• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    新型高耐熱性環(huán)氧樹脂的合成和表征

    2011-11-26 01:10:16許元花蘇勝培
    關(guān)鍵詞:湖南大學(xué)化工學(xué)院耐熱性

    許元花, 羅 夢, 彭 樺, 王 曦, 蘇勝培*

    (1. 湖南省資源精細化與先進材料重點實驗室,湖南師范大學(xué),中國 長沙 410081;2. 湖南大學(xué)化學(xué)化工學(xué)院,中國 長沙 410081)

    Epoxy resins have been extensively used in many applications, such as coatings, adhesives, composite materials and semiconductor encapsulation, because of their excellent electrical and chemical resistance, good mechanical properties, low shrinkage during curing, and great adhesion properties[1]. It is well acknowledged that diglycidyl ether of bisphenol A(DGEBA) is a kind of important versatile epoxy resin, which is accounted for 80% of the total thermosetting resins[2]. However, the conventional DGEBA was seriously confined in the applications such as integrated circuit packaging and advanced materials where high thermal and moisture resistance are required[3]. Therefore, the development of high thermal resistant and low moisture absorption epoxy resins for these applications has attracted a lot of interest from many researchers.

    Many scientific efforts have been reported for improving the thermal resistance of epoxy resins by changing the structures of the backbone of resins, including increasing the crosslinking density of cured epoxy resin[4-7], introducing bulky and rigid structures such as biphenyl or naphthalene[8-9]and forming imide epoxy resin[10-11]. Panetal[12]have synthesized multifunctional epoxy resin from p-hydroxybenzaldehyde and bisphenol A, which showed higher glass transition temperature (Tg) and thermal stability than those of epoxy resin formed from benzaldehyde and bisphenol A. Duannetal[13]described that the thermal stability orTgof naphthalene-based epoxy resins with stronger rigid structure was higher than that of phenyl-based epoxy resins. Chinetal[14]have synthesized a novel curing agent bearing diimide-diacid structure; the cured epoxy resin has higherTgand thermal stability due to the introduction of imide structure compared with the products cured by phthalic anhydride. In general, to improve moisture resistance, hydrophobic groups were introduced to epoxy structure to decrease the hydrophilic sites such as polar groups. Renetal[15]have synthesized a novel novolac epoxy curing agent containing both naphthalene and dicyclopentadiene (DCPD) moiety; and the water absorption of obtained cured products could decrease to 0.66 % due to the introduction of hydrophobic aliphatic DCPD and naphthyl structure. Taoetal[16]proposed that a siloxane-containing cycloaliphatic epoxy compound, which has low polarity and hydrophobic nature, has low water absorption down to 0.48 %.

    1,1-Bis(4-hydroxy-3-methylphenyl)cyclohexane (DMBPC) is a bisphenol-type compound. It has been applied in the synthesis of polycarbonate with improved water vapor transmission barrier properties[17], however, there is no report on its application in the epoxy resin. In this study, DMBPC will be used to replace bisphenol A in the synthesis of epoxy resin. It is expected that the rigid cyclic moieties and benzene rings in DMBPC would afford the novel epoxy resin with higher thermal properties and better water resistance due to the presence of the hydrophobic cyclohexyl moiety in the epoxy structure. The cure behaviors, thermal and water resistant properties of this novel epoxy resin will be explored and comparison experiments between this novel epoxy and the conventional DGEBA will be also performed.

    1 Experimental

    1.1 Materials

    1, 1-Bis(4-hydroxy-3-methylphenyl)cyclohexane (DMBPC) was commercial grade and provided by Hunan Hongyue manufactory Co., Ltd. (Yueyang, China). Epichlorohydrin (ECH) and DGEBA with an epoxy value of 0.44 mol/100 g were purchased from Baling Petrochemical Co., Ltd. (Yueyang, China). The hardener, 4,4′-diaminodiphenylmethane (DDM), was purchased from Honghu BMI Resin Factory (Hubei, China). Sodium hydroxide was purchased from Huihong Chemical Reagent Co., Ltd (Changsha, China). Trimethyl benzyl ammonium chloride (TMBAC) was prepared from timethyl amine and benzyl chloride. All the agents were used without further purification.

    1.2 Synthesis of 1, 1-bis(4-hydroxy-3-methylphenyl)cyclohexane epoxy resin[18-19]

    88.8 g DMBPC (0.3 mol), 555 g ECH (6 mol) and 1.48 g TMBAC (7.5 mmol) was added to 1000 mL four-neck round-bottom flask, equipped with mechanical stirrer, thermometer, and a reflux condense 8. The mixture was stirred at 80 ℃ for 6 h, followed by adding 120 g sodium hydroxide aqueous solution (30 wt%) dropwise within 2 h at 70 ℃, and then the temperature of the system was maintained at 70 ℃ for an additional 3 h allowing the reaction to complete. After the completion of reaction, sodium chloride generated during the reaction was filtrated and the brine layer was removed. Finally, the product in the flask was washed with deionized water until no chloride ion could be detected by acidic AgNO3aqueous solution. After the excess epichlorohydrin was evaporated, a white solid product was obtained in 93.6% yield, epoxy value: 0.47 mol/100 g. The 1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane epoxy resin (DMBPCEP) was prepared as shown in Scheme 1.

    Scheme 1 Preparation of DMBPCEP

    1.3 Instrumentation

    FT-IR spectra were obtained using a WQF-200 instrument (Beijing, China) using conventional KBr pellets. A mixture of 1 mg of sample powder with 100 mg of dried KBr crystals was pressed into a pellet of 13 mm in diameter.1H NMR spectra were collected using a Varian INOVA-300FT-NMR spectrometer (Pola Alto, America) operating at 500 MHz using CD3COCD3as solvent. The epoxy value of obtained epoxy resin was determined by HCl/acetone titration method[20]. Curing behaviors of epoxy resin were performed on a Netzsch DSC200F3 at heating rate of 2.5, 5.0, 10, and 15 ℃/min.Tgof cured products were also characterized on the DSC fitted with a liquid nitrogen cooling system. Samples (8~12 mg) were ground to be powders, and then encapsulated in the aluminum pans. Two consecutive heating and cooling runs were performed using 10 ℃/min heating and cooling rates respectively. TGA experiments were conducted from 30 to 800 ℃ and 20 ℃/min scan rate on a Netzsch STA409PC instrument under nitrogen atmosphere with a 20 mL/min flow speed. TGA results are averages of a minimum of three determinations; temperatures are reproducible to ±1 ℃, while the error bars on the non-volatile material are ±1 %. Moisture absorption was determined as follows: the samples (50 mm × 15 mm × 6 mm) were dried under vacuum at 100 ℃ for 12 h, and then cooled to room temperature. The samples were weighed and placed in 100 ℃ water for certain hours and weighed again until the equilibrium water uptake was reached. The moisture absorption was calculated as follows: Moisture absorbance % = ((m-m0)/m0) × 100%, wheremis the weight of the sample after dipping in 100 ℃ water for certain hours,m0is the weight of the sample after placing in vacuum oven for 12 h.

    2 Results and Discussions

    2.1 Structure analysis of DMBPCEP

    Figure 1 FT-IR spectrum of DMBPCEP

    The FT-IR spectrum of DMBPCEP was shown in Fig. 1. As shown in Fig. 1, the bands at 912 cm-1and 1 130 cm-1were attributed to the stretching vibration of the oxirane ring and cyclohexyl respectively, which were the characteristic groups in the structure of DMBPCEP[21]. Besides, the absorption bands at 2 970~2 810 cm-1, which were attributed to the symmetric and asymmetric stretching vibration of methyl and methlene, the bands at 1 604 cm-1, 1 503 cm-1, and 1 455 cm-1, which were attributed to the stretching vibration of benzene rings, the bands at 1 245 cm-1and 1 036 cm-1, which were attributed to the symmetric and asymmetric stretching vibration of phenyloxyl, were all observed. It is surprisingly noted that no bands of hydroxyl were observed in the FT-IR spectrum. This can be explained from the average molecular weight and the value ofn. It is well known that the relationship betweennand epoxy value of DMBPCEP could be described as follows in theory: Epoxy value = 2×100/[407+352n]. The value ofncalculated was 0.05. This demonstrated that the amount of hydroxyl group was low, which could be ignorable and no bands near 3 500 cm-1in FT-IR spectrum were observed.1H NMR data of DMBPCEP was also used to characterize the chemical structure of the synthesized resin. The data was as follows (CD3COCD3;δ, ppm): 7.04~7.01 (m, 4H), 6.79 (d,J=8.5 Hz, 2H), 4.81~4.77 (m, 2H), 4.26~4.23 (m, 2H), 3.32~3.29 (m, 2H), 2.82 (d,J= 4.5 Hz, 2H), 2.71~2.69 (m, 2H), 2.16 (s, 4H), 2.07 (s, 6H), 1.43 (s, 6H). The FT-IR analysis and1H NMR results indicated that DMBPCEP was obtained.

    2.2 Calculation of curing kinetics parameters of DMPCEP/DDM system

    Figure 2 DSC curves of DMBPCEP/DDM at different heating rates

    The cure of epoxy resins in which monomers or prepolymers with low molecular weight are incorporated into three-dimensional networks is a complex mechanism including many reactions. The kinetics of the curing reaction plays a crucial role in the formation of network structure, which dictates the physical and mechanical properties of the cured product[22]. In this work, DSC was chosen to monitor the curing behaviors of epoxy resin through the direct measurement of the heat flow which was considered to be proportional to the consumption extent of the reactive groups. For the DMBPCEP/DDM system, DSC curves at different heating rates were shown in the Fig. 2. The information obtained directly from the DSC curves such as the onset temperature (Ti), the peak temperature (TP), the terminal temperature (Tf), and reaction enthalpy (ΔH) were summarized in Table 1. It can be noted that DSC scans showed a wide exothermic peak at all heating rates. The curing temperature is shifted to the higher temperature with the increasing of heating rate due to thermal hysteresis[23].

    Table 1 Characteristic temperature and total reaction enthalpy at different heating rates

    To evaluate the kinetic parameters of DMPCEP/DDM system, Kissinger[24]and Crane methods[25]were applied to calculate activation energy and curing reaction order without the need of any assumption about conversion-dependent equation. Kissinger’s equation can be expressed as follows

    (1)

    Crane’s equation is depicted as Equation (2)

    d (lnβ)/d (1/Tp)= -[ΔEa/nR+ 2Tp]

    (2)

    In the case of ΔEa/nR?2Tp, Equation (2) could be presented as Equation (3)

    d (lnβ)/d (1/Tp)= -ΔEa/nR

    (3)

    Figure 3 Plot of ln versus ( 1/Tp)

    Figure 4 Plot of ln β versus (1/Tp)

    2.3 Determination of the optimal curing process

    An optimal curing process is determined by the curing kinetics and the curing mechanism. Generally, extrapolation method[28]based onT-βwas commonly employed to determine the manufacturing process. The line relationship betweenTandβwas descried as follows:T=A + Bβ. The fitting lines ofT(Ti,Tp,Tf) versusβwere shown in the Fig.5. If the value ofβwas equal to zero, the curing reaction would occur at isothermal temperature theoretically and the curing temperature of the pre-curing, curing, post-curing could be obtained for the curing process. They were 115.5, 142.1, and 174.4 ℃ respectively with corresponding linear correlations of 0.955, 0.965, and 0.975 which could be confirmed that the data were reasonable to the manufacturing process. Considering DSC experimental results, the curing reaction started in the range of 120~140 ℃ at different heating rates. Once the polymerization was initiated, the curing would be completed quickly at high temperatures. To prevent the occurrence of explosive polymerization, the curing process should be designed as slow heating rate or isothermal process for hours. Therefore, in this study, after DMBPCEP and melted DDM were mixed at 95 ℃ and degassed under vacuum, samples were cured following the sequence below: (a) 115 ℃ for 1 h; (b) 140 ℃ for 1 h; and (c) a post-cure temperature of 180 ℃ for 3 h.

    2.3 Thermal and water resistance properties of cured DMBPCEP/DDM

    2.3.1Tgand HDT

    Tgwas generally used as a parameter of heat-resistance for polymer[29]. Fig. 6 showedTgtraces obtained from cured DMBPCEP/DDM and DGEBA/DDM. It can be seen thatTgof DMBPCEP/DDM was 171.9 ℃, significantly higher than 150.1 ℃ of the DGEBA/DDM. This improvement could be attributed to the rigidity increase and their ability to hinder the motion of the molecular chains and network junctions due to the introduction of cyclohexane structure in the cross-linking network. For the heat distort temperature (HDT), another important heat-resistant parameter, the difference between DMBPCEP and DGEBA were consistent with the change trend of the glass transition temperature. HDT of cured DMBPCEP and DGEBA was 160.7 ℃ and 147.0 ℃, respectively.

    Figure 5 Relationship between β and Ti, Tp, Tf in the curing process of DMBPCEP/DDM

    Figure 6 DSC traces obtained from the cured DMBPCEP/DDM and DGEBA/DDM

    2.3.2 Thermal stability

    The weight loss of the cured DMBPCEP resins at high temperature was shown in Fig. 7 and thus was compared with that of conventional DGEBA. TGA curves of both cured DMBPCEP and DGEBA products displayed one-step degradation. It can be seen that the 10 % weight loss temperature (T10) of cured DMBPCEP, a measure of the onset degradation, and the 50 % weight loss temperature (T50), the midpoint of the degradation process, was 377.6 ℃ and 410.6 ℃, respectively, which is comparable to DGEBA.

    2.3.3 Water Resistance

    It is well known that absorbed moisture has a detrimental effect, especially at elevated temperature, on the mechanical properties and electrical insulating performance of epoxy resins[30]. Therefore, moisture absorption is an important parameter to evaluate whether epoxy resin has high performance or not. Fig. 8 showed the moisture uptake of the cured products with the varying of time. It is noted that the moisture uptake of both cured DMBPCEP/DDM and DGEBA/DDM increased sharply in the initial stage of the absorption process, and then the increasing rate slowed down after 10 h, and finally lead to a plateau, corresponding to the water uptake at equilibrium. However, about 0.33 wt% of water uptake at equilibrium of the cured DMBPCEP/DDM was observed, which was 3 times lower than that of DGEBA/DDM. This improved moisture resistance of DMBPCEP/DDM was due to the hydrophobic nature of the cyclohexane rings compared with that of DGEBA/DDM. Meanwhile, cyclohexane rings in the network could be fused strain-free chair-form structure and essentially has no configuration strain. This could be effectively protected from the formation of cracking in the products, which hindered the diffusion of water[31].

    Figure 7 TGA traces obtained from the cured DMBPCEP/DDM and DGEBA/DDM

    Figure 8 Water absorption curves of cured epoxy resin at 100 ℃

    3 Conclusions

    A novel bisphenol epoxy resin prepolymer containing cyclohexyl group was synthesized from DMBPC and ECH. The reactivity and curing behaviors of this resin with DDM as curing agent was comparable with that of conventional DGEBA.Tg, HDT, high-temperature stability, and water resistance for DMBPCEP/DDM resin system were all superior to conventional DGEBA/DDM system, which are attributed to the introduction of cyclohexyl units in the bisphenol structure. Evidences from experiments indicated that DMBPCEP could be a potential candidate of high heat-resistant and low water absorption resins.

    [1] ZHANG X H, ZHANG Z H, XIA X N,etal. Synthesis and characterization of a novel cycloaliphatic epoxy resin starting from dicyclopentadiene [J]. Eur Polym J, 2007, 43(5): 2149-2154.

    [2] WU L Y, SUN M L. Principle, technology and applications for epoxy resin [M].Beijing:China Machine Press, 2002.

    [3] LEE J R, PARK S J, LEE S B. Method for preparing a high heat resistant epoxy resin composition comprising quinoxalinium salt containing benzyl group:US Patent, 6133383[P]. 2000-10-07.

    [4] MUSTATA F, BICU I. Synthesis, characterization, and properties of multifunctional epoxy maleimide resins[J]. Macromol Mater Eng, 2006, 291(6): 732-741.

    [5] MUSTATA F, BICU I. Multifunctional formaldehyde resins as curing agent for epoxy resins [J]. J Appl Polym Sci, 2010, 115(3): 1787-1796.

    [6] WANG C S, LEE M C. Synthesis, Characterization, and properties of multifunctional naphthalene-containing epoxy resins cured with cyanate ester [J]. J Appl Polym Sci, 1999, 73(9): 1611-1622.

    [7] MAO J, WANG J, DUAN H J. Effects of multi functional epoxy resin on thermal resistance of mixed epoxy resin system [J]. Thermosetting Resin, 2006, 21(1): 16-20.

    [8] PAN G Y, DU Z J, ZHANG C,etal. Synthesis, characterization, and properties of novel novolac epoxy resin containing naphthalene moiety [J]. Polymer, 2007, 48(13): 3686-3693.

    [9] REN H, SUN J Z, WU B J,etal. Synthesis and characterization of a novel epoxy resin containing naphthyl/dicyclopentadiene moieties and its cured polymer [J].Polymer, 2006, 47(25): 8309-8316.

    [10] TANG H Y, SONG N H, GAO Z H,etal. Synthesis and properties of 1,3,4-oxadiazole-containing high-performance bismaleimide resins [J]. Polymer, 2007, 48(1): 129-138.

    [11] DINAKARAN K, ALAGAR M. Studies on thermal and morphological properties of 1,1-bis(3-methyl-4-cyanatophenyl)cyclohexane-epoxy-bismaleimide matrices [J]. Polym Adv Technol, 2003, 14(8): 544-556.

    [12] PAN G Y, LIU H P, DU Z J,etal. Synthesis, characterization and properties of multifunctional novolac epoxy resins [J]. Polym Mater Sci Eng, 2008, 24(10): 41-44.

    [13] DUANN Y E, LIU T M, CHENG K C,etal. Thermal stability of some naphthalene-and phenyl-based epoxy resins [J]. Polym Degrad Stab, 2004, 84(2): 305-310.

    [14] CHIN W K, HWU J J, SHAU M D. Curing behaviour and thermal properties of Epon 828 resin cured with diimide-diacid and phthalic anhydride [J]. Polymer, 1998, 39(20): 4923-4934.

    [15] REN H, SUN J Z, WU B J,etal. Synthesis and curing properties of a novel novolac suring agent containing naphthyl and dicyclopentadiene moieties [J]. Chin J Chem Eng, 2007, 15(1):127-131.

    [16] TAO Z Q, YANG S Y, CHEN J S,etal. Synthesis and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins [J]. Eur Polym J, 2007, 43(4): 1470-1479.

    [17] MARK V, HEDGES C V. Polycarbonate compositions having improved barrier properties:US Patent,4304899[P].1981-12-08.

    [18] LIN C H, YANG K Z, LEU T S,etal. Synthesis, characterization, and properties of novel epoxy resins and cyanate esters [J]. J Polym Sci Part A: Polym Chem, 2006, 44(11): 3487-3502.

    [19] BHUVANA S, SAROJADEVI M. Synthesis and characterization of epoxy/amine terminated amide-imide-imide blends [J]. J Appl Polym Sci, 2008, 108(3): 2001-2009.

    [20] YUAN H W, RAO Q H. Preparation of resorcinol diglycidyl ether and its application [J]. Thermosetting Resin, 2007, 22(5): 1-4.

    [21] YAN H Q, CHEN S, QI G R. Synthesis, cure kinetics and thermal properties of the 2,7-dihydroxynaphthalene dicyanate [J]. Polymer, 2003, 44(26): 7861-7867.

    [22] OPALICKI M, KENNY M, NICOLAIS L. Cure kinetics of neat and carbon-fiber-reinforced TGDDM/DDS epoxy systems [J]. J Appl Polym Sci, 1996, 61(6): 1025-1037.

    [23] SU S P, JIANG D D, WILKIE C A. Study on the thermal stability of polystyryl surfactants and their modified clay nanocomposites [J]. Polym Degrad Stab, 2004, 84(2): 269-277.

    [24] KISSINGER H. Reaction kinetics in differential thermal analysis [J]. Anal Chem, 1957, 29(11): 1702-1706.

    [25] OH J H, JIANG J, LEE S H. Curing behavior of tetrafunctional epoxy resin/hyperbranched polymer system [J]. Polymer, 2001, 42(20): 8339-8347.

    [26] ZHOU F, DENG J R, JIANG W H. Study on curing reactions of epoxy resin diluted by 1,2-cyclohexanediol diglycidyl ether [J]. Thermosetting Resin, 2007, 22(2): 23-26.

    [27] LIU W B, QIU Q H, WANG J,etal. Curing kinetics and properties of epoxy resin-fluorenyl diamine systems [J]. Polymer, 2008, 49(20): 4399-4405.

    [28] MA Z G, GAO J G. Curing kinetics of o-cresol formaldehyde epoxy resin and succinic anhydride system catalyzed by tertiary amine [J]. J Phys Chem B, 2006, 110(25): 12380-12383.

    [29] SIMON S L, GILLHAM J K. Cure kinetics of a thermosetting liquid dicyanate ester monomer/high-Tg polycyanurate material [J]. J Appl Polym Sci, 1993, 47(3): 461-485.

    [30] BOINARD P, BANKS W M, PETHRICK R A. Changes in the dielectric relaxations of water in epoxy resin as a function of the extent of water ingress in carbon fibre composites [J].Polymer, 2005, 46(7): 2218-2229.

    [31] MAEHARA T, TAKENAKA J, TANAKA K,etal. Synthesis and polymerization of novel epoxy compounds having an adamantane ring and evaluation of their heat resistance and transparency [J]. J Appl Polym Sci, 2009, 112(1): 496-504.

    猜你喜歡
    湖南大學(xué)化工學(xué)院耐熱性
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    湖南中煙聯(lián)合湖南大學(xué)揭示植物維持代謝平衡的機制
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    A Study on the Cohesion of English and ChineseBlessing Short Messages
    耐熱性能優(yōu)異的鋁合金
    鋁加工(2017年1期)2017-03-07 00:53:33
    《化工學(xué)報》贊助單位
    退火對聚乳酸結(jié)晶及耐熱性能的影響
    中國塑料(2015年6期)2015-11-13 03:02:52
    誤區(qū):耐熱性好,維生素E不會損失
    不同濃度CaCl2對“普紅”和“梅紅”西洋杜鵑耐熱性影響研究
    色av中文字幕| 国产精品免费视频内射| 午夜激情av网站| 日韩精品青青久久久久久| 色综合亚洲欧美另类图片| 国产精品爽爽va在线观看网站 | 最近最新免费中文字幕在线| xxxwww97欧美| 亚洲国产日韩欧美精品在线观看 | 亚洲国产欧美一区二区综合| 18美女黄网站色大片免费观看| 日本a在线网址| 成人国产一区最新在线观看| 亚洲精品中文字幕在线视频| 国产精品亚洲一级av第二区| 人人妻,人人澡人人爽秒播| 国产一卡二卡三卡精品| 中文字幕人妻丝袜一区二区| 国产欧美日韩一区二区三| 国产欧美日韩一区二区三| 老汉色av国产亚洲站长工具| 亚洲精品粉嫩美女一区| 欧美日韩乱码在线| 欧美人与性动交α欧美精品济南到| 国内久久婷婷六月综合欲色啪| 色综合婷婷激情| 亚洲人成网站在线播放欧美日韩| 国产亚洲精品第一综合不卡| 国产真人三级小视频在线观看| 亚洲自拍偷在线| 精品国产一区二区三区四区第35| 久久久久久国产a免费观看| 人成视频在线观看免费观看| www.www免费av| 亚洲一区高清亚洲精品| 精品久久久久久成人av| 国产亚洲av嫩草精品影院| tocl精华| 免费在线观看亚洲国产| 欧洲精品卡2卡3卡4卡5卡区| 欧美精品啪啪一区二区三区| 99久久久亚洲精品蜜臀av| 久久亚洲精品不卡| 视频区欧美日本亚洲| 国产成人影院久久av| 国产日本99.免费观看| 午夜福利成人在线免费观看| 欧美久久黑人一区二区| 亚洲最大成人中文| 欧美性长视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 久久香蕉激情| 成人午夜高清在线视频 | 欧美久久黑人一区二区| 欧美精品亚洲一区二区| 女人高潮潮喷娇喘18禁视频| 亚洲精品美女久久久久99蜜臀| 免费女性裸体啪啪无遮挡网站| 久久精品成人免费网站| 国产成人av教育| 国产高清videossex| 看黄色毛片网站| 一级a爱视频在线免费观看| 亚洲精品中文字幕在线视频| 亚洲人成网站在线播放欧美日韩| 村上凉子中文字幕在线| 久久亚洲精品不卡| 亚洲精品粉嫩美女一区| 免费看十八禁软件| 18禁黄网站禁片午夜丰满| 国产高清videossex| 黄色毛片三级朝国网站| 麻豆成人av在线观看| 久久欧美精品欧美久久欧美| 两个人免费观看高清视频| 国产精品,欧美在线| 哪里可以看免费的av片| 一级片免费观看大全| 日本 欧美在线| 免费在线观看成人毛片| 黄色a级毛片大全视频| 又黄又爽又免费观看的视频| 日韩免费av在线播放| 国产精品久久久av美女十八| 久久亚洲精品不卡| 久久久久久久午夜电影| 香蕉丝袜av| 这个男人来自地球电影免费观看| 好男人在线观看高清免费视频 | 老熟妇乱子伦视频在线观看| 欧美日韩黄片免| 美女午夜性视频免费| 88av欧美| 制服丝袜大香蕉在线| 99精品久久久久人妻精品| 久久伊人香网站| 男男h啪啪无遮挡| 中文亚洲av片在线观看爽| 精品久久久久久,| 日本精品一区二区三区蜜桃| 国产成人精品久久二区二区91| av福利片在线| 国产av一区在线观看免费| 国产成+人综合+亚洲专区| 一级a爱视频在线免费观看| 午夜免费成人在线视频| 久久精品国产亚洲av香蕉五月| 亚洲精品粉嫩美女一区| 高清毛片免费观看视频网站| 少妇的丰满在线观看| 亚洲av中文字字幕乱码综合 | 亚洲国产精品成人综合色| 国产成人av教育| 男女那种视频在线观看| 亚洲欧美精品综合一区二区三区| 好男人电影高清在线观看| 欧美激情 高清一区二区三区| 叶爱在线成人免费视频播放| 久久午夜亚洲精品久久| 国产97色在线日韩免费| 少妇 在线观看| 欧美激情 高清一区二区三区| 久久香蕉激情| 久久久久国产精品人妻aⅴ院| 国产精品久久久久久精品电影 | 欧美又色又爽又黄视频| 美女高潮到喷水免费观看| 亚洲黑人精品在线| 国产亚洲精品久久久久5区| 欧美成人一区二区免费高清观看 | 国产高清视频在线播放一区| 午夜a级毛片| 久久中文字幕一级| 亚洲一卡2卡3卡4卡5卡精品中文| 色尼玛亚洲综合影院| 亚洲一区二区三区不卡视频| 国产爱豆传媒在线观看 | 久久久久久大精品| 午夜精品久久久久久毛片777| 久久午夜综合久久蜜桃| 亚洲国产精品合色在线| 亚洲精品美女久久av网站| 精品无人区乱码1区二区| 黑人操中国人逼视频| 欧美在线黄色| 中文字幕人妻熟女乱码| 少妇熟女aⅴ在线视频| av在线播放免费不卡| 午夜免费激情av| 国产99久久九九免费精品| 午夜影院日韩av| 精品久久久久久久末码| 一区二区三区国产精品乱码| 一a级毛片在线观看| 十八禁人妻一区二区| 精品久久久久久久人妻蜜臀av| 午夜免费成人在线视频| 亚洲精华国产精华精| 黄色a级毛片大全视频| 亚洲精品在线观看二区| 99riav亚洲国产免费| 国产1区2区3区精品| 久久人人精品亚洲av| 国产精品久久久久久人妻精品电影| 成人18禁在线播放| 人人妻人人澡欧美一区二区| 亚洲精华国产精华精| 一级毛片精品| 久久天堂一区二区三区四区| 可以在线观看的亚洲视频| 欧美乱色亚洲激情| 久久中文看片网| 一进一出抽搐动态| 国产精品亚洲一级av第二区| 亚洲无线在线观看| 久久热在线av| 婷婷精品国产亚洲av在线| 国产精品 国内视频| 日本一本二区三区精品| 搡老岳熟女国产| 日韩高清综合在线| 美国免费a级毛片| 国产av一区二区精品久久| 高清毛片免费观看视频网站| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲 国产 在线| 久久久国产精品麻豆| 欧美日韩亚洲国产一区二区在线观看| 此物有八面人人有两片| 久久九九热精品免费| 日韩欧美国产在线观看| 国产av在哪里看| 国产成人精品无人区| 欧美日韩亚洲国产一区二区在线观看| 国产精品影院久久| 两性夫妻黄色片| 中文字幕精品免费在线观看视频| 久久精品影院6| 亚洲欧美激情综合另类| 亚洲一区二区三区色噜噜| 久久中文字幕一级| 精品一区二区三区av网在线观看| 国产在线观看jvid| 欧美日韩福利视频一区二区| 一级黄色大片毛片| 国产精品爽爽va在线观看网站 | 男女午夜视频在线观看| 真人一进一出gif抽搐免费| 成人精品一区二区免费| 国产又爽黄色视频| 精品无人区乱码1区二区| 国产精品98久久久久久宅男小说| 长腿黑丝高跟| 级片在线观看| 亚洲国产精品999在线| 18美女黄网站色大片免费观看| 亚洲中文日韩欧美视频| 久久中文看片网| 国产区一区二久久| 国产高清视频在线播放一区| 国产精品久久久久久人妻精品电影| 啦啦啦韩国在线观看视频| 一a级毛片在线观看| 精品熟女少妇八av免费久了| 一二三四在线观看免费中文在| 俄罗斯特黄特色一大片| 国产精品野战在线观看| 久久精品国产清高在天天线| 成熟少妇高潮喷水视频| 悠悠久久av| 成人午夜高清在线视频 | 亚洲国产精品sss在线观看| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久中文| 1024香蕉在线观看| 亚洲一区高清亚洲精品| 亚洲成人久久性| 欧美zozozo另类| 真人做人爱边吃奶动态| 国产精品一区二区三区四区久久 | 伊人久久大香线蕉亚洲五| 亚洲精华国产精华精| netflix在线观看网站| 欧美激情 高清一区二区三区| 女人被狂操c到高潮| 色哟哟哟哟哟哟| 国产亚洲精品久久久久5区| 高潮久久久久久久久久久不卡| 啦啦啦免费观看视频1| 精品熟女少妇八av免费久了| 久久久久久免费高清国产稀缺| 老汉色av国产亚洲站长工具| 国产aⅴ精品一区二区三区波| 国产av在哪里看| 欧美日韩亚洲综合一区二区三区_| 国产单亲对白刺激| 美女国产高潮福利片在线看| 亚洲第一av免费看| 满18在线观看网站| 国产激情久久老熟女| 婷婷亚洲欧美| 美女午夜性视频免费| 在线观看免费日韩欧美大片| 国产激情欧美一区二区| 动漫黄色视频在线观看| 日韩欧美三级三区| 在线观看日韩欧美| 亚洲中文日韩欧美视频| 巨乳人妻的诱惑在线观看| 啪啪无遮挡十八禁网站| 亚洲欧洲精品一区二区精品久久久| 欧美日韩黄片免| 久久久国产精品麻豆| 国产97色在线日韩免费| 亚洲午夜精品一区,二区,三区| 一进一出好大好爽视频| 99在线视频只有这里精品首页| 一级毛片精品| 亚洲自拍偷在线| 中国美女看黄片| 国内精品久久久久精免费| 2021天堂中文幕一二区在线观 | 国产精品99久久99久久久不卡| 国产私拍福利视频在线观看| 国产麻豆成人av免费视频| 亚洲国产欧美网| 日韩 欧美 亚洲 中文字幕| 嫁个100分男人电影在线观看| 亚洲 欧美一区二区三区| 黄色 视频免费看| videosex国产| 成年女人毛片免费观看观看9| 欧美绝顶高潮抽搐喷水| 无遮挡黄片免费观看| 一个人观看的视频www高清免费观看 | 日韩一卡2卡3卡4卡2021年| 国产伦一二天堂av在线观看| 草草在线视频免费看| 90打野战视频偷拍视频| 久久草成人影院| 女同久久另类99精品国产91| 久久久国产精品麻豆| 婷婷丁香在线五月| 又紧又爽又黄一区二区| 亚洲精品色激情综合| av片东京热男人的天堂| 成人国产综合亚洲| 美女高潮喷水抽搐中文字幕| 国产成人av教育| 成人国产综合亚洲| 深夜精品福利| 亚洲成a人片在线一区二区| 美女国产高潮福利片在线看| 午夜亚洲福利在线播放| 国产熟女xx| 亚洲中文av在线| 黑人欧美特级aaaaaa片| 国产精品免费一区二区三区在线| www.熟女人妻精品国产| 午夜福利一区二区在线看| 午夜福利成人在线免费观看| 日韩成人在线观看一区二区三区| 老司机午夜十八禁免费视频| 侵犯人妻中文字幕一二三四区| 午夜亚洲福利在线播放| 免费在线观看视频国产中文字幕亚洲| 日韩视频一区二区在线观看| 窝窝影院91人妻| 国产精品二区激情视频| 欧美一级a爱片免费观看看 | 日本一区二区免费在线视频| 精品电影一区二区在线| 欧美人与性动交α欧美精品济南到| 久久香蕉精品热| 欧美成人一区二区免费高清观看 | 香蕉久久夜色| 欧美日韩亚洲综合一区二区三区_| 国产成人精品久久二区二区免费| 亚洲av电影在线进入| 怎么达到女性高潮| 变态另类丝袜制服| 黑人欧美特级aaaaaa片| 精品乱码久久久久久99久播| 黄片播放在线免费| 国产精品久久久久久精品电影 | 久久久水蜜桃国产精品网| 亚洲男人的天堂狠狠| 国产精品久久久av美女十八| 亚洲一区高清亚洲精品| 午夜免费成人在线视频| 国产精品亚洲av一区麻豆| 亚洲精品在线观看二区| 欧美丝袜亚洲另类 | 亚洲国产高清在线一区二区三 | 老熟妇乱子伦视频在线观看| 一级片免费观看大全| 亚洲色图av天堂| 精品国产乱码久久久久久男人| 亚洲av中文字字幕乱码综合 | 岛国在线观看网站| 日日干狠狠操夜夜爽| 99国产精品一区二区三区| 国产精品免费一区二区三区在线| 欧美久久黑人一区二区| 久久久水蜜桃国产精品网| 国内精品久久久久精免费| 亚洲熟妇中文字幕五十中出| 国产aⅴ精品一区二区三区波| 宅男免费午夜| 亚洲欧美日韩高清在线视频| АⅤ资源中文在线天堂| 高潮久久久久久久久久久不卡| 亚洲精品色激情综合| 我的亚洲天堂| 啦啦啦 在线观看视频| 欧美最黄视频在线播放免费| 香蕉久久夜色| 久久中文字幕人妻熟女| 熟妇人妻久久中文字幕3abv| 最近最新中文字幕大全免费视频| 欧美日韩精品网址| 男人的好看免费观看在线视频 | 久久精品aⅴ一区二区三区四区| 99热这里只有精品一区 | 欧美日韩精品网址| 一本久久中文字幕| 黄色 视频免费看| 别揉我奶头~嗯~啊~动态视频| 国产成人欧美| 麻豆成人午夜福利视频| 亚洲精品在线观看二区| 午夜激情福利司机影院| 亚洲 国产 在线| 女警被强在线播放| 欧美日本亚洲视频在线播放| 可以免费在线观看a视频的电影网站| 国产成人系列免费观看| 日韩欧美在线二视频| 亚洲国产精品999在线| 亚洲免费av在线视频| 久久久国产欧美日韩av| 成人亚洲精品av一区二区| 人人妻,人人澡人人爽秒播| 国产区一区二久久| 一a级毛片在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久天堂一区二区三区四区| 精品国产乱子伦一区二区三区| 国产黄a三级三级三级人| 精品国内亚洲2022精品成人| 久久久精品欧美日韩精品| netflix在线观看网站| 极品教师在线免费播放| 手机成人av网站| 久久精品91无色码中文字幕| 曰老女人黄片| 黑丝袜美女国产一区| 国内精品久久久久精免费| 国产av一区二区精品久久| tocl精华| 日韩中文字幕欧美一区二区| 久久中文字幕人妻熟女| 亚洲精品国产精品久久久不卡| 亚洲色图av天堂| 亚洲七黄色美女视频| 岛国在线观看网站| 免费观看人在逋| 波多野结衣巨乳人妻| 免费高清视频大片| 久久久久国产一级毛片高清牌| 国产野战对白在线观看| 99在线视频只有这里精品首页| 国产亚洲av高清不卡| 欧美激情极品国产一区二区三区| 又大又爽又粗| 久久这里只有精品19| 亚洲最大成人中文| 久久久精品欧美日韩精品| 91在线观看av| 听说在线观看完整版免费高清| 精品第一国产精品| 女人高潮潮喷娇喘18禁视频| 中文字幕精品亚洲无线码一区 | 成年女人毛片免费观看观看9| e午夜精品久久久久久久| 999精品在线视频| 亚洲国产精品成人综合色| 两性午夜刺激爽爽歪歪视频在线观看 | 国语自产精品视频在线第100页| 黄色视频,在线免费观看| 美女扒开内裤让男人捅视频| 亚洲国产精品999在线| 一卡2卡三卡四卡精品乱码亚洲| 久久久国产欧美日韩av| 免费在线观看黄色视频的| 日本黄色视频三级网站网址| 夜夜爽天天搞| 亚洲国产欧美网| 女生性感内裤真人,穿戴方法视频| 99精品在免费线老司机午夜| 婷婷六月久久综合丁香| 国产视频内射| 成人特级黄色片久久久久久久| 黄片大片在线免费观看| 91九色精品人成在线观看| 亚洲精品国产精品久久久不卡| 两个人看的免费小视频| 国产免费av片在线观看野外av| 国产高清videossex| 日韩欧美一区二区三区在线观看| 中文字幕最新亚洲高清| 1024香蕉在线观看| 久久国产精品人妻蜜桃| 深夜精品福利| 国产aⅴ精品一区二区三区波| 91成人精品电影| 成年女人毛片免费观看观看9| 国内揄拍国产精品人妻在线 | 女同久久另类99精品国产91| www.www免费av| 亚洲成人免费电影在线观看| 中国美女看黄片| 久久久久国产精品人妻aⅴ院| 久久精品国产亚洲av高清一级| 午夜激情av网站| 又大又爽又粗| 精品国产超薄肉色丝袜足j| 亚洲成av人片免费观看| 日韩免费av在线播放| 亚洲成人久久爱视频| 成人av一区二区三区在线看| 好男人在线观看高清免费视频 | 好男人在线观看高清免费视频 | 夜夜夜夜夜久久久久| 亚洲国产精品sss在线观看| 婷婷丁香在线五月| 亚洲精品久久成人aⅴ小说| 欧美日韩亚洲国产一区二区在线观看| 亚洲人成网站在线播放欧美日韩| 两性夫妻黄色片| 日本免费一区二区三区高清不卡| 欧美乱妇无乱码| 亚洲国产高清在线一区二区三 | 无限看片的www在线观看| 亚洲精品中文字幕一二三四区| 成年版毛片免费区| 一本久久中文字幕| 久久久久久免费高清国产稀缺| 免费在线观看黄色视频的| 午夜视频精品福利| 国产成人av教育| 欧美又色又爽又黄视频| www.www免费av| 欧美亚洲日本最大视频资源| x7x7x7水蜜桃| 神马国产精品三级电影在线观看 | 中文字幕久久专区| 琪琪午夜伦伦电影理论片6080| 九色国产91popny在线| 欧美在线黄色| 精品久久久久久成人av| 午夜a级毛片| 欧美中文综合在线视频| 久久99热这里只有精品18| 国产精品一区二区免费欧美| 深夜精品福利| 国产1区2区3区精品| 国内毛片毛片毛片毛片毛片| 欧美绝顶高潮抽搐喷水| 日韩av在线大香蕉| 在线国产一区二区在线| 久久精品国产亚洲av高清一级| 在线观看66精品国产| a在线观看视频网站| 成人特级黄色片久久久久久久| 麻豆国产av国片精品| 别揉我奶头~嗯~啊~动态视频| ponron亚洲| 久久这里只有精品19| 波多野结衣av一区二区av| bbb黄色大片| 好男人电影高清在线观看| 亚洲成国产人片在线观看| 草草在线视频免费看| 我的亚洲天堂| 亚洲国产欧洲综合997久久, | 伊人久久大香线蕉亚洲五| 日韩一卡2卡3卡4卡2021年| av在线播放免费不卡| 久久午夜综合久久蜜桃| 美女高潮到喷水免费观看| 又黄又粗又硬又大视频| 国产精品 国内视频| 国产精品亚洲一级av第二区| 91国产中文字幕| 丝袜在线中文字幕| 午夜精品在线福利| 12—13女人毛片做爰片一| 国产熟女午夜一区二区三区| 一进一出抽搐gif免费好疼| 国产国语露脸激情在线看| 午夜福利在线在线| 欧美丝袜亚洲另类 | 麻豆成人午夜福利视频| 日本免费一区二区三区高清不卡| 国内精品久久久久久久电影| 色在线成人网| 欧美中文综合在线视频| 亚洲成人国产一区在线观看| 欧美一级a爱片免费观看看 | 一夜夜www| 色婷婷久久久亚洲欧美| 午夜福利在线观看吧| 国产99白浆流出| 操出白浆在线播放| 91成人精品电影| 亚洲男人的天堂狠狠| 午夜免费观看网址| 国产亚洲精品一区二区www| 欧美乱妇无乱码| 男女下面进入的视频免费午夜 | 国产精品一区二区三区四区久久 | 亚洲人成77777在线视频| 亚洲三区欧美一区| 欧美成人免费av一区二区三区| 亚洲精品粉嫩美女一区| 一级a爱视频在线免费观看| 国产日本99.免费观看| 天堂动漫精品| 亚洲色图av天堂| tocl精华| 男女午夜视频在线观看| 成人三级做爰电影| 亚洲欧美日韩高清在线视频| 亚洲成人国产一区在线观看| 一级毛片女人18水好多| 99在线人妻在线中文字幕| 9191精品国产免费久久| 俄罗斯特黄特色一大片| 曰老女人黄片| 99在线视频只有这里精品首页| 精品久久久久久,| 正在播放国产对白刺激| АⅤ资源中文在线天堂| 国产伦一二天堂av在线观看| 欧美在线一区亚洲| 精品国产超薄肉色丝袜足j| 中文字幕精品亚洲无线码一区 | 99精品欧美一区二区三区四区| 久久国产亚洲av麻豆专区| 亚洲av第一区精品v没综合| 一级黄色大片毛片| 午夜精品久久久久久毛片777| 日韩成人在线观看一区二区三区| 正在播放国产对白刺激|