• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    采用連續(xù)電位階躍方法研究聚吡咯在電解質(zhì)水溶液中的氧化還原穩(wěn)定性

    2011-11-30 10:42:08王晶日楊鳳林
    物理化學(xué)學(xué)報 2011年5期
    關(guān)鍵詞:遼寧大連大連理工大學(xué)吡咯

    田 穎 王晶日 劉 明 史 錕 楊鳳林

    (1大連交通大學(xué)環(huán)境與化學(xué)工程學(xué)院,遼寧大連116028;2大連晟世環(huán)境工程有限公司,遼寧大連116600; 3大連理工大學(xué)環(huán)境科學(xué)與工程系,遼寧大連116024)

    采用連續(xù)電位階躍方法研究聚吡咯在電解質(zhì)水溶液中的氧化還原穩(wěn)定性

    田 穎1,*王晶日2劉 明1史 錕1楊鳳林3

    (1大連交通大學(xué)環(huán)境與化學(xué)工程學(xué)院,遼寧大連116028;2大連晟世環(huán)境工程有限公司,遼寧大連116600;3大連理工大學(xué)環(huán)境科學(xué)與工程系,遼寧大連116024)

    連續(xù)電位階躍方法是一種研究氧化還原穩(wěn)定性的有效方法.本文采用連續(xù)電位階躍方法研究了以對甲苯磺酸鈉為摻雜劑的聚吡咯(ppy)膜的電化學(xué)氧化還原穩(wěn)定性,通過計算聚吡咯在階躍電位下的還原電量(Qred),還原和氧化電量的比值(Qred/Qox)考察聚吡咯在H2SO4、Na2SO4和NaOH溶液中在不同電位下的氧化還原可逆性.結(jié)果發(fā)現(xiàn)聚吡咯過氧化的發(fā)生強烈依賴支持電解質(zhì)的pH值和階躍電位.在H2SO4溶液中,過氧化的起始電位為0.8 V,而在Na2SO4溶液中,過氧化的起始電位為0.5 V.在NaOH溶液中,過氧化在任何電位均可發(fā)生,表明溶液中OH-的存在是過氧化發(fā)生的直接原因.

    聚吡咯;過氧化;氧化還原穩(wěn)定性;連續(xù)電位階躍

    1 Introduction

    Redox stability of polypyrrole(ppy)is one of the most important factors in practical applications,such as secondary batteries,capacitors,electromagnetic shutters,and electrochromic devices.1-3It also influences the effect of electrocatalyst,ion exchange,and drug release when ppy is applied in these fields.In order to keep the reversibility property,overoxidation caused by irreversible oxidation at higher potentials must be avoided. It is generally accepted that the nucleophiles,such as OH-,O2, and H2O,could lead to the formation of quinone moieties that disrupt the conjugated double-bond system of ppy.4-10

    It is well known that ppy is relatively stable in air.11However,the electrochemical redox stability of ppy in aqueous solutions is completely different,strongly depends on the counterions,supporting electrolytes,and the applied potentials.Many researchers have reported the redox properties and irreversible oxidation of ppy films.12-18Rodriguez et al.19discovered that irreversible oxidation of ppy/NO3occurred at potentials more positive than 0.4 V vs saturated calomel electrode(SCE)in solutions of KNO3,KCl,KBr,and KF by in situ FTIR spectroscopy.Raman spectroscopy was found to be more sensitive tool to monitor the overoxidation reaction and it was found that ppy/ Cl degraded at potentials as low as 0.5 V(vs SCE).20Resistometry,UV-Vis,and Raman spectrometry have been employed by Lewis et al.21for the determination of the overoxidation potential of ppy/NO3.These techniques have indicated that the onset of overoxidation is at potential as low as 0.70-0.75 V(vs SCE).In these studies,in situ UV-Vis,FTIR,and Raman spectrometry are frequently employed techniques.However,the conclusions obtained from these techniques seem inconsistent. Sometimes,it is very difficult to explain the complicated spectra obtained under different conditions.In addition,these stability studies were limited to relatively short-term effects within a high potential regime.Few long-term redox stability studies of ppy within normorlly reversible potential window have been reported.22Pyo et al.23reported the long-term electrochemical switching behavior of ppy films by recurrent potential pulse (RPP)technique cyclied in various organic medias.Travas-Sejdic et al.24have characterized the long-term stability of ppy in aqueous NaPF6electrolyte by RPP experiment.

    In order to provide the systematic studies of ppy films,we adopt the RPP technique to detect the long-term redox stability in different electrolyte solutions.The objective of our study is to determine stable potential scopes where ppy processes the property of reversibility in electrolyte solutions of H2SO4, Na2SO4,and NaOH.

    2 Experimental

    Polypyrrole films were prepared at room temperature in aqueous solution containing 0.2 mol·L-1sodium p-toluenesulfonate(Tianjin Bodi Chemical Engineering Co.Ltd.,China) and 0.14 mol·L-1pyrrole(Shanghai Lihua Chemical Reagent Co.Ltd.,China)under nitrogen atmosphere.The polymerization was performed under a constant potential of 0.8 V with a total charge of 5 C.A Φ 13 mm stainless steel sheet,a Φ 20 mm stainless steel sheet,and saturated calomel electrode (SCE)were employed as working,counter,and reference electrodes,respectively.The working electrode was polished with water-proof sand paper and rinsed in acid solution and distilled water prior to each experiment.

    Recurrent potential pulse for redox stability measurement was carried out with potentials subsequently stepped between V1and V2specially stated in the text below and held for 50 s at each potential in H2SO4,Na2SO4,and NaOH solutions,respectively.A Potentiostat/Galvanostat Model 263A(Princeton Applied Research,USA)was used for electropolymerization and recurrent potential pulse measurements.

    All potentials were measured and were reported against SCE.All reagents were reagent grade,and deionized water was used.Pyrrole was freshly distilled prior to use.All other chemicals were used as received.

    3 Results and discussion

    3.1 Redox stability in H2SO4solution

    In order to investigate the stability in acid solutions,potentials were subsequently stepped between-0.1 and 0.4 V and held for 50 s for each potential,monitoring the charge passage in the reduction process(Qred),and the ratio of the charges consumed in reduction and oxidation processes(Qred/Qox).Fig.1a shows Qredand Qred/Qoxover cycle number.It can be seen that Qredvalues increase gradually due to the swelling of the polymer film,leading to the current increase over the long periods of time.25Since the reduction and oxidation processes are diffusion-controlled,26the concentration of cations in electrolyte solutions plays an important role in cations diffusion into/out the film during reduction/oxidation process.Therefore,the values of Qredare larger in 1.0 mol·L-1H2SO4due to the high concentration of cations than those in 0.1 mol·L-1H2SO4.

    It can be observed that the ratios of Qred/Qoxare near to one, which indicates that the reduction and oxidation processes in each cycle are reversible.18In diluted acid of 0.1 mol·L-1H2SO4,the ratios of Qred/Qoxare more close to 1 than in 1.0 mol· L-1H2SO4,indicating that the extent of reversibility in 0.1 mol· L-1H2SO4is higher.As mentioned above,the reduction and oxidation processes are diffusion-controlled.Diffusion of cations is easier to enter or leave the polymer in diluted solution than in strong solution.26As a result,the reduction and oxidation processes in 0.1 mol·L-1H2SO4are more reversible than in 1.0 mol·L-1H2SO4.

    Similar results are obtained as shown in Fig.1b with the potentials switched from-0.4 to 0.4 V.The ratios of Qred/Qoxfor both solutions of 0.1 mol·L-1H2SO4and 1.0 mol·L-1H2SO4are still close to one,indicating the reduction and oxidation processes are still reversible at the applied potentials.

    Fig.1c shows the result when potentials are subsequently stepped between-0.8 and 0.4 V.In 1.0 mol·L-1H2SO4,a large amount of gaseous hydrogen was produced at the negative potential of-0.8 V,which consumed large charges.The charges consumed for hydrogen evolution is increased with elapsed time.Because long-time gaseous evolution could accelerate the H+ions diffusion,thus the values of Qredincrease drastically with the cycle number.The ratios of Qred/Qoxincrease signifi-cantly from 1 to 8.As for 0.1 mol·L-1H2SO4,no hydrogen evolution was generated.The values of Qredare assigned to the reduction of ppy film itself and almost remain constant during the whole reduction/oxidation cycles.Since the negative potential is as low as-0.8 V,the positive potential is 0.4 V,therefore,the ratio of Qred/Qoxis slightly bigger than one.

    Fig.1 Qredand Qred/Qoxcalculated from recurrent potential pulse experiments in 0.1 and 1.0 mol·L-1H2SO4solutions held for 50 s at each potentialstepped potentials:(a)-0.1-0.4 V,(b)-0.4-0.4 V,(c)-0.8-0.4 V,(d)-0.4-0.8 V; -△-Qred/Qoxin 0.1 mol·L-1H2SO4,-○-Qred/Qoxin 1.0 mol·L-1H2SO4,-▲-Qredin 0.1 mol·L-1H2SO4,-●-Qredin 1.0 mol·L-1H2SO4

    When potentials are subsequently stepped between-0.4 and 0.8 V,the results obtained from the experiments are shown in Fig.1d.As we known,overoxidation occurs through C=O functional groups in the polymer backbone at sufficiently positive potential.Formation of these species disrupts the conjugated structure of ppy and leads to the loss of electroactivity capacity.12,19,20It can be seen from Fig.1d that the responses of Qredboth in 0.1 and 1.0 mol·L-1acid solutions decrease significantly assigned to overoxidation at positive potential of 0.8 V.As Qoxat 0.8 V declines more quickly than the response of Qredat-0.4 V,therefore,the ratio of Qred/Qoxincreases and closes to one in the latter cycles.However,the reversibility of ppy has been disrupted which can be deduced from the ratios of Qred/Qoxmuch lower than 1 in the initial period of potential cycles.

    From the results mentioned above,we find that when negative potential is lower enough to produce hydrogen,the response of Qredwill increase with the cycle number and the ratio of Qred/Qoxis much higher than 1,which means that the redox reactions on ppy films are irreversible.It can be observed hydrogen evolutions generated at-0.8 V for 1.0 mol·L-1H2SO4and-1.2 V for 0.1 mol·L-1H2SO4have made ppy films swell significantly and even peel off the substrate.When positive potential is up to 0.8 V,overoxidation occurs for ppy film in 0.1 and 1.0 mol·L-1H2SO4solutions,which leads to the rapid drop of Qredand Qoxdue to the irreversible loss of electroactivity.

    3.2 Redox stability in Na2SO4solution

    Fig.2a shows Qredand Qred/Qoxcalculated from the reduction and oxidation processes obtained by the potential switches stepped from-0.4 to 0.4 V in Na2SO4solution.It can be seen that the response of Qredreaches to a constant after equilibrium was established at the first forty cycles.The ratios of Qred/Qoxare close to 1,indicating the redox reactions are reversible at the applied potentials.Similar to that in acid solutions,the values of Qredin 1.0 mol·L-1Na2SO4are larger than that in 0.1 mol·L-1Na2SO4indicates that ppy is more reversible in 0.1 mol·L-1Na2SO4than in 1.0 mol·L-1Na2SO4,since the ratios of Qred/Qoxin 0.1 mol·L-1Na2SO4are much closer to 1.

    Fig.2b is the variation of Qredand Qred/Qoxwith cycle number, for which potentials stepped subsequently between-0.8 and 0.4 V.No hydrogen evolution was observed at negative potential of-0.8 V in both electrolyte solutions.The values of Qreddecrease slightly with increasing cycle numbers after the first twenty cycles,but the ratios of Qred/Qoxare still close to 1,indicates that overoxidation is very subtle under this condition.Ob-vious overoxidation could be observed at positive potential of 0.5 V for 0.1 and 1.0 mol·L-1Na2SO4solutions(Figure is omitted).

    Fig.2 Qredand Qred/Qoxcalculated from recurrent potential pulse experiments in 0.1 and 1.0 mol·L-1Na2SO4solutions held for 50 s at each potentialstepped potentials:(a)-0.4-0.4 V,(b)-0.8-0.4 V,(c)-0.4-0.8 V; -△-Qred/Qoxin 0.1 mol·L-1Na2SO4,-○-Qred/Qoxin 1.0 mol·L-1Na2SO4, -▲-Qredin 0.1 mol·L-1Na2SO4,-●-Qredin 1.0 mol·L-1Na2SO4

    Fig.2c shows Qredand Qred/Qoxover cycle number with potentials stepping subsequently from-0.4 to 0.8 V.It can be noted that the values of Qreddecrease rapidly in the two neutral electrolyte solutions.This response is associated to the strong overoxidation,irreversible structural change within the polymer chains at sufficient positive potential of 0.8 V.This can be further verified by the ratio of Qred/Qoxmuch less than 1 at the initial stage.At latter stage,the ratios of Qred/Qoxincrease and reach to 1,which can be explained that the values of Qoxdecline more drastically than that of Qred.In this case,it can be concluded that overoxidation of the polymer becomes more serious over the cycle number.

    It can be observed that when negative potential is lower than-1.5 V for Na2SO4(The difference of hydryogen evolution potentials for 0.1 mol·L-1Na2SO4and 1.0 mol·L-1Na2SO4is very slight),hydrogen evolution will occur.Through the experiments mentioned above,it is noted that negative potentials selected to avoid hydrogen release could not affect the reversible characteristics of ppy film.But sufficient positive potential higher than 0.5 V for 0.1 and 1.0 mol·L-1Na2SO4will lead to an irreversible structural change in the polymer as a result of overoxidation.

    Compared the results of RPP experiments conducted in H2SO4and Na2SO4solutions,it can be revealed that the onset of overoxidation is at 0.8 V in H2SO4(The difference of initial overoxidation potential for 0.1 and 1.0 mol·L-1H2SO4is very slight),while it is about 0.5 V in Na2SO4(The difference of initial overoxidation potential for 0.1 and 1.0 mol·L-1Na2SO4is also very slight).This indicates that overoxidation is strongly related to the pH value of the electrolytes.The initial overoxidation potential is higher in solutions with lower pH.As we all know,in neutral or acid solutions,the redox potential(?)for water electrolysis reaction:

    can be expressed by

    The atomic oxygen was produced at higher potential in the solutions with lower pH value.Oxygen reacting directly with ppy chains could result in the overoxidation,which is also verified by Li and Qian.27

    3.3 Redox stability in NaOH solution

    Fig.3a presents the change of Qredand Qred/Qoxfor ppy films with potentials stepped subsequently between-0.4 and 0.4 V in NaOH solutions.The values of Qreddecrease significantly with cycle numbers and the ratios of Qred/Qoxare much lower than 1.These results indicate that ppy undergoes strong overoxidation,leading to the interruption of the conjugation and degradation of electroactivity.It has been accepted that overoxidation is closely related to the attack of hydroxide yielding carbonyl groups,which can be demonstrated as follows:

    Fig.3 Qredand Qred/Qoxcalculated from recurrent potential pulse experiments in 0.1 and 1.0 mol·L-1NaOH solutions held for 50 s at each potentialstepped potentials:(a)-0.4-0.4 V;(b)-0.8-0.4 V;(c)-0.4-0.8 V; -△-Qred/Qoxin 0.1 mol·L-1NaOH,-○-Qred/Qoxin 1.0 mol·L-1NaOH,-▲-Qredin 0.1 mol·L-1NaOH,-●-Qredin 1.0 mol·L-1NaOH

    Similar results are shown in Fig.3b obtained with potentials stepped subsequently between-0.8 and 0.4 V.Since the selected negative potential is lower than the negative potential in the experiment shown in Fig.3a,the values of Qredand Qred/Qoxare higher under this condition.From both results of the Fig.3a and Fig.3b,we can find that the values of Qredare lower in 1.0 mol·L-1NaOH than that in 0.1 mol·L-1NaOH due to the strong overoxidation occurred in high NaOH concentration. This result proves that the strong nucleophile of OH-is the direct reagent for the attack on the conjugated double bonds of the polymer.When the concentration of OH-is higher,the extent of overoxidation is more serious.

    When potentials stepped subsequently between-0.4 to 0.8 V,ppy film could be disrupted and even broken out due to the oxygen evolution and strong overoxidation at positive potential of 0.8 V in 1.0 mol·L-1NaOH solution.The RPP experiment could not be carried out in this electrolyte solution.Therefore,

    Fig.3c only presents the variation of Qredand Qred/Qoxin 0.1 mol·L-1NaOH solution.It can be seen that the values of Qreddecrease rapidly from 0.27 to 0.05 C,the ratios of Qred/Qoxare much less than 1,reach to only 0.01 at the latter stage of potential switches.The result indicates that overoxidation is remarkable pronounced under this condition.Compared the results of Fig.3a and Fig.3c with the same negative potential of-0.4 V,it can be concluded that the extent of overoxidation is stronger at higher potential.

    From the experiments conducted in NaOH solutions,it could be noted that irreversible overoxidation would occur at any potentials,leading to the drastical decline of Qoxand Qred. Higher positive potential and higher OH-concentration lead to more serious overoxidation on ppy film.

    4 Conclusions

    The redox stability of ppy deposited on stainless steel doped with sodium p-toluenesulfonate in aqueous solutions with different pH values was studied systematically by RPP technique. Qredand Qred/Qoxwere calculated from the experiments.It is found that when negative potential is sufficient low to generate gaseous hydrogen,the values of Qredincrease drastically with the cycle numbers,the ratios of Qred/Qoxare much higher than 1,indicates that the redox reaction at applied potential is irreversible.When positive potential is sufficient high to cause overoxidation,the values of Qredand Qoxwill decrease rapidly, the ratios of Qred/Qoxare lower than 1.In this case,ppy undergoes the irreversible loss of conjugation and electroactivity decay.When potential window exerted on ppy is propriate to avoid hydrogen evolution in negative potential and to avoid generating overoxidation in positive potential,the values of Qredand Qoxalmost keep constant and the ratios of Qred/Qoxare close to 1,which indicates that the redox reactions are reversible for numerous potential cycles.In this way,the potential windows where ppy films possess reversibility property have been determined,it is within-0.8-0.8 V for 1.0 mol·L-1H2SO4,-1.2-0.8 V for 0.1 mol·L-1H2SO4,and-1.5-0.5 V for 1.0 and 0.1 mol·L-1Na2SO4solution.However,in NaOH solution,overoxidation arises at any potential,indicating that the existence of OH-ions is the direct reason for overoxidaton. The results demonstrate that pH value of solutions and switching potentials have profound influences on the oxidation and reduction reactions on ppy films.From our work,it can be proved that RPP is an alternative effective technique for measurement of redox stability for ppy-modified electrode in aqueous electrolyte solutions.

    (1) Kotz,R.;Carlen,M.Electrochim.Acta 2000,45,2483.

    (2) Sarangapani,S.;Tilak,B.V.;Chen,C.P.J.Electrochem.Soc. 1996,143,3791.

    (3) Svirskis,D.;Wright,B.E.;Travas-Sejdic,J.;Rodgers,A.; Sanjay,G.Sensor.Actuat.B-Chem.2010,15,97.

    (4)Debiemme-Chouvy,C.;Tran,T.T.M.Electrochem.Commun. 2008,10,947.

    (5) Palmisano,F.;Malitesta,C.;Centonze,D.;Zambonin,P.G. Anal.Chem.1995,67,2207.

    (6) Jaramillo,A.;Spurlock,L.D.;Young,V.;Brajter-Toth,A. Analyst 1999,124,1215.

    (7) Otero,T.F.;Marquez,M.;Suarez,I.J.Phys.Chem.B 2004, 108,15429.

    (8)Lim,V.W.L.;Kang,E.T.;Neoh,K.G.Macromol.Chem.Phys. 2001,202,2824.

    (9) Forsyth,M.;Truong,V.T.Polymer 1995,36,725.

    (10) Gao,M.;Zi,B.;Chen,B.J.Electroanal.Chem.1994,373,141.

    (11) Brie,M.;Turca,R.;Mihut,A.Mater.Chem.Phys.1997,49,174.

    (12) Fernández,I.;Trueba,M.;Núnez,C.A.R.J.Surf.Coat.Tech. 2005,191,134.

    (13) Mostany,J.;Scharifker,B.R.Synth.Met.1997,87,179.

    (14) Fermín,D.J.;Teruel,H.;Scharifker,B.R.J.Electroanal. Chem.1996,401,207.

    (15) Uyar,T.;Toppare,L.;Hacaloglu,J.Synth.Met.2001,123,335.

    (16) Zou,X.Q.;Shen,Y.;Peng,Z.Q.;Zhang,L.;Bi,L.H.;Wang,Y. L.J.Electroanal.Chem.2004,566,63.

    (17)Arrigan,D.W.M.;Gray,D.S.Anal.Chim.Acta 1999,402,159.

    (18) Visy,C.;Kriván,E.;Peintler,G.J.Electroanal.Chem.1999, 462,1.

    (19) Rodriguez,I.;Scharifker,B.R.;Mostany,J.J.Electroanal. Chem.2000,491,117.

    (20) Ghosh,S.;Bowmaker,G.A.;Cooney,P.P.;Seakins,J.M. Synth.Met.1998,95,63.

    (21)Lewis,T.W.;Wallace,G.G.;Kim,C.Y.;Kim,D.Y.Synth.Met. 1997,84,403.

    (22) Hyodo,K.Electrochim.Acta 1994,39,265.

    (23) Pyo,M.;Reynolds,J.R.;Warren,L.F.;Marcy,H.O.Synth. Met.1994,68,71.

    (24) Chu,S.Y.;Kilmartin,P.A.;Travas-Sejdic,J.Synth.Met.2009, 159,2286.

    (25)Yoon,C.O.;Sung,H.K.;Kim,J.H.;Barsonkow,E.;Kim,J. H.;Lee,H.Synth.Met.1999,99,201.

    (26) Tian,Y.;Yang,F.L.;Yang,W.S.Synth.Met.2006,156,1052.

    (27) Li,Y.;Qian,R.Electrochim.Acta 2000,45,1727.

    December 1,2010;Revised:March 7,2011;Published on Web:April 1,2011.

    Redox Stability of Polypyrrole in Aqueous Electrolyte Solutions by a Recurrent Potential Pulse Technique

    TIAN Ying1,*WANG Jing-Ri2LIU Ming1SHI Kun1YANG Feng-Lin3
    (1College of Environmental and Chemical Engineering,Dalian Jiaotong University,Dalian 116028,Liaoning Province,P.R.China;2Dalian Shengshi Environmental Co.Ltd.,Dalian 116600,Liaoning Province,P.R.China;3Department of Environmental Science and Technology,Dalian University of Technology,Dalian 116024,Liaoning Province,P.R.China)

    The recurrent potential pulse(RPP)technique is an alternative and effective technique for redox stability measurement.We investigated the electrochemical redox stability of polypyrrole(ppy)films doped with sodium p-toluenesulfonate by RPP technique in this study.The reduction charge(Qred)and the ratio of reduction and oxidation charges(Qred/Qox)obtained from the switching potentials in aqueous solutions of H2SO4,Na2SO4,and NaOH were calculated to describe the reversibility of ppy at the applied potential windows.We found that the irreversible overoxidation strongly depended on the pH value of the supporting electrolytes and on the switching potentials.The onset of the overoxidation potential is 0.8 V in H2SO4solution while it is only 0.5 V in Na2SO4solution.In NaOH solution,overoxidation occurs at any potential indicating that the existence of OH-ions is directly responsible for overoxidation.

    Polypyrrole;Overoxidation;Redox stability;Recurrent potential pulse

    O646

    ?Corresponding author.Email:greenhusk@126.com;Tel:+86-411-84106746.

    The project was supported by the National Natural Science Foundation of China(51078050).國家自然科學(xué)基金(51078050)資助項目

    猜你喜歡
    遼寧大連大連理工大學(xué)吡咯
    Au/聚吡咯復(fù)合材料吸附與催化性能的研究
    遼寧大連:10年資助4207名農(nóng)民工上大學(xué)
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    孫子垚
    偽隨機碼掩蔽的擴頻信息隱藏
    “白草莓”亮相遼寧大連
    超聲波促進(jìn)合成新型吡咯α,β-不飽和酮
    聚吡咯結(jié)構(gòu)與導(dǎo)電性能的研究
    吡咯甲酮基鈷配合物:一種水氧化催化劑
    中泰化學(xué)與大連理工大學(xué)簽署戰(zhàn)略合作框架協(xié)議
    中國氯堿(2014年11期)2014-02-28 01:05:06
    国产精华一区二区三区| 欧美极品一区二区三区四区| 精品人妻一区二区三区麻豆 | 中亚洲国语对白在线视频| 中文字幕精品亚洲无线码一区| 高清在线国产一区| 伦理电影大哥的女人| 一进一出抽搐gif免费好疼| 宅男免费午夜| 日韩欧美精品免费久久 | 亚洲综合色惰| 性插视频无遮挡在线免费观看| 国产精品伦人一区二区| 麻豆一二三区av精品| 动漫黄色视频在线观看| 日本精品一区二区三区蜜桃| 精品一区二区三区视频在线| 高潮久久久久久久久久久不卡| 亚洲专区国产一区二区| www.色视频.com| 国产精品久久久久久人妻精品电影| 欧美3d第一页| 人妻制服诱惑在线中文字幕| 丁香欧美五月| 亚洲aⅴ乱码一区二区在线播放| 国产精品亚洲av一区麻豆| 人人妻人人看人人澡| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩精品亚洲av| 嫁个100分男人电影在线观看| 久久精品国产亚洲av天美| 亚洲欧美日韩东京热| 自拍偷自拍亚洲精品老妇| 露出奶头的视频| 国产精品嫩草影院av在线观看 | 小蜜桃在线观看免费完整版高清| 成人av一区二区三区在线看| 天堂√8在线中文| 禁无遮挡网站| 高潮久久久久久久久久久不卡| 欧美三级亚洲精品| 国产国拍精品亚洲av在线观看| 国产亚洲av嫩草精品影院| 又爽又黄a免费视频| 国产精品98久久久久久宅男小说| 亚洲综合色惰| 日韩亚洲欧美综合| 真人做人爱边吃奶动态| 午夜福利高清视频| 国产精品自产拍在线观看55亚洲| 99热这里只有是精品在线观看 | 免费搜索国产男女视频| 在线播放国产精品三级| 小说图片视频综合网站| 国产精品一区二区三区四区久久| 可以在线观看的亚洲视频| 啦啦啦韩国在线观看视频| av在线蜜桃| 欧美午夜高清在线| 天堂动漫精品| 成人一区二区视频在线观看| 亚洲天堂国产精品一区在线| 国产精品电影一区二区三区| 此物有八面人人有两片| 中文字幕熟女人妻在线| 蜜桃亚洲精品一区二区三区| 黄色一级大片看看| 久久这里只有精品中国| 亚洲成av人片免费观看| 成人一区二区视频在线观看| 午夜福利在线在线| 男女之事视频高清在线观看| 亚洲久久久久久中文字幕| 黄色一级大片看看| 日本 av在线| 欧美黑人巨大hd| 别揉我奶头 嗯啊视频| 免费av不卡在线播放| 日韩欧美一区二区三区在线观看| 久久九九热精品免费| 淫妇啪啪啪对白视频| 国产一级毛片七仙女欲春2| 五月玫瑰六月丁香| 亚洲人与动物交配视频| 熟妇人妻久久中文字幕3abv| 久久精品久久久久久噜噜老黄 | 男人和女人高潮做爰伦理| 人妻丰满熟妇av一区二区三区| 国产精品一区二区性色av| 国产成人福利小说| 成年免费大片在线观看| 看十八女毛片水多多多| 久久中文看片网| 亚洲成av人片免费观看| 欧美高清成人免费视频www| 久久久久亚洲av毛片大全| 久久久精品欧美日韩精品| 美女高潮的动态| 日韩国内少妇激情av| 久久精品夜夜夜夜夜久久蜜豆| 亚洲五月天丁香| av黄色大香蕉| 日韩免费av在线播放| a级毛片a级免费在线| 夜夜夜夜夜久久久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人中文字幕在线播放| 俺也久久电影网| 夜夜躁狠狠躁天天躁| 12—13女人毛片做爰片一| 极品教师在线免费播放| 女人被狂操c到高潮| 日韩精品中文字幕看吧| 十八禁网站免费在线| 18禁黄网站禁片午夜丰满| 91狼人影院| 五月伊人婷婷丁香| 桃红色精品国产亚洲av| 赤兔流量卡办理| 国产男靠女视频免费网站| 天美传媒精品一区二区| 国产又黄又爽又无遮挡在线| 好男人电影高清在线观看| 欧美性感艳星| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美 国产精品| 国产一区二区三区在线臀色熟女| 内地一区二区视频在线| 欧美三级亚洲精品| 超碰av人人做人人爽久久| 人妻久久中文字幕网| av福利片在线观看| 国产精品三级大全| 成熟少妇高潮喷水视频| 日本黄色视频三级网站网址| 最近视频中文字幕2019在线8| 久久精品国产99精品国产亚洲性色| 亚洲色图av天堂| 精品乱码久久久久久99久播| x7x7x7水蜜桃| 一个人看的www免费观看视频| 美女黄网站色视频| 桃色一区二区三区在线观看| 欧美最新免费一区二区三区 | 内地一区二区视频在线| 91久久精品电影网| 免费人成视频x8x8入口观看| 丁香六月欧美| 一区福利在线观看| 日韩有码中文字幕| 免费看光身美女| 国产精品久久久久久精品电影| 亚洲国产色片| 亚洲欧美日韩东京热| 久久精品国产清高在天天线| 亚洲成人久久爱视频| 一个人看视频在线观看www免费| 国产免费av片在线观看野外av| 国产亚洲精品久久久com| 午夜免费男女啪啪视频观看 | 91午夜精品亚洲一区二区三区 | 成熟少妇高潮喷水视频| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清| 亚洲国产精品久久男人天堂| 国产爱豆传媒在线观看| 啪啪无遮挡十八禁网站| 午夜免费男女啪啪视频观看 | 婷婷精品国产亚洲av在线| 丝袜美腿在线中文| 成人精品一区二区免费| 久久这里只有精品中国| 在线免费观看不下载黄p国产 | 亚洲片人在线观看| 日韩 亚洲 欧美在线| 内射极品少妇av片p| 国产免费av片在线观看野外av| 成人性生交大片免费视频hd| 国产黄片美女视频| 女生性感内裤真人,穿戴方法视频| 老司机午夜福利在线观看视频| 99视频精品全部免费 在线| 成人特级av手机在线观看| 国产v大片淫在线免费观看| 九九在线视频观看精品| 丰满乱子伦码专区| 国产在视频线在精品| 中文字幕av成人在线电影| 欧美zozozo另类| 夜夜躁狠狠躁天天躁| 国产野战对白在线观看| 午夜老司机福利剧场| 中文字幕高清在线视频| 色吧在线观看| 极品教师在线视频| 欧美不卡视频在线免费观看| 欧美在线黄色| 久久精品综合一区二区三区| 成人无遮挡网站| 成熟少妇高潮喷水视频| 在线播放无遮挡| 国内精品美女久久久久久| 欧美午夜高清在线| 性色av乱码一区二区三区2| x7x7x7水蜜桃| 看黄色毛片网站| 亚洲一区二区三区色噜噜| 宅男免费午夜| 欧美在线一区亚洲| 亚洲欧美精品综合久久99| 免费观看精品视频网站| 亚洲色图av天堂| 色噜噜av男人的天堂激情| 欧美黑人巨大hd| 99久久精品一区二区三区| 色噜噜av男人的天堂激情| 国产欧美日韩一区二区精品| 日本成人三级电影网站| 最近视频中文字幕2019在线8| 精品人妻一区二区三区麻豆 | 国产亚洲精品综合一区在线观看| 亚洲av美国av| 欧美高清性xxxxhd video| 日韩人妻高清精品专区| 亚洲精品久久国产高清桃花| 成人高潮视频无遮挡免费网站| 亚洲av成人av| 中文字幕人妻熟人妻熟丝袜美| 午夜福利在线在线| 麻豆国产av国片精品| 欧美日韩瑟瑟在线播放| 午夜福利免费观看在线| 国产精品一区二区免费欧美| 一级a爱片免费观看的视频| 久久久国产成人免费| 757午夜福利合集在线观看| 欧美精品国产亚洲| 国产成人啪精品午夜网站| 成人国产一区最新在线观看| 亚洲最大成人手机在线| av天堂中文字幕网| av在线天堂中文字幕| 最近最新中文字幕大全电影3| 国产真实伦视频高清在线观看 | 成人一区二区视频在线观看| 高清日韩中文字幕在线| 亚洲avbb在线观看| 自拍偷自拍亚洲精品老妇| 亚洲成av人片免费观看| 小说图片视频综合网站| 亚洲黑人精品在线| 亚洲va日本ⅴa欧美va伊人久久| 亚洲内射少妇av| 亚洲男人的天堂狠狠| 国产精品久久久久久人妻精品电影| 真人做人爱边吃奶动态| 十八禁网站免费在线| 免费黄网站久久成人精品 | 精品久久久久久成人av| 国产野战对白在线观看| 久99久视频精品免费| 国产白丝娇喘喷水9色精品| a级毛片免费高清观看在线播放| 高清在线国产一区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美激情综合另类| 国产精品综合久久久久久久免费| 亚洲最大成人手机在线| 一区二区三区激情视频| av视频在线观看入口| 久久久久久久久中文| 亚洲av美国av| 国产在视频线在精品| 91av网一区二区| 少妇人妻精品综合一区二区 | 精品免费久久久久久久清纯| 在线观看舔阴道视频| 国产高清视频在线观看网站| 真实男女啪啪啪动态图| 国产欧美日韩一区二区三| 亚洲一区高清亚洲精品| 久久欧美精品欧美久久欧美| av女优亚洲男人天堂| 波野结衣二区三区在线| 久久久久久久精品吃奶| 在线国产一区二区在线| 亚洲精品粉嫩美女一区| 高潮久久久久久久久久久不卡| 久久婷婷人人爽人人干人人爱| 桃色一区二区三区在线观看| 精品人妻1区二区| 久9热在线精品视频| 亚洲av二区三区四区| 嫩草影院精品99| 精品国内亚洲2022精品成人| 日韩欧美三级三区| av黄色大香蕉| 久久精品久久久久久噜噜老黄 | 日日摸夜夜添夜夜添av毛片 | 国产淫片久久久久久久久 | 女人十人毛片免费观看3o分钟| 国产激情偷乱视频一区二区| 深夜精品福利| 男女那种视频在线观看| 国产精品av视频在线免费观看| 久久久国产成人精品二区| 成人毛片a级毛片在线播放| 18美女黄网站色大片免费观看| 国产免费男女视频| 久久久久久大精品| 啦啦啦韩国在线观看视频| 免费电影在线观看免费观看| 亚洲天堂国产精品一区在线| 国产91精品成人一区二区三区| 久久草成人影院| 久久欧美精品欧美久久欧美| 午夜激情欧美在线| 日韩欧美国产一区二区入口| 非洲黑人性xxxx精品又粗又长| 免费在线观看影片大全网站| 亚洲欧美日韩高清专用| 成年女人看的毛片在线观看| 亚洲av免费高清在线观看| 小说图片视频综合网站| a在线观看视频网站| 免费无遮挡裸体视频| 国产三级黄色录像| 日本在线视频免费播放| 国产真实伦视频高清在线观看 | 国产亚洲欧美98| 精品人妻偷拍中文字幕| 国产精品美女特级片免费视频播放器| 日韩免费av在线播放| 亚洲av免费高清在线观看| 女同久久另类99精品国产91| 高清毛片免费观看视频网站| 国产精品久久久久久久电影| 嫁个100分男人电影在线观看| 亚洲专区国产一区二区| 国产成人影院久久av| 亚洲专区国产一区二区| 99riav亚洲国产免费| 亚洲色图av天堂| 久久久久久久精品吃奶| 亚洲av二区三区四区| 女人十人毛片免费观看3o分钟| 欧美绝顶高潮抽搐喷水| 成人午夜高清在线视频| 婷婷亚洲欧美| 欧美xxxx黑人xx丫x性爽| 国产精品一区二区三区四区免费观看 | 午夜日韩欧美国产| 日本 av在线| 成人av在线播放网站| netflix在线观看网站| 午夜福利欧美成人| a在线观看视频网站| 亚洲午夜理论影院| 高清日韩中文字幕在线| 老司机午夜十八禁免费视频| .国产精品久久| 亚洲av电影在线进入| www.熟女人妻精品国产| 久久欧美精品欧美久久欧美| 国产精品久久视频播放| 中文资源天堂在线| 五月玫瑰六月丁香| 色av中文字幕| 成人毛片a级毛片在线播放| 亚洲国产精品成人综合色| 午夜视频国产福利| 丰满人妻一区二区三区视频av| 久久精品国产99精品国产亚洲性色| 一进一出抽搐gif免费好疼| 精品一区二区三区视频在线| 成人国产一区最新在线观看| 成年免费大片在线观看| 日韩中字成人| 久久精品国产亚洲av天美| 男女下面进入的视频免费午夜| 中出人妻视频一区二区| 午夜a级毛片| 免费黄网站久久成人精品 | 国内精品久久久久精免费| 波多野结衣高清作品| 啦啦啦韩国在线观看视频| 九色成人免费人妻av| 日日摸夜夜添夜夜添小说| 少妇的逼好多水| 可以在线观看毛片的网站| 国产一区二区亚洲精品在线观看| 在线国产一区二区在线| 国产黄色小视频在线观看| 欧美精品啪啪一区二区三区| 久久午夜福利片| 在线观看免费视频日本深夜| 真人一进一出gif抽搐免费| 亚洲一区二区三区色噜噜| 欧美色视频一区免费| 午夜福利高清视频| 日本黄色片子视频| 精品久久久久久久久亚洲 | 国产毛片a区久久久久| 一个人观看的视频www高清免费观看| 亚洲国产精品合色在线| 一边摸一边抽搐一进一小说| 麻豆久久精品国产亚洲av| 久99久视频精品免费| 日韩精品青青久久久久久| 精品无人区乱码1区二区| 日本与韩国留学比较| 男人狂女人下面高潮的视频| 国产主播在线观看一区二区| av在线老鸭窝| 精品久久久久久久久av| 好看av亚洲va欧美ⅴa在| 最近中文字幕高清免费大全6 | 精品国产亚洲在线| 国产真实乱freesex| 亚洲av成人不卡在线观看播放网| 久久草成人影院| 在线观看一区二区三区| 最近最新中文字幕大全电影3| 波多野结衣高清作品| 天堂av国产一区二区熟女人妻| 中文字幕熟女人妻在线| 99热这里只有是精品在线观看 | 观看免费一级毛片| 天堂√8在线中文| 人人妻人人看人人澡| 成人永久免费在线观看视频| 国产伦人伦偷精品视频| h日本视频在线播放| 18美女黄网站色大片免费观看| 欧美三级亚洲精品| 非洲黑人性xxxx精品又粗又长| 亚洲自拍偷在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲激情在线av| 午夜精品一区二区三区免费看| 久久久久久久午夜电影| 99国产精品一区二区三区| 嫩草影院入口| 国产高潮美女av| 亚洲人成伊人成综合网2020| 午夜影院日韩av| 校园春色视频在线观看| 99热只有精品国产| 成人精品一区二区免费| 岛国在线免费视频观看| 中文亚洲av片在线观看爽| 亚洲av免费高清在线观看| 久久精品人妻少妇| 特大巨黑吊av在线直播| 久久中文看片网| av专区在线播放| 超碰av人人做人人爽久久| 亚洲av五月六月丁香网| 真人一进一出gif抽搐免费| 神马国产精品三级电影在线观看| 色av中文字幕| 亚洲国产欧洲综合997久久,| 搡老熟女国产l中国老女人| 日日干狠狠操夜夜爽| 在线观看免费视频日本深夜| 国产成人aa在线观看| 国产男靠女视频免费网站| 久久99热6这里只有精品| 嫩草影视91久久| 狂野欧美白嫩少妇大欣赏| 欧美+亚洲+日韩+国产| 在现免费观看毛片| 在线观看免费视频日本深夜| 性色avwww在线观看| 欧美日韩综合久久久久久 | 久久久久久大精品| 怎么达到女性高潮| 97超视频在线观看视频| 国内久久婷婷六月综合欲色啪| 一a级毛片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 少妇人妻一区二区三区视频| 日本黄色片子视频| 亚洲精品一区av在线观看| 中文字幕精品亚洲无线码一区| 老熟妇仑乱视频hdxx| 最近在线观看免费完整版| 亚洲 欧美 日韩 在线 免费| 久久久久国内视频| 99国产精品一区二区三区| 日韩欧美三级三区| 亚洲男人的天堂狠狠| 亚洲精品成人久久久久久| 国产精品嫩草影院av在线观看 | 人人妻人人看人人澡| 国产精品爽爽va在线观看网站| 国产精品一区二区三区四区免费观看 | 亚洲片人在线观看| 免费观看精品视频网站| 51午夜福利影视在线观看| 熟女电影av网| 99久久精品国产亚洲精品| 一区福利在线观看| 丁香六月欧美| 99国产精品一区二区蜜桃av| 我的老师免费观看完整版| 欧美中文日本在线观看视频| 久久久久久久久久黄片| 成人永久免费在线观看视频| 一本久久中文字幕| 人人妻人人澡欧美一区二区| 又爽又黄a免费视频| 久久久久久大精品| 国产精品1区2区在线观看.| 简卡轻食公司| 国产一区二区在线观看日韩| 免费在线观看日本一区| 搡老妇女老女人老熟妇| 亚洲一区二区三区色噜噜| 国产单亲对白刺激| 亚洲自偷自拍三级| 99国产精品一区二区三区| 亚洲最大成人手机在线| 亚洲欧美日韩无卡精品| 精品久久久久久成人av| 国产免费av片在线观看野外av| 观看免费一级毛片| 91在线观看av| 欧美午夜高清在线| 欧美另类亚洲清纯唯美| 神马国产精品三级电影在线观看| 一级作爱视频免费观看| 两个人的视频大全免费| 禁无遮挡网站| 免费在线观看影片大全网站| 精品熟女少妇八av免费久了| 中文字幕av成人在线电影| 一级黄片播放器| 深夜a级毛片| 欧美3d第一页| 午夜福利18| aaaaa片日本免费| 亚洲精品在线观看二区| 99国产精品一区二区蜜桃av| 桃色一区二区三区在线观看| 亚洲精品一区av在线观看| 免费在线观看亚洲国产| 最好的美女福利视频网| 桃色一区二区三区在线观看| 精品久久久久久,| 特大巨黑吊av在线直播| av欧美777| 中文在线观看免费www的网站| 亚洲18禁久久av| 国产av麻豆久久久久久久| 一个人免费在线观看的高清视频| 国产成+人综合+亚洲专区| 亚洲七黄色美女视频| 老熟妇乱子伦视频在线观看| 国模一区二区三区四区视频| 夜夜看夜夜爽夜夜摸| 麻豆成人午夜福利视频| 神马国产精品三级电影在线观看| 欧美中文日本在线观看视频| 亚洲片人在线观看| 最近最新中文字幕大全电影3| 久久精品影院6| 99久久99久久久精品蜜桃| 国产黄色小视频在线观看| 亚洲av二区三区四区| 久久九九热精品免费| 精品人妻偷拍中文字幕| 首页视频小说图片口味搜索| 国产不卡一卡二| 国产aⅴ精品一区二区三区波| 国产黄a三级三级三级人| 久久久久免费精品人妻一区二区| 一区二区三区四区激情视频 | 亚洲av电影在线进入| 国产精品久久久久久久电影| 国产精品久久久久久久久免 | 久久国产精品人妻蜜桃| 18禁在线播放成人免费| 国内精品美女久久久久久| 免费黄网站久久成人精品 | .国产精品久久| 成年免费大片在线观看| 久久人人爽人人爽人人片va | 观看美女的网站| 在线天堂最新版资源| 久久久国产成人精品二区| 亚洲内射少妇av| 麻豆成人av在线观看| 久久久国产成人精品二区| 国产成人福利小说| 精品不卡国产一区二区三区| 成年女人毛片免费观看观看9| 女生性感内裤真人,穿戴方法视频| av天堂中文字幕网| 欧美中文日本在线观看视频| 国产一区二区在线av高清观看| .国产精品久久| 国产成人欧美在线观看| 久久精品影院6| 变态另类成人亚洲欧美熟女| 欧美中文日本在线观看视频| 国产一区二区亚洲精品在线观看| 亚洲人成网站在线播放欧美日韩| 国产精品伦人一区二区| 国产精品日韩av在线免费观看| 精品不卡国产一区二区三区| 99久国产av精品| a级毛片免费高清观看在线播放| 亚洲 欧美 日韩 在线 免费| 亚洲人成网站在线播|