(PbS)is an important IV-VI semiconductor material with a directly narrow bulk band gap of 0.41 eV at 300 K.Compared to other semiconductors,its exciton Bohr radius of 18 nm is relatively large,which results in a significant quantum confinement.Its optical absorption band is ease to be tuned from 0.4 to 1.5 eV.2Because PbS quantum dots can provide the luminescence over the whole visible and near-infrared (NIR)regions,this nanoscale materials can be potentially used for the universal optical applications,such as Pb2+ion-selective sensors,3photography,4IR detectors,5solar absorbers,6and optical switch.7Recently,efficient multiple exciton generation has been detected in PbS quantum dots,making it a promising candidate for highly efficient photovoltaic conversion devices.8

    Various methods have been rapidly developed to fabricate PbS nanocrystals in recent years such as solution or interface route,9,10hydrothermal or solvothermal process,11-14sonochemical method,15and microemulsion technique.16,17Organometallic method has also been used to prepare PbS nanocrystals in an organic solution.18,19Hines and Scholes18reported the organometallic synthesis of PbS nanocrystals with size-tunable NIR emission.The best size distribution can be obtained by this method,and based on these samples,many novel properties of PbS quantum dots were studied further.20,21However,the formation of PbS nanocrystals synthesized by such methods is still challengeable,because these reported methods usually involve some dangerous and unstable chemicals such as(TMS)2S (bis(trimethylsilyl)sulfide)and trioctylphosphine.It is very meaningful to find a synthesis route of the narrow size distribution quantum dots based on environmentally benign precursors.

    Here,we focused on the controlled synthesis of PbS quantum dots using relatively green inorganic sulfide,sodium sulfide,which is inodorous and less noxious than organic S.A successful PbS quantum dot synthesis depends on two key elements,a controlled nucleation event and subsequent particle growth.We gained a narrow size distribution of PbS quantum dots by adjusting the added amount of oleic acid(OA).As a stabilizing ligand in this system,OA influences the reactivity of the precursors and hence controls the nanoparticle growth.

    2 Experimental

    Oleic acid(Fluka)and phenylate(Aldrich)were used without further purification.Na2S·9H2O was purchased from Shanghai Mei Xing Chemical Co.,Ltd.,Pb(AC)2·5H2O,methanol,and carbon tetrachloride was obtained from Beijing Chemical Reagent Plant.All chemicals used in the synthesis were of analytical grade.

    PbS quantum dots were synthesized using phenylate as a reaction solvent and OA as a stabilizing ligand.In a typical process,408.3 mg Na2S·9H2O,10 mL OA,and 10 mL phenylate were loaded into a 50 mL three-neck flask at room temperature.The mixture was purged by Ar to remove oxygen and then heated to 180°C to form the S precursor.Meanwhile,the Pb precursor was prepared by heating 644.9 mg Pb(AC)2·5H2O in 2 mL OA and 4 mL phenylate under Ar at 80°C for 30 min. Then,a solution of Pb precursor was injected quickly into the vigorously stirring sodium sulfide solution at 180°C with a 1:1 molar ratio of Pb to S.Upon injection,the mixed solution became black instantly meaning that PbS nucleation occurred quickly.The temperature of the reaction vessel was decreased to 150°C and maintained for the remaining growth time,then cooled to room temperature.Purification of PbS quantum dots was done by precipitation of quantum dots with ethanol.This precipitation was repeated for several times to completely remove the unreacted precursors and solvents.Finally,black products were dried in vacuum at 80°C.The synthesis process was also carried out at different temperatures and with different concentrations of OAto adjust the size of quantum dots.

    Absorption spectra of quantum dots solution were acquired with NIR-900 spectro-photometer.The crystalline structure of the as-prepared powders was characterized by X-ray powder diffraction(XRD)on a Rigaku X-ray diffractometer with Cu Kαradiation(λ=0.15406 nm).High-resolution transmission electron microscope(HRTEM)images of PbS quantum dots were performed on a FEI-TecnaiG2 20 S-TWIN TEM(Fei Co., Ltd.)operated at 150 or 300 kV,and the sample was loaded on amorphous carbon-coated copper grids(Ernest F.Fullam Inc. No.14560)by drop casting a very dilute solution of QDs in 90%ethanol and allowing the film to assemble and dry in vacuum drying oven under room-temperature.

    3 Results and discussion

    The syntheses of sulfide semiconductor quantum dots using inorganic S in aqueous or organic solvent have been reported.22,23But it is difficult to control the size distribution of quantum dots prepared by these reported methods.In this experiment, we chose sodium sulfide as a sulfur source to combine with lead acetate in order to acquire best purity and granularity of PbS quantum dots.There are three reasons to use sodium sulfide.First,sodium sulfide is less noxious than organic S such as(TMS)2S,and it is more feasible to deal with than other inorganic S such as H2S.Second,sodium sulfide is apt to dissolve in mixture of oleic acid and phenyl ether to form transparent and viscous solution,which can release S2-ions to react with lead cation after injection of sodium sulfide precursor solution. Finally,this sulfur source mixes well with lead acetate and there are no precipitates or stable complexes formed at room temperature,and the residuum can be completely removed during purification process of quantum dots with organic reagents such as methanol or ethanol.The coordinating agent plays an important role in controlling the growth process,stabilizing the resulting colloidal dispersion,and electronically passivating the semiconductor surface.According to the reported synthetic route of PbS nanocrystals,24OAwas usually regarded as the stabilizing ligand to control the short burst of homogeneous nucleation with the injection of reagents into the hot reaction flask. Therefore,OA was used as a size-controlling agent to adjust the size of quantum dots and their size distribution.The reaction equation to synthesize the PbS nanoparticles could be described as following,

    Vis-NIR absorption spectra of the as-prepared PbS nanocrystals were measured at room temperature and are shown in Fig.1.It can be seen that,the optical absorption spectra for two sizes of PbS nanocrystals samples prepared with different amounts of OA at 180°C show two clear exciton absorption peaks at 1720 and 1790 nm,respectively.The clear exciton absorption peak of PbS quantum dots reflects the narrow size distribution achieved without any post size-selective precipitation, which is usually used to optimize the size distribution of quantum dots according to the fact that larger particles are easier to precipitate than the smaller ones as the anti-solvent is added into the quantum dots solution.The blue shift of optical absorption edge shows low dimension of PbS nanoparticles obtained in present way is attributed to the size dependent band gap structure,which is reflected by the blue shifting toward short wavelength of the absorption edge with decreasing particle size.The effect of different OA amounts on the syntheses of PbS nanocrystals is obviously observed from Fig.1.The absorption edge shifts to blue in the NIR region with increasing addition amount of OA from 8 mL(a)to 12 mL(b).OA serves well in the capacity to influence the reactivity of the monomer species and to control the growth of nanocrystals.The higher concentration of OA will induce the lower precursor reactivity. Furthermore,the absorption spectrum of PbS quantum dots prepared with 8 mL OA displays a narrower size-distribution compared to that of the as-obtained samples prepared with 12 mL OA.Peng et al.24reported that the narrowly size-dispersed CdS nanocrystals can be successfully synthesized in high concentrations of OA.A rapid nucleation event occurs upon injection of lead acetate into the inorganic precursor S as evidenced by an immediate black color change in the reaction container.The rapid injection is critical to achieve a narrow size distribution. If the concentration of OA is too high,the rapid nucleation will be impressed and thus worsening size distribution.

    Fig.1 Absorption spectra of PbS quantum dots prepared with addition of 12 mL(a)and 8 mL(b)OAat 180°C and with 3.5 mL OAat 150°C(c)

    When the concentration of OA was decreased to 3.5 mL,the reaction of Pb2+and S2-ions becomes very fast,because the amount of OA is not enough to control the growth of nanocrystals.An alternate way to slow down the reaction is to decrease the reaction temperature.PbS quantum dots with smaller size and narrower size distribution were successfully synthesized with addition of 3.5 mL OA at 150°C and its absorption line (c)is showed in Fig.1.Therefore,the concentration of OA is not the only factor to control the growth of quantum dots.The monodisperse quantum dots with other particle sizes can be prepared by system optimization of synthesis conditions such as reaction temperature and time,added amount of OA,and ratio of S2-to Pb2+.

    Fig.2 shows transmission electron microscope(TEM)images of PbS quantum dots prepared with addition of 12 mL OA. In low-resolution TEM(Fig.2(a)),regular circular spots were observed,which indicated that the tailoring of OA created to control the growth of PbS quantum dots with the mean size of about 5 nm.High-resolution TEM image,as shown in Fig.2(b), displays some well-defined crystal lattices.According to the distance of these lattices(0.34 nm),we can determine that PbS single crystals grow along the[111]direction.It is well known, nucleation is generally referred to the formation of seeds with a stable structure,and the shape of seeds is primarily determined by the minimization of surface energy,the growth rates on different facets are also dominated by the surface energy.25After nucleation process,the growth in the lower surface energy[111]direction is faster than others with higher surface energy.This favors the growth of the[111]facet leading to a spherical morphology with the lowest total surface energy.

    Fig.2 Low(a)and high(b)resolution TEM images of 5 nm PbS quantum dots synthesized with 12 mLOA

    The crystalline structure of the synthesized PbS nanocrystals prepared with 12 mL OA is shown in Fig.3.It is obvious that all of the XRD peaks of the sample are consistent with the values in the standard card(JCPDS No.5-592).Its main diffraction peaks at 26.1°,29.9°,43.0°,50.7°,53.2°,62.9°,71.1°,and 79.1°are indexed as(111),(200),(220),(311),(222),(400), (420),and(422)planes of the cubic crystalline structure of PbS.Other as-prepared samples show same crystalline structure.It is well known,the average crystallite sizes D can be estimated from the half-width of the diffraction peaks according to Debye-Scherrer formula,26

    where,D is the mean particle size,α is a geometric factor(here equals to 1.00),λ is the X-ray wavelength used in experiments (here equals to 0.154178 nm),β is the half-peak width of diffraction peak and can be measured from XRD pattern,and θ is the angle of the corresponding diffraction peak.The average crystallite size was estimated as 5.4 nm from the half-width of the diffraction peaks according to Debye-Scherrer formula. This estimated mean size is consistent with the result from the TEM observation.

    PbS quantum dots have ability to extend their absorption range to near-IR region,emphasizing their application in solar cell.Recently,PbS quantum dots as photo sensitizer were intensively studied in different structural solar cells such as Schottky cell,depleted heterojuction cell,and quantum dots sensitized solar cell.27-30We fabricated PbS quantum dots sensitized TiO2porous thin film solid state solar cell with poly(3-hexylthiophene)(P3HT)as hole transport material(HTM).The light to electricity conversion efficiency of the device is not satisfied now.We wish to enhance its performance by optimizing the fabrication process,nanocrystalline film structure,layer thickness of HTM,and interfacial modification.

    Fig.3 X-ray powder diffraction pattern of PbS quantum dots synthesized with 12 mLOA

    4 Conclusions

    A relatively novel route to synthesize macroscopic quantities of PbS quantum dots with uniform diameters was presented to use sodium sulfide as the ideal resource of S precursor due to its cost-effective,low toxicity,and stability.According to this synthetic way,the narrowly dispersed colloidal PbS nanocrystals with different sizes were successfully prepared by changing the concentration of oleic acid or temperature of nucleation and growth.It is expected that this approach may open new avenues for the green chemical synthesis of size-controlled semiconductor nanocrystallites,which would have potential applications in fabricating devices with special optical,electrical,and magnetic properties.

    (1) Henglein,A.Chem.Rev.1989,89,1861.

    (2) Dutta,A.K.;Ho,T.;Zhang,L.;Stroeve,P.Chem.Mater.2000, 12,1042.

    (3)Wang,Y.;Suna,A.;Mahler,W.;Kasowski,R.J.Chem.Phys. 1987,87,7315.

    (4) Hirata,H.;Higashiyama,K.Bull.Chem.Soc.Jpn.1971,44, 2420.

    (5) Nair,P.K.;Gomezdaza,O.;Nair,M.T.S.Adv.Mater.Opt. Electron.1992,1,139.

    (6) Gadenne,P.;Yagil,Y.;Deutscher,G.J.Appl.Phys.1989,66, 3019.

    (7) Chaudhuri,T.K.;Chatterjes,S.Proc.Int.Conf.Thermoelectr. 1992,11,40.

    (8) Kane,R.S.;Cohen,R.E.;Silbey,R.J.J.Phys.Chem.1996, 100,7928.

    (9) Ellingson,R.J.;Beard,M.C.;Johnson,J.C.;Yu,P.;Micic,O. I.;Nozik,A.J.;Shabaev,A.;Efros,A.L.Nano Lett.2005,5, 865.

    (10) Zeng,Z.;Wang,S.;Yang,S.Chem.Mater.1999,11,3365.

    (11)Wang,S.;Yang,S.Langmuir 2000,16,389.

    (12)Yu,D.;Wang,D.;Zhang,S.Liu,X.;Qian,Y.J.Cryst.Growth 2003,249,195.

    (13)Trindade,T.;O′Brien,P.;Zhang,X.M.;Motevalli,M.J.Mater. Chem.1997,7,1011.

    (14)Wang,D.;Yu,D.;Shao,M.S.;Liu,X.;Yu,W.;Qian,Y. J.Cryst.Growth 2003,257,384.

    (15)Wang,S.F.;Gu,F.;Lu,M.K.Langmuir 2006,22,398.

    (16) Ding,Y.H.;Liu,X.X.;Guo,R.J.Cryst.Growth 2007,307, 145.

    (17) Ding,Y.H.;Liu,X.X.;Guo,R.Colloid.Surf.A-Physicochem. Eng.Asp.2007,296,8.

    (18) Hines,M.A.;Scholes,G.D.Adv.Mater.2003,15,1844.

    (19) Rogach,A.L.;Eychmüller,A.;Hickey,S.G.;Kershaw,S.V. Small 2007,3,536.

    (20) Hyun,B.;Zhong,Y.;Bartnik,A.C.;Sun,L.;Abruna,H.D.; Wise,F.W.;Goodreau,J.D.;Matthews,J.R.;Leslie,T.M.; Borrelli,N.F.ACS Nano 2008,2,2206.

    (21) Leventis,H.C.;O′Mahony,F.;Akhtar,J.;Afzaal,M.;O′Brien, P.;Haque,S.A.J.Am.Chem.Soc.2010,132,2743.

    (22) Lee,H.;Wang,M.;Chen,P.;Gamelin,D.R.;Zakeeruddin,S. M.;Gr?tzel,M.;Nazeeruddin,M.K.Nano Lett.2009,9,4221.

    (23)Wang,P.;Wang,L.;Ma,B.;Li,B.;Qiu,Y.J.Phys.Chem.B 2006,110,14406.

    (24)Yu,W.W.;Peng,X.Angew.Chem.Int.Edit.2002,41,2368.

    (25) Zhou,G.J.;Lu,M.K.;Xiu,Z.L.;Wang,S.F.;Zhang,H.P.; Zhou,Y.Y.;Wang,S.M.J.Phys.Chem.B 2006,110,6543.

    (26) Wilson,A.J.C.Proc.Phys.Soc.London 1962,80,286.

    (27) Zhao,N.;Osedach,T.P.;Chang,L.Y.;Geyer,S.M.;Wanger, D.;Binda,M.T.;Arango,A.C.;Bawendi,M.G.;Bulovic,V. ACS Nano 2010,4,3743.

    (28) Pattantyus-Abraham,A.G.;Kramer,I.J.;Barkhouse,A.R.; Wang,X.;Konstantatos,G.;Debnath,R.;Levina,L.;Raabe,I.; Nazeeruddin,M.K.;Gr?tzel,M.;Sargent,E.H.ACS Nano 2010,4,3374.

    (29) Ju,T.;Graham,R.L.;Zhai,G.;Rodriguez,Y.W.;Breeze,A.J.; Yang,L.;Alers,G.B.;Carter,S.A.Appl.Phys.Lett.2010,97, 043106.

    (30) Luther,J.M.;Gao,J.;Lloyd,M.T.;Semonin,O.E.;Beard,M. C.;Nozik,A.J.Adv.Mater.2010,22,3704.

    January 14,2011;Revised:March 8,2011;Published on Web:March 31,2011.

    Preparation of PbS Quantum Dots Using Inorganic Sulfide as Precursor and Their Characterization

    YUE Dong1,2ZHANG Jian-Wen1,*ZHANG Jing-Bo2,*LIN Yuan2
    (1Laboratory of Computational Fluid Dynamics and Heat Transfer,Beijing University of Chemical Technology,Beijing 100029,P.R. China;2Beijing National Laboratory for Molecular Sciences,Key Laboratory of Photochemistry,Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190,P.R.China)

    PbS semiconductor quantum dots with different particle sizes were successfully prepared by the colloidal chemistry method according to the theory of fast nucleation at high temperature and slow growth at low temperature.Sodium sulfide was used as a sulfur precursor because it is odorless and is less noxious,which allows it to be classified as a green precursor.Oleic acid was used as a stabilizing agent to control the particle growth and it thus assisted in the formation of monodisperse PbS quantum dots.The crystalline structures,morphology,and particle size of the quantum dots were characterized by powder X-ray diffraction and high-resolution transmission electron microscopy.The quantum size effect of the PbS nanoparticles was analyzed by visible near-infrared(Vis-NIR)absorption spectroscopy.The mean size of the PbS quantum dots increased with a decrease in the concentration of oleic acid.A possible growth mechanism for the PbS nanoparticles was also discussed.

    Quantum dots;Lead sulfide;Sodium sulfide;Green synthesis;Size distribution

    O649

    *Corresponding authors.ZHANG Jian-Wen,Email:zhangjw@mail.buct.edu.cn;Tel:+86-10-64436277.

    ZHANG Jing-Bo,Email:jbzhang@iccas.ac.cn;Tel:+86-10-82615031.

    The project was supported by the National Natural Science Foundation of China(20873162)and State Key Laboratory of Pollution Control and Resource Reuse Foundation of China(PCRRF09006).

    國(guó)家自然科學(xué)基金(20873162)和污染控制與資源化研究國(guó)家重點(diǎn)實(shí)驗(yàn)室開放課題(PCRRF09006)資助項(xiàng)目

    猜你喜歡
    北京化工大學(xué)硫化鈉光化學(xué)
    光化學(xué)蒸汽發(fā)生法在分析化學(xué)實(shí)驗(yàn)教學(xué)中的應(yīng)用
    云南化工(2021年9期)2021-12-21 07:44:10
    硫氫化鈉處理含銅砷廢酸的探討
    揮發(fā)性硫化物測(cè)定法中標(biāo)準(zhǔn)硫化鈉溶液的標(biāo)定
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    煤粉還原芒硝法制無水硫化鈉工業(yè)化實(shí)踐
    日本vs欧美在线观看视频| 在线观看www视频免费| 97人妻天天添夜夜摸| 在线观看免费视频日本深夜| 国产免费男女视频| 国产精品亚洲一级av第二区| 久久人人97超碰香蕉20202| 久久婷婷成人综合色麻豆| 99久久久亚洲精品蜜臀av| 欧美日本亚洲视频在线播放| 久久精品aⅴ一区二区三区四区| 国产欧美日韩精品亚洲av| 亚洲精品国产精品久久久不卡| 黄色视频不卡| 国产一卡二卡三卡精品| 深夜精品福利| 国产三级黄色录像| 免费女性裸体啪啪无遮挡网站| 国产精品自产拍在线观看55亚洲| 在线天堂中文资源库| 18禁美女被吸乳视频| 中文字幕另类日韩欧美亚洲嫩草| 国产免费av片在线观看野外av| 日本五十路高清| 国产成人系列免费观看| 亚洲精品美女久久久久99蜜臀| 黄片小视频在线播放| 亚洲精品久久成人aⅴ小说| av在线播放免费不卡| 欧美日韩亚洲综合一区二区三区_| 国产欧美日韩综合在线一区二区| 色播在线永久视频| 天天躁夜夜躁狠狠躁躁| 久久中文字幕人妻熟女| 色av中文字幕| 精品不卡国产一区二区三区| 亚洲第一青青草原| 最近最新免费中文字幕在线| 两个人看的免费小视频| 精品国产亚洲在线| 日韩三级视频一区二区三区| 午夜老司机福利片| 热re99久久国产66热| 老熟妇仑乱视频hdxx| 亚洲熟妇中文字幕五十中出| 精品国产一区二区久久| 国产精品野战在线观看| 最好的美女福利视频网| 免费高清视频大片| videosex国产| 99在线人妻在线中文字幕| 美女高潮喷水抽搐中文字幕| 亚洲av美国av| 91成年电影在线观看| 久久人妻熟女aⅴ| 中国美女看黄片| 日本vs欧美在线观看视频| 免费一级毛片在线播放高清视频 | 18禁国产床啪视频网站| 国产免费av片在线观看野外av| 欧美乱色亚洲激情| 免费无遮挡裸体视频| 999久久久精品免费观看国产| 嫩草影视91久久| 国产又爽黄色视频| 欧美在线一区亚洲| 精品久久久久久久久久免费视频| 欧美+亚洲+日韩+国产| 亚洲精品美女久久av网站| 波多野结衣一区麻豆| 国产激情欧美一区二区| 欧美日本亚洲视频在线播放| 视频区欧美日本亚洲| 无人区码免费观看不卡| 99国产精品一区二区三区| 久久国产乱子伦精品免费另类| 久久人妻福利社区极品人妻图片| 日本三级黄在线观看| 国产精品98久久久久久宅男小说| 99热只有精品国产| 日韩有码中文字幕| 国产免费男女视频| 午夜免费观看网址| 久久久国产成人免费| 一级毛片女人18水好多| 精品人妻1区二区| 黄色视频,在线免费观看| 久久这里只有精品19| 成人欧美大片| 人人妻人人澡欧美一区二区 | 亚洲精品av麻豆狂野| 久久人人97超碰香蕉20202| 亚洲熟妇熟女久久| 在线免费观看的www视频| 亚洲 欧美 日韩 在线 免费| 又紧又爽又黄一区二区| 亚洲精品在线美女| 老熟妇仑乱视频hdxx| 男女下面进入的视频免费午夜 | 国产亚洲精品一区二区www| a在线观看视频网站| 亚洲人成伊人成综合网2020| 国产成人啪精品午夜网站| 曰老女人黄片| 深夜精品福利| 热99re8久久精品国产| 国产亚洲精品av在线| 国产三级在线视频| 最近最新免费中文字幕在线| 久久 成人 亚洲| 99国产极品粉嫩在线观看| 丝袜美腿诱惑在线| 黄色丝袜av网址大全| 一区二区三区激情视频| 国产精品爽爽va在线观看网站 | 国产极品粉嫩免费观看在线| 欧美激情久久久久久爽电影 | 国内精品久久久久精免费| 午夜精品国产一区二区电影| 亚洲欧美一区二区三区黑人| 久久人妻av系列| 免费在线观看影片大全网站| 搡老妇女老女人老熟妇| 最新美女视频免费是黄的| 国产视频一区二区在线看| 天堂√8在线中文| 三级毛片av免费| 国产精品亚洲美女久久久| 午夜a级毛片| 久久久久九九精品影院| 久久精品国产综合久久久| 亚洲国产毛片av蜜桃av| 午夜免费激情av| 欧美久久黑人一区二区| ponron亚洲| 大陆偷拍与自拍| 大码成人一级视频| 精品国产亚洲在线| 51午夜福利影视在线观看| 欧洲精品卡2卡3卡4卡5卡区| ponron亚洲| 丝袜美腿诱惑在线| 成年女人毛片免费观看观看9| 亚洲精品一卡2卡三卡4卡5卡| 日本精品一区二区三区蜜桃| 久久久精品国产亚洲av高清涩受| 女同久久另类99精品国产91| 日韩欧美一区视频在线观看| 亚洲人成伊人成综合网2020| 午夜两性在线视频| 国内毛片毛片毛片毛片毛片| 久久影院123| 悠悠久久av| 99国产综合亚洲精品| 欧美另类亚洲清纯唯美| 嫩草影视91久久| 国产高清有码在线观看视频 | 又大又爽又粗| 欧美日本视频| 在线免费观看的www视频| 热99re8久久精品国产| 久久久久国产精品人妻aⅴ院| 国产真人三级小视频在线观看| 亚洲一码二码三码区别大吗| 国产精品野战在线观看| 丰满的人妻完整版| 欧美色欧美亚洲另类二区 | tocl精华| 亚洲最大成人中文| 亚洲精品粉嫩美女一区| 精品久久蜜臀av无| 久久国产亚洲av麻豆专区| 老司机深夜福利视频在线观看| 老司机午夜福利在线观看视频| 精品第一国产精品| 色老头精品视频在线观看| 久久久久亚洲av毛片大全| 欧美午夜高清在线| 亚洲国产精品成人综合色| 成年女人毛片免费观看观看9| 精品国产国语对白av| 自线自在国产av| 久久人妻熟女aⅴ| 制服人妻中文乱码| 久久久国产欧美日韩av| 18美女黄网站色大片免费观看| 欧美一级a爱片免费观看看 | 97人妻天天添夜夜摸| 欧美日本中文国产一区发布| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 露出奶头的视频| 欧洲精品卡2卡3卡4卡5卡区| 一进一出抽搐gif免费好疼| 国产黄a三级三级三级人| 成年女人毛片免费观看观看9| 日本黄色视频三级网站网址| 免费女性裸体啪啪无遮挡网站| 制服人妻中文乱码| 精品国产一区二区三区四区第35| 亚洲色图 男人天堂 中文字幕| 搡老熟女国产l中国老女人| 午夜免费观看网址| 首页视频小说图片口味搜索| 亚洲专区中文字幕在线| 免费人成视频x8x8入口观看| 可以在线观看毛片的网站| 国产精品久久久av美女十八| 国产国语露脸激情在线看| 曰老女人黄片| 极品教师在线免费播放| 淫妇啪啪啪对白视频| 国产野战对白在线观看| 精品欧美国产一区二区三| 国产成人免费无遮挡视频| 久久精品aⅴ一区二区三区四区| 国产极品粉嫩免费观看在线| 成人特级黄色片久久久久久久| 嫩草影院精品99| 久久久久精品国产欧美久久久| 乱人伦中国视频| 又大又爽又粗| 欧美不卡视频在线免费观看 | 国产不卡一卡二| 中文字幕人妻熟女乱码| 麻豆成人av在线观看| 国产亚洲欧美在线一区二区| 久久影院123| 精品久久久久久,| tocl精华| 一边摸一边做爽爽视频免费| 亚洲黑人精品在线| 香蕉久久夜色| 成人免费观看视频高清| 高潮久久久久久久久久久不卡| 精品久久久久久,| 精品国产一区二区久久| 中文亚洲av片在线观看爽| 俄罗斯特黄特色一大片| 国产成人免费无遮挡视频| 色综合亚洲欧美另类图片| 操美女的视频在线观看| 亚洲 国产 在线| 日本 欧美在线| 9191精品国产免费久久| 亚洲精品国产精品久久久不卡| 亚洲国产精品久久男人天堂| 在线视频色国产色| 国产麻豆69| 变态另类成人亚洲欧美熟女 | 9热在线视频观看99| 亚洲精品粉嫩美女一区| 夜夜躁狠狠躁天天躁| 男女下面进入的视频免费午夜 | 国产精品 欧美亚洲| av中文乱码字幕在线| 青草久久国产| 一级a爱视频在线免费观看| 午夜福利免费观看在线| 怎么达到女性高潮| 欧美黄色片欧美黄色片| 日韩欧美国产在线观看| 一区福利在线观看| 欧美成人免费av一区二区三区| 99久久久亚洲精品蜜臀av| 国产精品久久视频播放| 亚洲色图av天堂| 国产精品av久久久久免费| 级片在线观看| 亚洲欧美日韩另类电影网站| 亚洲欧美日韩另类电影网站| 国产精品免费视频内射| 宅男免费午夜| 波多野结衣一区麻豆| 一级毛片精品| 午夜视频精品福利| 国产成人精品在线电影| 热99re8久久精品国产| 咕卡用的链子| 婷婷精品国产亚洲av在线| 亚洲五月婷婷丁香| 女同久久另类99精品国产91| 中亚洲国语对白在线视频| 午夜福利影视在线免费观看| 成在线人永久免费视频| 精品卡一卡二卡四卡免费| 女性被躁到高潮视频| 亚洲成人精品中文字幕电影| 日本撒尿小便嘘嘘汇集6| 老汉色∧v一级毛片| 母亲3免费完整高清在线观看| 香蕉久久夜色| 极品教师在线免费播放| 黑人操中国人逼视频| 日韩三级视频一区二区三区| 国产99久久九九免费精品| 久久天堂一区二区三区四区| 色尼玛亚洲综合影院| 巨乳人妻的诱惑在线观看| 美女 人体艺术 gogo| 丝袜在线中文字幕| 欧美色视频一区免费| 一级a爱视频在线免费观看| 亚洲精品中文字幕一二三四区| 看黄色毛片网站| 人人妻人人爽人人添夜夜欢视频| 免费不卡黄色视频| 精品少妇一区二区三区视频日本电影| 黄色视频不卡| 成人亚洲精品av一区二区| 999久久久精品免费观看国产| 亚洲欧美一区二区三区黑人| 国产99久久九九免费精品| 久久婷婷成人综合色麻豆| 久久精品国产亚洲av高清一级| 人人澡人人妻人| 黑人巨大精品欧美一区二区蜜桃| 黄频高清免费视频| 国产片内射在线| 久久人人97超碰香蕉20202| 亚洲精品中文字幕一二三四区| 国产亚洲av嫩草精品影院| a在线观看视频网站| 看免费av毛片| 人人妻,人人澡人人爽秒播| 午夜亚洲福利在线播放| 亚洲avbb在线观看| 一级黄色大片毛片| 国产午夜精品久久久久久| 国产97色在线日韩免费| 成人av一区二区三区在线看| 中文字幕人妻熟女乱码| 午夜福利高清视频| 麻豆国产av国片精品| 动漫黄色视频在线观看| 给我免费播放毛片高清在线观看| 精品国产亚洲在线| 真人一进一出gif抽搐免费| 亚洲人成网站在线播放欧美日韩| 电影成人av| 女性被躁到高潮视频| 日韩欧美免费精品| 99久久99久久久精品蜜桃| 长腿黑丝高跟| 黄色毛片三级朝国网站| 19禁男女啪啪无遮挡网站| 看免费av毛片| 久久久久久久午夜电影| 亚洲av成人一区二区三| 精品国产乱码久久久久久男人| 欧美日本视频| 午夜亚洲福利在线播放| 久久久久国产精品人妻aⅴ院| 男女之事视频高清在线观看| 美女国产高潮福利片在线看| 色播亚洲综合网| 亚洲av五月六月丁香网| 久久久久久久久久久久大奶| 午夜激情av网站| cao死你这个sao货| 老熟妇乱子伦视频在线观看| 一个人观看的视频www高清免费观看 | 免费不卡黄色视频| 亚洲国产精品sss在线观看| aaaaa片日本免费| 99久久久亚洲精品蜜臀av| tocl精华| 好男人电影高清在线观看| 日本一区二区免费在线视频| 国产av在哪里看| 操美女的视频在线观看| 亚洲国产毛片av蜜桃av| 校园春色视频在线观看| 免费av毛片视频| 亚洲欧洲精品一区二区精品久久久| 免费av毛片视频| 亚洲天堂国产精品一区在线| 人人妻人人爽人人添夜夜欢视频| 99精品在免费线老司机午夜| 露出奶头的视频| 黑人操中国人逼视频| 极品教师在线免费播放| 在线十欧美十亚洲十日本专区| 日日干狠狠操夜夜爽| 一边摸一边抽搐一进一出视频| 国产精品久久久久久人妻精品电影| 亚洲最大成人中文| 日本 欧美在线| 女同久久另类99精品国产91| 国产av又大| 一进一出抽搐gif免费好疼| 免费在线观看黄色视频的| 999久久久国产精品视频| 在线观看免费午夜福利视频| 婷婷精品国产亚洲av在线| 国产亚洲欧美98| 男女午夜视频在线观看| 亚洲欧美精品综合久久99| 亚洲国产看品久久| 天堂影院成人在线观看| www.999成人在线观看| 50天的宝宝边吃奶边哭怎么回事| 久久久水蜜桃国产精品网| 99精品在免费线老司机午夜| 天天添夜夜摸| 久久久久国产精品人妻aⅴ院| 啪啪无遮挡十八禁网站| 国产亚洲精品久久久久久毛片| 91国产中文字幕| 悠悠久久av| 三级毛片av免费| 亚洲精品一区av在线观看| 国产单亲对白刺激| 久久婷婷人人爽人人干人人爱 | 美女高潮到喷水免费观看| 国产1区2区3区精品| 成在线人永久免费视频| 曰老女人黄片| 国产精华一区二区三区| 亚洲 国产 在线| e午夜精品久久久久久久| 免费少妇av软件| 免费久久久久久久精品成人欧美视频| 亚洲第一青青草原| 91精品国产国语对白视频| 国产成人精品在线电影| 色婷婷久久久亚洲欧美| 十八禁人妻一区二区| 悠悠久久av| 免费在线观看亚洲国产| 国产不卡一卡二| 正在播放国产对白刺激| 国产一区二区在线av高清观看| 99国产精品99久久久久| 亚洲精品中文字幕一二三四区| 国产精品国产高清国产av| av超薄肉色丝袜交足视频| 欧美成人午夜精品| 99精品久久久久人妻精品| 欧美+亚洲+日韩+国产| 亚洲一区高清亚洲精品| 亚洲片人在线观看| 久久人人爽av亚洲精品天堂| 亚洲av电影在线进入| 老司机深夜福利视频在线观看| 欧美在线一区亚洲| 国产99白浆流出| 美女 人体艺术 gogo| 亚洲国产毛片av蜜桃av| 中文字幕最新亚洲高清| 免费高清视频大片| 亚洲一区二区三区不卡视频| 一级,二级,三级黄色视频| 色哟哟哟哟哟哟| 老司机午夜十八禁免费视频| 亚洲av电影在线进入| 亚洲午夜理论影院| 精品免费久久久久久久清纯| 欧美成人午夜精品| 三级毛片av免费| 97人妻精品一区二区三区麻豆 | 窝窝影院91人妻| 国产精品av久久久久免费| 欧美不卡视频在线免费观看 | 亚洲精华国产精华精| 日韩中文字幕欧美一区二区| 久久这里只有精品19| 中文字幕人成人乱码亚洲影| 黄片播放在线免费| 俄罗斯特黄特色一大片| 少妇 在线观看| 69精品国产乱码久久久| 国产成人系列免费观看| 精品第一国产精品| 成在线人永久免费视频| 一二三四在线观看免费中文在| 欧美色视频一区免费| 国产三级在线视频| 正在播放国产对白刺激| 久久精品人人爽人人爽视色| 天天一区二区日本电影三级 | 久久久久亚洲av毛片大全| 午夜福利成人在线免费观看| 欧美黑人欧美精品刺激| 亚洲一区二区三区不卡视频| 一边摸一边抽搐一进一小说| 午夜福利高清视频| 人妻久久中文字幕网| 欧美激情 高清一区二区三区| 国产精品电影一区二区三区| 性色av乱码一区二区三区2| 一二三四在线观看免费中文在| 久久香蕉激情| 国产一区在线观看成人免费| 淫妇啪啪啪对白视频| 俄罗斯特黄特色一大片| 国产亚洲av高清不卡| 99久久国产精品久久久| 日韩欧美一区视频在线观看| 久久伊人香网站| 黄色女人牲交| 亚洲精品国产色婷婷电影| 久热这里只有精品99| 中文字幕色久视频| 午夜影院日韩av| 日本撒尿小便嘘嘘汇集6| 自线自在国产av| 黄色片一级片一级黄色片| 纯流量卡能插随身wifi吗| tocl精华| 久久国产精品影院| 中国美女看黄片| 黑人巨大精品欧美一区二区mp4| 夜夜爽天天搞| 日韩精品中文字幕看吧| 国产伦人伦偷精品视频| 国产伦一二天堂av在线观看| 国产成人精品在线电影| 精品国内亚洲2022精品成人| 国产一区二区在线av高清观看| 亚洲精品av麻豆狂野| 国产亚洲欧美在线一区二区| 波多野结衣巨乳人妻| 天天添夜夜摸| 韩国av一区二区三区四区| 俄罗斯特黄特色一大片| 欧美 亚洲 国产 日韩一| 高清黄色对白视频在线免费看| 亚洲色图av天堂| 欧美日韩福利视频一区二区| 精品一品国产午夜福利视频| 真人做人爱边吃奶动态| 最近最新免费中文字幕在线| 神马国产精品三级电影在线观看 | 亚洲国产精品久久男人天堂| 99re在线观看精品视频| 亚洲男人的天堂狠狠| 1024香蕉在线观看| 久久热在线av| 国产欧美日韩精品亚洲av| 亚洲在线自拍视频| 老汉色av国产亚洲站长工具| 日日爽夜夜爽网站| 亚洲九九香蕉| 欧美日韩瑟瑟在线播放| 麻豆av在线久日| 一级黄色大片毛片| 国产色视频综合| 国产精品综合久久久久久久免费 | 色综合欧美亚洲国产小说| 亚洲国产精品sss在线观看| 黑人欧美特级aaaaaa片| 日本a在线网址| 午夜视频精品福利| 日本三级黄在线观看| 国产成人精品在线电影| 亚洲熟女毛片儿| www国产在线视频色| 国产欧美日韩精品亚洲av| 亚洲一区中文字幕在线| 在线观看免费午夜福利视频| 久久精品国产亚洲av香蕉五月| 久久久久久久久中文| 最近最新免费中文字幕在线| 亚洲少妇的诱惑av| 欧美久久黑人一区二区| 最近最新中文字幕大全免费视频| ponron亚洲| 国产精品永久免费网站| 天天添夜夜摸| 亚洲中文字幕一区二区三区有码在线看 | 男人的好看免费观看在线视频 | 欧美久久黑人一区二区| 日韩精品免费视频一区二区三区| 日本三级黄在线观看| 露出奶头的视频| 日本黄色视频三级网站网址| 91麻豆av在线| 久久久久久国产a免费观看| 又紧又爽又黄一区二区| 性欧美人与动物交配| 99在线人妻在线中文字幕| 国产精品一区二区精品视频观看| 日本撒尿小便嘘嘘汇集6| 国产成年人精品一区二区| 岛国在线观看网站| 国产精品秋霞免费鲁丝片| 免费av毛片视频| 中文字幕精品免费在线观看视频| 麻豆国产av国片精品| 久久精品国产亚洲av香蕉五月| 91九色精品人成在线观看| 真人一进一出gif抽搐免费| 国产主播在线观看一区二区| 咕卡用的链子| 久久久国产成人免费| 国产免费av片在线观看野外av| 美国免费a级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看免费视频网站a站| 亚洲av成人一区二区三| 香蕉国产在线看| 日韩精品免费视频一区二区三区| 国产亚洲精品综合一区在线观看 | 亚洲av熟女| 乱人伦中国视频| 国内精品久久久久精免费| 最近最新免费中文字幕在线| 精品久久久久久,| 91精品国产国语对白视频| 亚洲五月婷婷丁香| 在线观看一区二区三区| 搡老熟女国产l中国老女人| 精品欧美国产一区二区三| 两个人免费观看高清视频|