• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Implementing a Practical Algorithm to Generate Fatigue Loading History or Spectrum from Short Time Measurement

    2011-06-07 07:52:26LIShanshanHUANGZhiboCUIWeicheng
    船舶力學(xué) 2011年6期
    關(guān)鍵詞:雨流海洋工程科學(xué)研究

    LI Shan-shan,HUANG Zhi-bo,CUI Wei-cheng,

    (1.State Key Lab of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200030,China;2.China Ship Scientific Research Center,Wuxi 214082,China)

    On Implementing a Practical Algorithm to Generate Fatigue Loading History or Spectrum from Short Time Measurement

    LI Shan-shan1,HUANG Zhi-bo2,CUI Wei-cheng1,2

    (1.State Key Lab of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200030,China;2.China Ship Scientific Research Center,Wuxi 214082,China)

    Fatigue life prediction requires the information of fatigue loading history or spectrum over the whole design life.However,in many cases,the measured or simulated load history only includes a very short time compared to the entire design life.How to extrapolate the measured loads to longer time and how to count the information for every cycle are two important problems to be solved in fatigue analysis.In this paper,a method to extrapolate the measured loads to longer time is introduced together with the rainflow cycle counting method.Both methods have been implemented into computer programs.An example calculation is given to show the process.Problems on how to use these two methods to determine the design load are also pointed out.

    load history;rainflow filter;load extrapolation;load spectrum;rainflow cycle;counting

    Biography:LI Shan-shan(1985-),female,Ph.D.student of Shanghai Jiao Tong University;

    HUANG Zhi-bo(1984-),male,engineer of CSSRC.

    1 Introduction

    Fatigue is defined as a process of cycle by cycle accumulation of damage in a material undergoing fluctuating stresses and strains[1].A significant feature of fatigue is that the load is not large enough to cause immediate failure.Instead,failure occurs after a certain number of load fluctuations have been experienced,i.e.after the accumulated damage has reached a critical level.For marine structures such as ships and offshore platforms they are subjected to this type of cyclic loading,so fatigue is one of the most significant failure modes[2-4].Accurate prediction of the fatigue life of marine structures under service loading is very important for both safe and economic design and operation.

    It is well-known that there are two types of fatigue life prediction methods[5].One is the cumulative fatigue damage(CFD)analysis where fatigue loading is expressed as a spectrum.The other is the fatigue crack propagation(FCP)analysis where fatigue loading is expressed as a time history.In this paper we distinguish the fatigue load history with the fatigue load spectrum while many other authors may not make this distinguish,e.g.,Schijve[6].When we say a fatigue load history,it means a time-domain destinction,e.g.P(t).When we say a fatigue spectrum,it means a frequency-domain destinction,e.g.Weibull distribution.The fatigue load history is used in fatigue crack propagation process while the fatigue load spectrum is used in cumulative fatigue damage calculation.

    In fatigue life prediction of a structure,both the fatigue loading and fatigue strength are essential parameters.Hence,in order to obtain a proper fatigue design,it is crucial to consider real environmental loads.However,in many cases,the measured or simulated load history only covers a very short time,compared to the entire design life.Therefore,how to extrapolate the measured or calculated short term loads to longer time needs to be solved.The simplest method is to repeat one observed load block until the design life.This has the drawback that only the cycles in the measured signal will appear in the extrapolation,even though other cycles are also possible.In order to allow more extreme loads than the observed ones,statistical theories have to be employed.In Ref.[7],a statistical method is used that was proposed by Dressler et al.[8]where the rainflow matrix is extrapolated using kernel smoothing.An extrapolation method based on statistical extreme value theory[9]in combination with kernel smoothing is presented in Ref.[10].

    In 2006,Johannesson[11]proposed an extrapolation method which can be applied to any signal and be used for any purpose.This method is implemented to study its performances and feasibility to be used for marine structures.

    For fatigue life analysis,the load time history needs to be converted into cycle sequence or load spectrum.This can be done by choosing a suitable counting method.It is a common consensus that the rainflow cycle counting is the best[6,12].

    In this paper,a practical method for extrapolation of a measured time signal to a longer time period,based on statistical extreme value theory is first introduced.Then the method of rainflow cycle counting is introduced.Both methods have been implemented into computer programs.In order to demonstrate the application,the measurements of longitudinal strain in a deck position of a surface ship for 15 minutes[13]are used for extrapolation and rainflow cycle counting.Finally,issues to determine the design fatigue loading using the measured short history are pointed out for further study.

    2 Generating longer loading history from short time measurement

    2.1 Method for extrapolation of a load history

    The methodology introduced here is updated from Ref.[11].The main idea of this method is to repeat the measured load block,but modify the highest maxima and lowest minima in each block.The random regeneration of each block is based on statistical extreme value theory.An example showing the principle of the method is shown in Fig.1,where three repetitions of a measured block are compared to three extrapolated blocks.

    Fig.1 Three repetitions of a measured block(black),compared to three extrapolated blocks(grey).The horizontal dashed lines represent the threshold levels,umin=-6 and umax=6,where the extrapolation starts(Ref.[11]).

    The theoretical basis for the method is the so-called Peak Over Threshold(POT)technique in statistical extreme value theory,see Ref.[14].Only the extreme excesses over a high level u is modeled,i.e.the height of the excursions above u,see Fig.2.If we fix a high load level and study the excesses over this level,then under certain conditions these excesses approximately follow an exponential distribution for high enough threshold levels u.We then have the approximation for the excess Z=Max-u∈Exp(m),with cumulative distribution function

    Fig.2 Definition of excess over a threshold u(Ref.[11])

    The estimation of the parameter in the exponential distribution is the sample mean of the excesses z1,…,zN

    The family of possible distributions for excesses in extreme value theory is the Generalized Pareto Distribution(GPD),

    where the shape parameter-∞<ξ<∞ and the scale parameter σ>0.when ξ<0,the GPD has an upper endpoint,0<z<-σ/ξ,while for ξ≥0,z>0.The special case of ξ=0 is the exponential distribution.The estimation of the parameters in the GPD is known to be problematic,often giving large systematic errors,especially for small sample sizes.Care should be taken for the selection of moment method or maximum likelihood.Details on the maximum likelihood estimation can be found in Refs.[14,27],methods based on moments are discussed in Ref.[28]

    Mathematically the extreme value approximations are formulated as asymptotic results.For a random process{X(t):t∈[0, T]}satisfying certain mixing conditions,it can be shown that the excesses over a level u(T)converges in distribution to a GPD as T→∞ and n(T)/T→0,where n(T)is the number of excesses over u(T).The parameters of the limiting GPD de-pend on the distributional properties of the process.

    As a matter of fact,the exponential distribution of excesses is equivalent to modeling the global maximum as a Gumbel distribution,which works well in many applications.In this section,the model for excesses over a high level will be the exponential distribution,but it is straightforward to replace it by a GPD.

    The generation of a k-fold extrapolated signal(sequence of turning points)can be performed in the following steps[11]:

    (1)Start with a time signal.

    (2)Extract the turning points of the time signal,where the small cycles should be removed by using a rainflow filter.

    (3)Choose threshold levels uminand umaxfor the POT extrapolation.The choice of levels is discussed in section 2.2.Extract the excesses under uminand the excesses over umax.

    (4)Estimate the mean excesses mminand mmaxunder and over the thresholds uminand umax,respectively.

    (5)Generate an extrapolated load block by simulating independent excesses as exponential random numbers.Replace each observed excess under uminby a simulated exponential number with mean mminand each observed excess over umaxby a simulated exponential number with mean mmax.

    (6)Repeat step 5 until you have generated k extrapolated load blocks.

    (7)The k-fold extrapolated signal is obtained by putting the generated load blocks after each other.

    From the k-fold extrapolated load time signal,we can also obtain the k-fold extrapolated load spectrum by applying the rainflow cycle counting algorithm which will be introduced in Section 3.In order to show the method for generating a k-fold extrapolated signal more clearly,a flow chart is given in Fig.3.

    2.2 Choice of threshold levels

    For the extrapolation,we need to choose the threshold levels where the extrapolation will start(see Fig.2).The choice of proper threshold levels is a difficult problem that demands some judgments.Note that the levels need to be chosen high enough for the extreme value theory to be a reasonable approximation,however also low enough to obtain a sufficient number of exceedances.Hence,it is important to verify that the exponential assumptions are fulfilled for the chosen threshold levels.

    A useful diagnostic tool,for assessing the threshold,is the mean excess plot.The estimate of the mean exceedance over the threshold is plotted as a function of the threshold level(see Fig.4).For too low threshold levels,the extreme value approximation is not good enough,giving a systematic error,and for very high levels there is little information giving large scatter,which is seen through the confidence intervals.Hence,a proper level should be a compromise and be chosen somewhere in between in a region where the estimate is stable,i.e.the mean excess plot is approximately horizontal.Unfortunately,the mean excess plots may be hard to interpret,but they are still a valuable tool together with the exponential probability plots.

    Fig.3 Flow chart of the generation of k-fold extrapolated signal

    The choice of proper threshold levels is the most tricky part of the extrapolation.Here one needs to use experience together with the diagnostic tools to ensure that the exponential distribution is a good approximation.A default choice that seems to work well in many cases is to find threshold levels such that there are aboutexceedances,where N0is the number of cycles in the signal.

    Fig.4 Mean excess plots,i.e.estimate of mean excesses as function of the threshold level,for Norway measurements.The dashed lines represent 95%confidence intervals for the estimate.The threshold level should be chosen in a region where the estimate is stable,i.e.where the plot is approximately horizontal(Ref.[11]).

    3 Rain flow cycle counting

    Cycle counting is the process of reducing a complex variable amplitude load history into a number of constant amplitude stress excursions,that can be related to available constant amplitude test data.This is a necessary step that needs to be carried out in order to predict fatigue crack growth in components subjected to variable amplitude loading.The method of cycle counting used often depends on the occurrences in the particular sequence that are considered to be significant in terms of fatigue damage[6,12].

    The definition of a cycle varies with the method of cycle counting.In fatigue analysis,a cycle is the load variation from the minimum to the maximum and then to the minimum load.At the moment,there is no frequency information contained in any cycle counting method but this can easily be added if three independent quantities are used.Furthermore,some of the counting methods can also give the information of the order of the cycles.Cycle counts can be made for all time histories such as force,stress,strain,torque,acceleration,deflection or other loading parameters of interest.

    Cycle counting yields the marginal probability density distribution of the single quantity like amplitude or the joint probability density distribution of the pair such as(maximum,minimum)or(amplitude,mean)or(maximum,range).

    Up to now,many different cycle counting methods have been developed such as level crossing counting,range counting and rainflow counting,see Refs.[6,15].One of the most important considerations in cycle counting is that the basis of the counting method needs to be com-patible with the understanding of the relevance of stress fluctuations to the fatigue process.Using this criterion,now it is almost the common consensus that the rainflow cycle counting method is the best cycle counting method[16-17].

    The rainflow counting algorithm was first developed by Endo and Matsuiski in 1968[18].Downing and Socie[19]created one of the more widely referenced and utilized rainflow cyclecounting algorithms in 1982,and which was included as one of many cycle-counting algorithms in ASTME 1049-85[16].Rychlik[20]gave a mathematical definition for the rainflow counting method,thus enabling closed-form computations from the statistical properties of the load signal.

    In principle,range counting includes counting of all successive load ranges,also small load variations occurring between adjacent larger ranges.It might be thought that small load variations can be disregarded in view of a negligible contribution to fatigue damage.A fundamental counting problem arises if a small load variation occurs between larger peak values.This situation is illustrated in Fig.5.A two-parameter range counting procedure will count the ranges AB,BC and CD,and store this information in a matrix.Now,consider the situation that the intermediate range BC would not occur.Then,the large range AD would be counted only.Traditionally it was thought that fatigue damage is related to load ranges but now it is found that the maximum value is also important[e.g.Refs.21,22].It should be expected that the fatigue damage of the large range AD alone is larger than for the three separate ranges AB,BC and CD.This has led to the so-called rainflow counting method of Endo and Matsuiski[18].The intermediate small load reversal BC is counted as a separate cycle and then removed from the major load range AD.This larger range can then be counted as a separate load range,see Fig.5b.If four successive peak values are indicated by Pi,Pi+1,Pi+2and Pi+3,the rainflow count requirement for counting and removing a small range from a larger range is

    If the intermediate small load reversal occurs in a descending load range,see Fig.5c,the requirement is

    Fig.5 Intermediate load reversal as part of a larger range[6].

    In other words,the peak values of the intermediate small load reversal should be inside the range of the two peak values of the larger range.Successive rainflow counts are indicated in Fig.6.In Fig.6a five rainflow counts can be made.After counting and removing these small cycles,Fig.6b is obtained.In this figure again three rainflow counts can be made,but now of larger ranges.Removing these cycles leads to Fig.6c in which again two still larger load reversals can be counted and removed.In the final residue,Fig.6d,no further counts are possible.The ranges of the residue must be counted separately at the end of the counting procedure.The rainflow count results can be stored in a two-parameter matrix.

    The rainflow count procedure has found some support by considering cyclic plasticity.A short load sequence is given in Fig.7a,which leads to counting two intermediate load reversals by the rainflow count method,as indicated in this figure.The corresponding plastic behavior is schematically indicated in Fig.7b,which could be applied to local plasticity at the material surface during the initiation period,or to crack tip plasticity during crack growth.The intermediate load reversals C1 and C2 are causing hysteresis loops inside the major hysteresis of the major cycle between A and B.It is thus assumed that the intermediate plasticity loops do not affect the major loop.This reasoning gives somewhat speculative support to the rainflow counting method.

    The rainflow counting method can also be illustrated in Fig.8.The original method was so-called because,if the stress or strain history is presented vertically,the algorithm can be considered analogous to the behaviour of rain flowing from a pagoda style roof.

    The rules for this method are as follows[15]:

    Let X denote the range under consideration;Y,the previous range adjacent to X;and S the starting point in the history.

    (1)Read the next peak or valley.If out of data go to Step(6).

    (2)If there are fewer than three points go to Step(1).Form ranges X and Y using the three most recent peaks and troughs that have not been discarded.

    Fig.6 Successive rainflow counts[6]

    Fig.7 Hysteresis loops associated with rainflow counts[6]

    (3)Compare the absolute values of ranges X and Y.

    (a)If X<Y,go to Step(1).

    (b)If X≥Y,go to Step(4).

    (4)If range Y contains the starting point S,go to Step(5);otherwise,count range Y as one cycle;discard the peak and trough of Y;and go to Step(2).

    (5)Count range Y as one-half cycle;discard the first point(peak or trough)in range Y;move the starting point to the second point in range Y;and go to Step(2).

    (6)Count each range that has not previously been counted as one half cycle.

    These rules may be converted to an algorithm suitable for computation.Commercial program for rainflow cycle counting is also available now,e.g.Durability Rainflow Cycle Counting 2002[23,24].In this paper,a named‘RAINFLOW’code developed by Nieslony[24]is used.It first searches turning points from signals and then carries out rainflow cycle counting according to the algorithm mentioned above.The range and maximum of every cycle can be obtained by an improved edition of this code.

    4 A practical example of extrapolation and rainflow cycle counting of a load history

    In order to demonstrate the extrapolation and rainflow cycle counting methods introduced above,a full scale test of wave bending moments on a surface ship is used.Fig.9 shows the measurements of the longitudinal strain in a deck position of a surface ship for 15 minutes[13].

    Fig.8 The rainflow cycle counting method[15]

    Fig.9 The measured load signals[13]

    For this example,we first choose the first three minutes to be extrapolated to a 5 times as a longer time period and compare with the original measurement.First the turning points of the time signal are extracted.Further the signal should be rainflow filtered in order to remove small oscillations that do not contribute to the fatigue damage.It is also advantageous for the POT analysis,since it removes small oscillations during excursions.A default choice for the rainflow filter is to set the threshold range to 5%of the total range of the signal,see Fig.10.Then the threshold levels uminand umaxfor the POT extrapolation are chosen.We choose 121με and-111με as umaxand umin,respectively,see Fig.11.Here we use a default choice to find threshold levels such that there are aboutexceedances,where N0is the number of cycles in the signal.For assessing if the thresholds are proper,we use the mean excess plot method to check it,the result is shown in Fig.12,wherethe chosen threshold levels are in the regions where the estimate is almost stable.With the measured time period increasing,e.g.15 minutes chosen to be extrapolated in this example,the horizontal region in Fig.12 is more clear.The comparison between measured time signal and extrapolated time signal for 15 minutes is shown in Fig.13.

    Fig.10 The rainflow filtered load signal for first three minutes

    Fig.11 Threshold levels

    Fig.12 Mean excess plot

    Fig.13 A comparison between measured time signal and extrapolated time signal for 15 minutes

    Let us apply the rainflow cycle counting method to the two load-time series shown in Fig.13.For each time series,we will obtain a certain number of complete cycles and some half cycles.For these half cycles,every two half cycles are merged as an equivalent complete cycle and they are put in the end of the series of cycles.For each cycle,we use both maximum and minimum values to represent it.The counted results are shown in Fig.14.

    For the counted maximum values and the ranges,they can be plotted as a spectrum.Fig.15a shows a comparison of the load spectra of the 5-fold extrapolations to the 15 minutes of the measured ones for the maximum value of each cycle while Fig.15b shows the range.As is customary,the load spectra are plotted as the cumulative number of cycles larger than a given amplitude as function of the amplitude.We observe that the extrapolation looks reasonable since it agrees well with the observed load spectrum.Further,the load spectra are extrapolated to higher amplitudes,and are smoother compared to the observed ones.These are the properties of the recommended extrapolation method.

    Fig.14 Rainflow cycle counted results for two load time signals given in Fig.13(threshold range to 5%of the total range)

    Fig.15 Five-fold extrapolated load spectra compared to the measured load spectra

    Now let us take the original measurement of 15 minutes as the source data for extrapolation and to check the effect of folds on the distribution properties.The extrapolation method is based on a random simulation of the high maxima and low minima.Hence,the resulting extrapolated turning points,and hence also the load spectra,will be different from each new simulation.As the number of simulations or the number of folds increases,the load spectra will converge.Fig.16 shows the load spectra for the range of cycles for five different fold numbers:1-fold(original measurement of 15minutes),4-fold(1hour),96-fold(1day).Due to the limit of hard disk,longer extrapolations are not carried out here.

    Fig.16 Effect of fold number on the load spectra for the range of cycles

    5 Further issues for the determination of design load from the short time measurement

    How to construct the design load from limited practical measurements is a very important issue.However,from Fig.16 one may be aware that using different measurement results may result in different design loads if we simply apply the method introduced above.This is certainly not satisfactory from practical application point of view.In order to overcome this deficiency,we suggest to take into account the corresponding wave data information.In order to determine the design load for a specific ship,we first need to provide the time fraction for each sea state,(Si,pi),where i is the sea state number from 0 to 12,0 can be used as the port time,Siis the ith sea state number and piis the time fraction of the ith sea state.Now if we know a short time period of sea state k.We can convert this measurement to different sea states assuming all the responses are in linear range.Then for each sea state,we extrapolate to the corresponding fraction of the design life and count the cycles.Summarizing all the cycles for different sea states,we can derive the load spectra.This load spectrum will be independent of the short time measurements.If the time fraction for each sea state,(Si,pi)has been specified,no matter what sea state is used for the short time measurement,the same design load spectrum will be derived.However,how to construct the time sequence is another challenging problem.This is basically the problem to construct a so-called standardized load history[25-26].This problem will be investigated in the future.

    6 Summary and conclusions

    Fatigue life prediction requires the information of fatigue loading history or spectrum over the whole design life.There are basically two types of methods to determine the fatigue loads,one is based on calculation and the other is based on experiment.However,in many cases,the measured load history can only include a very short time compared to the entire design life.How to extrapolate the measured loads to longer time and how to count the information for every cycle are two important problems to be solved in fatigue analysis.In this paper,a method to extrapolate the measured loads to longer time has been introduced together with the rainflow cycle counting method.Both methods have been implemented into computer programs.An example calculation is given to illustrate the process.Problems on how to use these two methods to determine the design load are also pointed out.

    Acknowledgements

    This study was supported by the Innovative Scholars Support Program of Jiangsu Province,Project No.SBK2008004,2008-2010.

    [1]Almar-Naess A.Fatigue Handbook[K].Tapir,1985.

    [2]Petershagen H.Fatigue problems in ship structures[M].Advances in Marine Structures,Elsevier Applied Science,London,1986:281-304.

    [3]Clarke J D.Fatigue crack initiation and propagation in warship hulls[M].Advances in Marine Structures-2,Smith C S and Dow R S,(eds),Elsevier Applied Science,London,1991:42-60.

    [4]Liu D,Thayamballi A.Local cracking in ships-causes,consequences,and control[C]//Proceedings:Workshop and Symposium on the Prevention of Fracture in Ship Structure,March 30-31,1995.Washington,D.C.,Marine Board,Committee on Marine Structures,National Research Council,1996.

    [5]Cui W C.A state-of-the-art review on fatigue life prediction methods for metal structures[J].J Mar Sci Technol.,2002,7:43-56.

    [6]Schijve,Jaap.Fatigue of Structures and Materials[M].Second Edition with CD-Rom.Springer Science+Business Media,B.V.,2009.

    [7]Socie D.Modelling expected service usage from short-term loading measurements[J].Int.J Mater.Prod.Technol.,2001,16:295-303.

    [8]Dressler K,Gründer B,Hack M,K?ttgen V B.Extrapolation of rainflow matrices[R].SAE Technical Paper 960569,1996.

    [9]Castillo E.Extreme Value Theory in Engineering[M].Academic Press,San Diego,1988.

    [10]Johannesson P,Thomas J J.Extrapolation of rainflow matrices[Z].Extremes 4,2001:241-262.

    [11]Johannesson P.Extrapolation of load histories and spectra[J].Fatigue Fract Engng Mater Struct,2006,29:201-207.

    [12]Etube L S.Fatigue and fracture mechanics of offshore structures[M].Professional Engineering Publishing Limited,London and Bury St.Edmunds,UK,2001.

    [13]Hu Jiajun.The full scale measurement of a surface ship under high sea states[R].Technical Report No.07150,China Ship Scientific Research Center,2007.(in Chinese)

    [14]Davison A C,Smith R L.Models for exceedances over high thresholds[J].J Royal Stat.Soc.,Ser.B,1990,52:393-442.

    [15]ESDU 95006.Fatigue life estimation under variable amplitude loading using cumulative damage calculations[Z].Issued September 1995 With Amendment A,1995.

    [16]ASTM Standard practices for cycle counting in fatigue analysis[K].American Society for Testing and Materials,Philadelphia,PA,USA.E1049-85(Reapproved 1990).

    [17]Amzallag C,et al.Standardization of the rainflow counting method for fatigue analysis[J].Int.J of Fatigue,1994,16(4):287-293.

    [18]Matsuishi M,Endo T.Fatigue of metals subjected to varying stress[M].Jpn Soc Mech Eng,Fukuoka,Japan,1968.

    [19]Downing S D,Socie D F.Simple rainflow counting algorithms[J].Int.J Fatigue,1982,4(1):31-40.

    [20]Rychlik I.A new definition of the rainflow cycle counting method[J].Int.J Fatigue,1987,9:119-121.

    [21]Vasudevan A K,Sadananda K,Glinka G.Critical parameters for fatigue damage[J].International Journal of Fatigue,2001,23:S39-S53.

    [22]Sadananda K,Sarkar S,Kujawski D,Vasudevan A K.A two-parameter analysis of S-N fatigue life using Δσ and σmax[J].International Journal of Fatigue,2009,31:1648-1659.

    [23]Rainflow Cycle Counting Software[CP].2002 Release,Durability,Inc.1995-2002.

    [24]Nieslony A.Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components[J].Mechanical Systems and Signal Processing,2009,23(8):2712-2721.

    [25]Berger,et al.Betriebsfestigkeit in Germany-an overview[J].International Journal of Fatigue,2002,24:603-625.

    [26]Heuler P,Kl?tschke H.Generation and use of standardised load spectra and load-time histories[J].International Journal of Fatigue,2005,27:974-990.

    [27]Grimshaw S D.Computing maximum likelihood estimates of the generalized Pareto distribution[J].Technometrics,1993,35:185-191.

    [28]Hosking J R M,Wallis J R.Parameter and quantile estimation of the generalized Pareto distribution[J].Technometrics,1989,29:339-349.

    從短期測(cè)量數(shù)據(jù)來(lái)生成疲勞載荷的一種實(shí)用算法的開發(fā)

    李珊珊1,黃志博2,崔維成1,2

    (1上海交通大學(xué)海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200030;2中國(guó)船舶科學(xué)研究中心,江蘇 無(wú)錫 214082)

    疲勞壽命預(yù)報(bào)需要知道在全設(shè)計(jì)壽命期內(nèi)的疲勞載荷時(shí)間歷程或載荷譜的信息。但是,在很多情況下,實(shí)際測(cè)量或模擬的載荷時(shí)間歷程與設(shè)計(jì)壽命相比只包含很短的一段時(shí)間。如何將測(cè)量的數(shù)據(jù)外插到更長(zhǎng)的時(shí)間段以及如何計(jì)數(shù)出每周的信息是疲勞分析中必須要解決的兩個(gè)重要問(wèn)題。文中的主要目的就是介紹一種將實(shí)測(cè)載荷外插的方法以及雨流計(jì)數(shù)法。這兩種方法均被編成相應(yīng)的計(jì)算程序。一條水面船的實(shí)測(cè)數(shù)據(jù)用作例子來(lái)演示計(jì)算過(guò)程。最后對(duì)如何采用這兩種方法來(lái)構(gòu)建疲勞設(shè)計(jì)載荷問(wèn)題也提出了思路。

    載荷歷程;雨流過(guò)濾器;載荷外插;載荷譜;雨流計(jì)數(shù)

    U662.2

    A

    李珊珊(1985-),女,上海交通大學(xué)海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,博士研究生;

    崔維成(1963-),男,中國(guó)船舶科學(xué)研究中心研究員,博士生導(dǎo)師。

    U662.2

    A

    1007-7294(2011)03-0286-15

    date:2011-01-23

    Supported by the Innovative Scholars Support Program of Jiangsu Province(No.SBK 2008004,2008-2010)

    王志博(1984-),男,中國(guó)船舶科學(xué)研究中心工程師;

    猜你喜歡
    雨流海洋工程科學(xué)研究
    歡迎訂閱《林業(yè)科學(xué)研究》
    歡迎訂閱《紡織科學(xué)研究》
    紡織科學(xué)研究
    紡織科學(xué)研究
    葉柵式反推力裝置輔助導(dǎo)軌疲勞壽命預(yù)測(cè)
    海洋工程專家 劉培林
    《海洋工程》第二屆理事會(huì)
    海洋工程(2015年1期)2015-10-28 01:36:21
    海洋工程學(xué)會(huì)第四屆理事會(huì)
    海洋工程(2015年1期)2015-10-28 01:29:14
    雨流計(jì)數(shù)法在結(jié)構(gòu)疲勞損傷計(jì)算中的應(yīng)用
    科技視界(2015年16期)2015-02-27 10:18:12
    北斗RDSS在海洋工程數(shù)據(jù)傳輸中的應(yīng)用
    久久精品91无色码中文字幕| 天天添夜夜摸| 日韩 欧美 亚洲 中文字幕| 深夜精品福利| 69av精品久久久久久 | 变态另类成人亚洲欧美熟女 | 色综合欧美亚洲国产小说| 99精品在免费线老司机午夜| 五月天丁香电影| 国产一区二区三区视频了| 国产精品麻豆人妻色哟哟久久| 黄片小视频在线播放| 夜夜爽天天搞| 婷婷丁香在线五月| 99国产精品一区二区三区| 人人妻,人人澡人人爽秒播| 99在线人妻在线中文字幕 | 成人影院久久| 精品少妇一区二区三区视频日本电影| 国产真人三级小视频在线观看| 久久久久精品人妻al黑| 黄频高清免费视频| 国产一区二区在线观看av| 怎么达到女性高潮| 欧美日韩亚洲高清精品| 久久av网站| 中国美女看黄片| 亚洲avbb在线观看| 久久久久网色| h视频一区二区三区| 免费观看人在逋| 日本wwww免费看| 国产aⅴ精品一区二区三区波| 黄色毛片三级朝国网站| 老司机在亚洲福利影院| 久久久精品免费免费高清| 99国产精品一区二区蜜桃av | 久久精品亚洲精品国产色婷小说| 日韩制服丝袜自拍偷拍| 日韩视频一区二区在线观看| 久久这里只有精品19| 久久人妻av系列| 亚洲五月色婷婷综合| 欧美精品高潮呻吟av久久| 亚洲性夜色夜夜综合| 日韩有码中文字幕| 午夜福利视频精品| 十八禁高潮呻吟视频| 成人免费观看视频高清| 久久这里只有精品19| 丝袜美足系列| 丝瓜视频免费看黄片| 国产三级黄色录像| 日本vs欧美在线观看视频| xxxhd国产人妻xxx| 伊人久久大香线蕉亚洲五| 啦啦啦 在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 91精品国产国语对白视频| 另类精品久久| 国产一区二区三区综合在线观看| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区在线不卡| 国产视频一区二区在线看| 少妇被粗大的猛进出69影院| 高清毛片免费观看视频网站 | 精品国产一区二区三区四区第35| 大型av网站在线播放| 亚洲精品乱久久久久久| 不卡av一区二区三区| 曰老女人黄片| www.自偷自拍.com| 51午夜福利影视在线观看| 久久精品亚洲av国产电影网| 俄罗斯特黄特色一大片| 日本a在线网址| 久久久国产成人免费| 最近最新中文字幕大全电影3 | 大型黄色视频在线免费观看| 色播在线永久视频| 国产激情久久老熟女| a在线观看视频网站| 精品乱码久久久久久99久播| 涩涩av久久男人的天堂| 麻豆乱淫一区二区| 午夜福利影视在线免费观看| 黄色a级毛片大全视频| 美女高潮到喷水免费观看| 在线观看www视频免费| 欧美变态另类bdsm刘玥| av视频免费观看在线观看| 国产精品久久久人人做人人爽| 在线观看一区二区三区激情| 午夜免费成人在线视频| 国产精品久久久人人做人人爽| 捣出白浆h1v1| 日韩三级视频一区二区三区| 高清黄色对白视频在线免费看| 国产黄色免费在线视频| 女警被强在线播放| 麻豆av在线久日| 日韩精品免费视频一区二区三区| 亚洲熟女毛片儿| a级毛片黄视频| 美国免费a级毛片| 精品少妇久久久久久888优播| 丰满少妇做爰视频| 国产在视频线精品| 国精品久久久久久国模美| av网站在线播放免费| 日韩一卡2卡3卡4卡2021年| 91国产中文字幕| 高清黄色对白视频在线免费看| 亚洲精品粉嫩美女一区| 久久天堂一区二区三区四区| 亚洲欧美色中文字幕在线| 亚洲 国产 在线| 欧美亚洲日本最大视频资源| 女同久久另类99精品国产91| 99国产精品一区二区三区| 色综合婷婷激情| xxxhd国产人妻xxx| 国产精品欧美亚洲77777| 人妻久久中文字幕网| netflix在线观看网站| 看免费av毛片| 精品第一国产精品| 夫妻午夜视频| 欧美成人免费av一区二区三区 | 久久国产精品影院| 久久精品亚洲熟妇少妇任你| 久久精品国产综合久久久| 精品国内亚洲2022精品成人 | 久久久精品94久久精品| 亚洲成国产人片在线观看| 99久久99久久久精品蜜桃| 欧美日韩黄片免| 在线永久观看黄色视频| 91麻豆精品激情在线观看国产 | 如日韩欧美国产精品一区二区三区| 午夜成年电影在线免费观看| 老熟妇乱子伦视频在线观看| 国产男靠女视频免费网站| 久久av网站| 亚洲av欧美aⅴ国产| 一本—道久久a久久精品蜜桃钙片| 黑人操中国人逼视频| 精品亚洲乱码少妇综合久久| 精品少妇黑人巨大在线播放| 久久亚洲真实| 亚洲国产欧美在线一区| 9191精品国产免费久久| 亚洲中文字幕日韩| 久久久欧美国产精品| 亚洲人成77777在线视频| 十八禁网站免费在线| 女同久久另类99精品国产91| 国产真人三级小视频在线观看| 国产在线免费精品| 大型av网站在线播放| 性少妇av在线| 超色免费av| 夫妻午夜视频| a级毛片黄视频| 亚洲欧美色中文字幕在线| 午夜福利在线免费观看网站| 久久久国产成人免费| 高清av免费在线| 在线十欧美十亚洲十日本专区| 丁香六月天网| 国产免费av片在线观看野外av| 99精品欧美一区二区三区四区| 中亚洲国语对白在线视频| 欧美成人免费av一区二区三区 | 90打野战视频偷拍视频| 黑人欧美特级aaaaaa片| 757午夜福利合集在线观看| 丁香六月天网| 极品教师在线免费播放| 亚洲人成伊人成综合网2020| 午夜福利视频精品| 亚洲全国av大片| 日韩三级视频一区二区三区| 国产欧美日韩一区二区精品| 我的亚洲天堂| 妹子高潮喷水视频| 精品乱码久久久久久99久播| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产色婷婷电影| 欧美日韩av久久| av在线播放免费不卡| 亚洲国产精品一区二区三区在线| 久久久久视频综合| 国产精品熟女久久久久浪| 在线观看一区二区三区激情| 狠狠狠狠99中文字幕| 亚洲成国产人片在线观看| 欧美 亚洲 国产 日韩一| 午夜免费成人在线视频| 久久国产精品大桥未久av| 日韩一卡2卡3卡4卡2021年| 一区二区三区乱码不卡18| 欧美av亚洲av综合av国产av| 精品免费久久久久久久清纯 | 国产高清国产精品国产三级| 国产亚洲av高清不卡| 欧美黄色片欧美黄色片| 亚洲国产欧美一区二区综合| 国产熟女午夜一区二区三区| 精品高清国产在线一区| 免费黄频网站在线观看国产| 狠狠婷婷综合久久久久久88av| 大片电影免费在线观看免费| 在线观看免费视频日本深夜| 国产主播在线观看一区二区| 母亲3免费完整高清在线观看| 国产精品美女特级片免费视频播放器 | 中文字幕最新亚洲高清| 欧美 亚洲 国产 日韩一| 免费少妇av软件| 男女下面插进去视频免费观看| √禁漫天堂资源中文www| 久久国产精品影院| 午夜福利,免费看| av福利片在线| 国产1区2区3区精品| 三上悠亚av全集在线观看| 亚洲精品粉嫩美女一区| 1024视频免费在线观看| 午夜老司机福利片| 男女高潮啪啪啪动态图| 99精品在免费线老司机午夜| 国产亚洲一区二区精品| 99久久人妻综合| 免费观看av网站的网址| 久久这里只有精品19| 亚洲成人手机| 国产日韩欧美视频二区| 精品人妻在线不人妻| 母亲3免费完整高清在线观看| 亚洲免费av在线视频| 真人做人爱边吃奶动态| 男人舔女人的私密视频| 欧美日本中文国产一区发布| 国产成人欧美在线观看 | 妹子高潮喷水视频| 一个人免费在线观看的高清视频| 色综合欧美亚洲国产小说| 亚洲熟女毛片儿| 免费高清在线观看日韩| 精品一区二区三区四区五区乱码| 757午夜福利合集在线观看| 亚洲精品美女久久久久99蜜臀| 一本色道久久久久久精品综合| 成人特级黄色片久久久久久久 | 欧美日韩成人在线一区二区| 热99re8久久精品国产| 久久中文字幕人妻熟女| 黄色视频,在线免费观看| 最新的欧美精品一区二区| bbb黄色大片| 精品高清国产在线一区| 天天影视国产精品| 国产福利在线免费观看视频| 菩萨蛮人人尽说江南好唐韦庄| 一级毛片精品| 日本五十路高清| 午夜福利在线免费观看网站| 亚洲精品成人av观看孕妇| 亚洲第一青青草原| 91国产中文字幕| 高清在线国产一区| 波多野结衣一区麻豆| 50天的宝宝边吃奶边哭怎么回事| 激情在线观看视频在线高清 | 亚洲精品在线观看二区| 男女之事视频高清在线观看| 一区二区av电影网| 国产欧美日韩一区二区精品| 50天的宝宝边吃奶边哭怎么回事| 亚洲少妇的诱惑av| 老鸭窝网址在线观看| 久久久久久久久久久久大奶| 欧美成狂野欧美在线观看| 欧美黄色片欧美黄色片| 日韩视频一区二区在线观看| 国产精品免费大片| 国产精品亚洲一级av第二区| 欧美变态另类bdsm刘玥| 国产精品偷伦视频观看了| 国产99久久九九免费精品| 99香蕉大伊视频| 精品一区二区三区四区五区乱码| 王馨瑶露胸无遮挡在线观看| 亚洲五月色婷婷综合| 黄色视频,在线免费观看| 午夜久久久在线观看| 97人妻天天添夜夜摸| 亚洲第一青青草原| 国产黄色免费在线视频| 色视频在线一区二区三区| 女人被躁到高潮嗷嗷叫费观| 久久久水蜜桃国产精品网| 高清黄色对白视频在线免费看| 中文字幕最新亚洲高清| 国产免费福利视频在线观看| 亚洲人成电影免费在线| 色婷婷久久久亚洲欧美| 国产精品免费一区二区三区在线 | 天天躁狠狠躁夜夜躁狠狠躁| 最近最新免费中文字幕在线| 亚洲成人手机| 欧美黑人精品巨大| 高清毛片免费观看视频网站 | 午夜福利一区二区在线看| 99riav亚洲国产免费| 久久久久国产一级毛片高清牌| 亚洲欧洲精品一区二区精品久久久| 成人精品一区二区免费| 一区二区三区精品91| 国产精品亚洲av一区麻豆| xxxhd国产人妻xxx| 黄网站色视频无遮挡免费观看| 天堂动漫精品| 亚洲精品国产一区二区精华液| 久久人人97超碰香蕉20202| 国产成人精品久久二区二区91| 免费一级毛片在线播放高清视频 | www.自偷自拍.com| 国产黄色免费在线视频| 成人三级做爰电影| 国产精品1区2区在线观看. | 久久久久久久大尺度免费视频| 免费观看av网站的网址| 亚洲成国产人片在线观看| 欧美乱码精品一区二区三区| 下体分泌物呈黄色| 热99久久久久精品小说推荐| 免费不卡黄色视频| 高清欧美精品videossex| 嫩草影视91久久| 90打野战视频偷拍视频| 极品教师在线免费播放| 19禁男女啪啪无遮挡网站| 热99re8久久精品国产| 激情在线观看视频在线高清 | 亚洲国产av影院在线观看| 咕卡用的链子| 男女床上黄色一级片免费看| 国产精品亚洲av一区麻豆| 不卡一级毛片| cao死你这个sao货| 脱女人内裤的视频| 精品国产一区二区三区四区第35| 亚洲一卡2卡3卡4卡5卡精品中文| 757午夜福利合集在线观看| 亚洲熟妇熟女久久| 午夜激情久久久久久久| 大型黄色视频在线免费观看| 日韩人妻精品一区2区三区| 午夜日韩欧美国产| kizo精华| 日韩大码丰满熟妇| 国产高清videossex| 50天的宝宝边吃奶边哭怎么回事| 精品亚洲成a人片在线观看| 一级,二级,三级黄色视频| 久久久久精品人妻al黑| 老司机影院毛片| 国产精品欧美亚洲77777| 18禁观看日本| 这个男人来自地球电影免费观看| 国产1区2区3区精品| 午夜福利乱码中文字幕| 女人精品久久久久毛片| 亚洲三区欧美一区| 久久久久久久精品吃奶| 两个人看的免费小视频| 97在线人人人人妻| 亚洲五月婷婷丁香| 一区二区av电影网| 国产99久久九九免费精品| bbb黄色大片| 人妻久久中文字幕网| 精品一区二区三区视频在线观看免费 | 亚洲成人免费电影在线观看| 老司机影院毛片| 啦啦啦视频在线资源免费观看| 999久久久国产精品视频| av网站免费在线观看视频| 亚洲午夜理论影院| 国产一卡二卡三卡精品| 久久性视频一级片| 日日爽夜夜爽网站| 少妇精品久久久久久久| 久久国产精品大桥未久av| 在线看a的网站| 久久亚洲真实| 久久精品91无色码中文字幕| 黑人操中国人逼视频| 十八禁高潮呻吟视频| 中文字幕人妻熟女乱码| 热re99久久精品国产66热6| 高清黄色对白视频在线免费看| 王馨瑶露胸无遮挡在线观看| 亚洲久久久国产精品| 亚洲avbb在线观看| 国产在线观看jvid| 免费在线观看黄色视频的| 日韩一区二区三区影片| 亚洲精华国产精华精| 2018国产大陆天天弄谢| 国产精品麻豆人妻色哟哟久久| 精品国产一区二区久久| 亚洲va日本ⅴa欧美va伊人久久| 19禁男女啪啪无遮挡网站| 欧美中文综合在线视频| 在线观看人妻少妇| 国产日韩欧美在线精品| 亚洲 国产 在线| 国产成人精品久久二区二区91| 亚洲欧美精品综合一区二区三区| 久久久久久久大尺度免费视频| 男女边摸边吃奶| 黑人操中国人逼视频| 国产在线视频一区二区| 最近最新中文字幕大全电影3 | 久久中文字幕一级| 精品高清国产在线一区| 男女床上黄色一级片免费看| e午夜精品久久久久久久| 天堂俺去俺来也www色官网| 69av精品久久久久久 | 国产午夜精品久久久久久| 法律面前人人平等表现在哪些方面| 丁香六月天网| 国产国语露脸激情在线看| 日韩中文字幕欧美一区二区| 国产成人精品久久二区二区91| 久久 成人 亚洲| 午夜福利乱码中文字幕| 精品国产一区二区久久| 中文亚洲av片在线观看爽 | 国产精品一区二区在线观看99| 国产aⅴ精品一区二区三区波| 女同久久另类99精品国产91| 免费在线观看完整版高清| 一进一出抽搐动态| 亚洲美女黄片视频| 国产亚洲午夜精品一区二区久久| 欧美激情 高清一区二区三区| 国产精品电影一区二区三区 | 亚洲天堂av无毛| 日韩欧美国产一区二区入口| av网站在线播放免费| kizo精华| 91精品国产国语对白视频| 国产精品二区激情视频| 50天的宝宝边吃奶边哭怎么回事| 国产一卡二卡三卡精品| 黑人猛操日本美女一级片| 久久久久视频综合| 飞空精品影院首页| 亚洲av日韩在线播放| 亚洲欧美一区二区三区久久| 国产三级黄色录像| 日日爽夜夜爽网站| 亚洲,欧美精品.| 国产激情久久老熟女| 国产欧美日韩一区二区三区在线| 亚洲av国产av综合av卡| 热99国产精品久久久久久7| 成在线人永久免费视频| 国产在线精品亚洲第一网站| 国产精品香港三级国产av潘金莲| 日韩大片免费观看网站| 99久久人妻综合| 99久久国产精品久久久| 亚洲少妇的诱惑av| 久久久久视频综合| av在线播放免费不卡| 色综合欧美亚洲国产小说| 久久国产精品男人的天堂亚洲| 日本撒尿小便嘘嘘汇集6| 自线自在国产av| 久久香蕉激情| 欧美日韩黄片免| 中文欧美无线码| 高清欧美精品videossex| 俄罗斯特黄特色一大片| 亚洲欧美一区二区三区久久| 性高湖久久久久久久久免费观看| 91精品国产国语对白视频| 国产午夜精品久久久久久| 免费在线观看日本一区| 80岁老熟妇乱子伦牲交| 亚洲欧洲日产国产| av在线播放免费不卡| av网站在线播放免费| 午夜福利欧美成人| 2018国产大陆天天弄谢| 99re在线观看精品视频| 2018国产大陆天天弄谢| 在线观看免费视频网站a站| 成年女人毛片免费观看观看9 | 50天的宝宝边吃奶边哭怎么回事| 91精品三级在线观看| 搡老熟女国产l中国老女人| 极品教师在线免费播放| 精品久久久精品久久久| 少妇裸体淫交视频免费看高清 | 1024香蕉在线观看| 色综合婷婷激情| 欧美精品人与动牲交sv欧美| 午夜视频精品福利| 国产单亲对白刺激| 国产精品二区激情视频| 99国产精品一区二区三区| 91国产中文字幕| 涩涩av久久男人的天堂| 久久影院123| 99精国产麻豆久久婷婷| 9热在线视频观看99| 欧美人与性动交α欧美精品济南到| 欧美精品高潮呻吟av久久| 黑人欧美特级aaaaaa片| 狠狠婷婷综合久久久久久88av| 建设人人有责人人尽责人人享有的| 精品一区二区三区四区五区乱码| 国产精品久久久人人做人人爽| 美女福利国产在线| a级毛片在线看网站| 好男人电影高清在线观看| 免费久久久久久久精品成人欧美视频| 亚洲成人国产一区在线观看| 人人澡人人妻人| 国产欧美亚洲国产| 中文字幕精品免费在线观看视频| 男女边摸边吃奶| 亚洲熟女毛片儿| 亚洲精品自拍成人| 黄网站色视频无遮挡免费观看| 成年人黄色毛片网站| 国产成人欧美| 99香蕉大伊视频| 亚洲精品在线观看二区| 91麻豆av在线| av视频免费观看在线观看| 亚洲情色 制服丝袜| 啦啦啦 在线观看视频| 日日摸夜夜添夜夜添小说| 精品福利永久在线观看| 嫩草影视91久久| 色尼玛亚洲综合影院| 国产精品一区二区在线观看99| 亚洲精品成人av观看孕妇| 午夜老司机福利片| 国产一区有黄有色的免费视频| 亚洲国产中文字幕在线视频| 日韩欧美三级三区| 日日爽夜夜爽网站| 欧美日韩亚洲综合一区二区三区_| 免费日韩欧美在线观看| 99riav亚洲国产免费| 12—13女人毛片做爰片一| 桃花免费在线播放| 99国产精品免费福利视频| 99九九在线精品视频| av网站免费在线观看视频| 丰满饥渴人妻一区二区三| 久久这里只有精品19| 久久精品国产亚洲av香蕉五月 | 精品一区二区三区av网在线观看 | 久久久精品国产亚洲av高清涩受| 在线观看一区二区三区激情| 亚洲久久久国产精品| 亚洲国产精品一区二区三区在线| 少妇 在线观看| 国产国语露脸激情在线看| 精品一区二区三卡| 精品国产乱子伦一区二区三区| 精品久久久久久久毛片微露脸| 国产精品熟女久久久久浪| 国产黄频视频在线观看| 国产在线一区二区三区精| 熟女少妇亚洲综合色aaa.| 一区福利在线观看| 一级毛片女人18水好多| 人人妻人人澡人人爽人人夜夜| 老司机亚洲免费影院| 十八禁人妻一区二区| 好男人电影高清在线观看| 欧美成人免费av一区二区三区 | 亚洲精品一卡2卡三卡4卡5卡| 国产av又大| 国产野战对白在线观看| 人妻久久中文字幕网| 欧美激情 高清一区二区三区| 日日爽夜夜爽网站| 黑丝袜美女国产一区| 下体分泌物呈黄色| 男人操女人黄网站| 一个人免费看片子| 亚洲欧洲精品一区二区精品久久久| 国产亚洲欧美在线一区二区| 久久精品亚洲熟妇少妇任你| 欧美日韩成人在线一区二区| 欧美+亚洲+日韩+国产| av网站在线播放免费| 99国产精品免费福利视频| 精品久久久精品久久久| 午夜福利在线观看吧| 12—13女人毛片做爰片一| 久久精品国产99精品国产亚洲性色 | 一区二区三区乱码不卡18|