劉仕釗
(中國工程物理研究院總體工程研究所,四川綿陽621900)
旋轉(zhuǎn)變壓器作為一種測角元件,由于具有體積小、精度高、堅固耐用等特點,而被廣泛應(yīng)用于旋轉(zhuǎn)伺服系統(tǒng)。但隨著數(shù)字技術(shù)在伺服系統(tǒng)中的廣泛應(yīng)用,旋轉(zhuǎn)變壓器輸出的包含有轉(zhuǎn)子位置信息的模擬信號,必須轉(zhuǎn)化為數(shù)字系統(tǒng)能夠識別的數(shù)字信號才能進行控制處理。
目前,對旋轉(zhuǎn)變壓器輸出信號的數(shù)字轉(zhuǎn)換方法主要有兩種:第一種方法是采用專用旋轉(zhuǎn)變壓器解算芯片實現(xiàn)轉(zhuǎn)子位置解碼[1-3]。該方法雖能實現(xiàn)高精度解碼,但其成本較高;第二種方法是直接將旋轉(zhuǎn)變壓器輸出的模擬信號送入A/D轉(zhuǎn)換器,通過軟件解算算法實現(xiàn)轉(zhuǎn)子位置解碼[4]。該方法雖能降低成本,但直接將包含高頻信號的旋轉(zhuǎn)變壓器輸出信號送入A/D轉(zhuǎn)換器,大大提高了對A/D轉(zhuǎn)換器轉(zhuǎn)換速度的要求,從而使該方法大多局限于激磁信號頻率較低(通常小于10 kHz)的場合。
激磁信號頻率越高,解碼精度越高[5]。在高性能旋轉(zhuǎn)伺服系統(tǒng)中,為了滿足轉(zhuǎn)子位置的解碼精度,激磁信號頻率通常在15 kHz以上。為了降低成本,又不受A/D轉(zhuǎn)換器轉(zhuǎn)換速度的限制,本文首先采用信號調(diào)理電路對旋轉(zhuǎn)變壓器的輸出信號進行處理,輸出僅與轉(zhuǎn)子位置相關(guān)的低頻信號(通常為幾百赫茲),再采用A/D轉(zhuǎn)換器轉(zhuǎn)換,便能大大降低對A/D轉(zhuǎn)換器轉(zhuǎn)換速度的要求,并結(jié)合數(shù)字信號處理器(DSP)中固化的軟件解算算法解算出相應(yīng)的轉(zhuǎn)子位置。
旋轉(zhuǎn)變壓器是一種控制用的測角元件,它能將轉(zhuǎn)子機械角轉(zhuǎn)變成與該轉(zhuǎn)角呈某一函數(shù)關(guān)系的電信號間接測量裝置。按該函數(shù)關(guān)系對旋轉(zhuǎn)變壓器進行分類可分為線性旋轉(zhuǎn)變壓器、比例式旋轉(zhuǎn)變壓器、正余弦旋轉(zhuǎn)變壓器。本文主要針對正余弦旋轉(zhuǎn)變壓器輸出信號的數(shù)字轉(zhuǎn)換進行設(shè)計。正余弦旋轉(zhuǎn)變壓器電氣示意圖如圖1所示。
圖1 旋轉(zhuǎn)變壓器電氣示意圖
以單相繞組激磁為例,當(dāng)在勵磁繞組上輸入正弦激磁電壓信號:
根據(jù)電磁感應(yīng)原理,正弦繞組和余弦繞組便會感應(yīng)出相應(yīng)的交流電勢:
式中:θ為轉(zhuǎn)子轉(zhuǎn)過的角度;ω為激磁電壓的頻率;U0為激磁電壓的最大幅值;k為勵磁繞組與正余弦繞組間的電磁耦合系數(shù),該系數(shù)通常較大,可達到1的數(shù)量級。
由式(2)和式(3)不難看出,正弦繞組和余弦繞組輸出信號中包含高頻信號和低頻信號。若直接將此信號輸入A/D轉(zhuǎn)換器,受A/D轉(zhuǎn)換器轉(zhuǎn)換速度的限制,將導(dǎo)致高頻信號采樣不充分,從而使轉(zhuǎn)子位置的解碼精度得不到保證。
為了突破A/D轉(zhuǎn)換器轉(zhuǎn)換速度的限制,本文設(shè)計了一種信號調(diào)理電路。該電路的主要功能有抑制共模干擾信號、單端信號轉(zhuǎn)換、絕對值加法運算、低通濾波、電位平移等功能。經(jīng)該調(diào)理電路調(diào)理后的旋轉(zhuǎn)變壓器輸出信號中僅包含與轉(zhuǎn)子位置相關(guān)的低頻信號,將該信號輸入A/D轉(zhuǎn)換器中處理,結(jié)合軟件解算算法對轉(zhuǎn)子轉(zhuǎn)角位置進行解算,從而得到轉(zhuǎn)子位置信息。解算器原理框圖如圖2所示。
圖2 解算器原理框圖
解算器主要包括信號調(diào)理電路和軟件解算算法兩部分。
3.1.1 信號調(diào)理電路設(shè)計
信號調(diào)理電路原理框圖如圖3所示。
圖3 信號調(diào)理電路原理框圖
旋轉(zhuǎn)變壓器的輸入、輸出信號通常為差分信號,采用差分轉(zhuǎn)換器在將該信號轉(zhuǎn)換為單端信號的同時,又抑制了共模干擾信號;將轉(zhuǎn)換后的單端信號輸入絕對值加法電路處理,可得到幅值范圍為0~2U0的信號,但該信號中包含與轉(zhuǎn)子位置信號相位相反,高頻部分交替出現(xiàn)的干擾信號,因此還需采用多路模擬開關(guān)對該信號作選擇性輸出;多路模擬開關(guān)采用經(jīng)過零比較器和可調(diào)延時裝置處理后的激磁信號觸發(fā),輸出的信號再采用低通濾波器濾除高頻成分,便可得到與轉(zhuǎn)子位置相關(guān)的正余弦低頻信號。
3.1.2 信號調(diào)理電路仿真
本文采用Matlab對信號調(diào)理電路進行仿真。在Matlab中,旋轉(zhuǎn)變壓器的激磁信號采用頻率為18 kHz的正弦信號模擬;旋轉(zhuǎn)變壓器轉(zhuǎn)子位置信號采用頻率為500 Hz的正余弦信號模擬,在大多數(shù)伺服系統(tǒng)中,電機轉(zhuǎn)速一般低于30 000 r/min,對于一對極旋轉(zhuǎn)變壓器,若電機轉(zhuǎn)速為30 000 r/min,則通過上述信號調(diào)理電路處理后得到的轉(zhuǎn)子位置信號頻率約為500 Hz。采用Matlab模擬的旋轉(zhuǎn)變壓器輸入輸出信號如圖4所示。
圖4 旋轉(zhuǎn)變壓器輸入、輸出信號波形圖
旋轉(zhuǎn)變壓器的三路單端信號經(jīng)絕對值加法電路調(diào)理后得到的信號波形如圖5所示。
圖5 經(jīng)絕對值加法電路調(diào)理后的信號波形圖
再將該信號輸入多路模擬開關(guān)和低通濾波器處理,得到如圖6所示波形。
圖6 選擇輸出、濾波后信號波形圖
從圖6中不難看出,有部分信號未得到充分的隔離,這是由于信號經(jīng)過不同路徑時,信號之間會有一定的相位差,從而使多路模擬開關(guān)的觸發(fā)信號滯后產(chǎn)生的,因此還需采用延時裝置對觸發(fā)信號相位進行調(diào)整,調(diào)整后的信號波形如圖7所示。
圖7 相位調(diào)節(jié)后波形圖
3.2.1 軟件解算算法原理
軟件解算算法是建立在A/D轉(zhuǎn)換的基礎(chǔ)上,隨著DSP的不斷更新,其自帶的A/D轉(zhuǎn)換模塊采樣頻率可達到幾十甚至上百兆赫茲,足以滿足輸入DSP的低頻信號(500 Hz)對A/D轉(zhuǎn)換模塊采樣頻率的速度要求,保證后續(xù)數(shù)據(jù)處理的順利進行。在DSP中為了避免復(fù)雜的數(shù)學(xué)運算,提高軟件的執(zhí)行效率,通常使用查表法來實現(xiàn)信號的解算,該方法通??墒菇馑闼惴ㄔ跇O短時間內(nèi)完成,以滿足系統(tǒng)對實時性的要求,軟件解算算法總體流程圖如圖8所示。
轉(zhuǎn)子位置解算、轉(zhuǎn)子旋轉(zhuǎn)方向判斷是軟件解算算法中的核心部分。以下就這兩個方面做詳細敘述,轉(zhuǎn)子位置解算及方向判斷流程圖如圖9所示。
圖8 軟件解算算法總體流程圖
圖9 轉(zhuǎn)子位置解算及方向判斷流程圖
軟件解算具體步驟如下:
(1)為了節(jié)約DSP的存儲空間,在此僅建立對應(yīng)角度為0°~90°的正弦表,其對應(yīng)的波峰值為Um,波峰和波谷的平均值為Ua。
(2)采樣當(dāng)前位置的正余弦信號值分別記為S、C,并備份該信號記為Sbak、Cbak,供判斷轉(zhuǎn)子旋轉(zhuǎn)方向使用。
(3)由于僅建立了1/4周期的正弦表,若要實現(xiàn)對轉(zhuǎn)子全角度的解算,還需根據(jù)變量S、C的值確定轉(zhuǎn)子位置所在象限,轉(zhuǎn)子位置象限判定方法如圖9所示。在確定象限后,還需根據(jù)變量S查正弦表,確定轉(zhuǎn)子的當(dāng)前位置,轉(zhuǎn)子當(dāng)前位置確定方法如表1所示。
表1 轉(zhuǎn)子當(dāng)前位置判斷表
(4)電機旋轉(zhuǎn)方向的判斷方法如表2所示。
表2 電機旋轉(zhuǎn)方向判斷表
3.2.2 軟件解算算法仿真
采用Matlab對DSP解算算法進行仿真,仿真波形如圖10所示。示波器1、2通道為轉(zhuǎn)子位置信號,通道為解算出的轉(zhuǎn)子角度信號,由圖10可看出,通過處理后,可實現(xiàn)對旋轉(zhuǎn)變壓器全角度的正確解碼。
圖10 解算算法仿真波形圖
本文在分析現(xiàn)有旋轉(zhuǎn)變壓器測角系統(tǒng)的基礎(chǔ)上,設(shè)計了一種高精度、低成本旋轉(zhuǎn)變壓器轉(zhuǎn)子位置解算的方法,并對該設(shè)計中的信號調(diào)理電路和軟件解算算法部分做了詳細的介紹,用Matlab仿真軟件對該設(shè)計的可行性進行了驗證,在轉(zhuǎn)子位置解碼精度方面,還可通過提高激磁信號頻率、使用采樣精度更高的A/D轉(zhuǎn)換器和改進軟件解算算法等方法進行改良。
[1] 袁保倫,陸煜明,饒谷音.基于AD2S82A的多通道測角系統(tǒng)及與DSP接口設(shè)計[J].微電機,2007,40(7):47-49.
[2] 嚴春曉,張嶸.基于AD2S83和DSP的感應(yīng)同步器測角系統(tǒng)[J].微計算機信息,2008,24(6-2):6-8.
[3] 吳紅星.基于旋轉(zhuǎn)變壓器的電動機轉(zhuǎn)子位置檢測研究[J].微電機,2008,41(1):1-3,9.
[4] 范祝霞,歐陽紅林,錢鋆,等.基于旋轉(zhuǎn)變壓器的PMSM驅(qū)動系統(tǒng)位置反饋的研究,電氣傳動,2010,40(3):40-42,52.
[5] 姜燕平.旋轉(zhuǎn)變壓器原理及其應(yīng)用[J].電氣時代,2005(10):982-100.
[6] 張志涌.精通MATLAB 6.5版[M].北京:北京航空航天大學(xué)出版社,2003.