• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One Step Preparation of Sulfonated Solid Catalyst and Its Effect in Esterification Reaction*

    2014-07-18 11:56:14康世民,常杰,范娟
    關(guān)鍵詞:世民

    One Step Preparation of Sulfonated Solid Catalyst and Its Effect in Esterification Reaction*

    KANG Shimin (康世民), CHANG Jie (常杰)**and FAN Juan (范娟)
    The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

    A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions: 200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated catalyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g?1, 0.78 mmol·g?1, 2.18 mmol·g?1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zirconia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.

    red liquor solids, sulfonated solid catalyst, carbonization, esterification

    1 INTRODUCTION

    Carbon-based sulfonated catalyst is becoming a research hotspot recently, which is widely used in biodiesel production [1-4], hydrolysis of cellulose [5], and some other organic synthesis [6, 7]. There are two ways for the synthesis of carbon-based sulfonated catalyst: (1) hydroxyethylsulfonic acid [6], p-toluenesulfonic acid [7] etc. were adapted as the sulfonating agents in hydrothermal conditions, using furaldehyde, glucose etc. as carbon sources; (2) sulfonation of carbon-based precursor with concentrated sulfuric acid (H2SO4), while the precursor was often obtained by carbonization of biomass at high temperatures [3, 4, 8]. However, these sulfonation agents are usually expensive, while the carbonization of biomass for precursor preparation resulted in additional cost. Besides, a few studies on directly incomplete carbonization of low molecular mass compounds (e.g. naphthalene, C10H8) by concentrated H2SO4were reported, but it was found that the sulfonated species on these catalysts were totally lost in the reuse [9]. One possible reason of this instability was due to the low molecular mass of the raw materials, the products of which may be partly dissolved in organic solvents even after carbonization.

    Red liquor solid (RLS) is a papermaking byproduct, which is often considered as a low value added material, and the main organic constituent in red liquor is lignosulfonate, a phenolic macromolecular polymer. Besides, biodiesel has received a great deal of attention as an alternative candidate for conventional fossil fuel, and catalytic esterification synthesis of biodiesel by solid acid (e.g. ion exchange resin, molecular sieve, sulfated zirconia) was widely studied [2, 3, 8, 10-14]. Oleic acid is a free fatty acid, and catalytic esterification of oleic acid can be a model process for biodiesel production. The object of this work was to synthesize sulfonated catalyst from macromolecule RLS by one step: the RLS was directly carbonized and sulfonated by concentrated H2SO4, without a carbon-based precursor preparation process at high temperatures. Catalytic effect of the RLS derived sulfonated catalyst for esterification of oleic acid was tested.

    2 EXPERIMENTAL

    2.1 Materials

    The RLS was dried powders of the red liquor, with magnesium lignosulfonate as the main organic constituent. Methyl oleate (standard reagent, purity of 99%) and oleic acid (purity of 85%) were obtained from Aladdin-Reagent Co., Ltd., Shanghai, China. Concentrated H2SO4(95%-98%, by mass) was obtained from Kaixin Chemical Reagent Co., Ltd. from the market. HZSM-5 molecular sieve was obtained from Tianjin Kaimeisite Technology Co. Strong-acid 732 resin was obtained from Shanghai Lingfeng Chemical Reagent Co., which was a strong acidic styrene type cation exchange resin with a diameter of 0.4-0.6 mm. Sulfated zirconia was synthesized according to Yee et al. [12].

    2.2 Catalyst preparation

    Concentrated H2SO4(100 ml) and 5 g of RLSwere mixed into a 250 ml round-bottomed flask into an oil bath with temperature of 200 °C. The sulfonating reaction was continued for 12 h with a certain mixing speed. After the reaction, the concentrated H2SO4solution was diluted and filtered. The H2SO4recovered after filtration of the solid can be reused for repeated sulfonation. Black precipitate was collected and washed with hot deionized water (~80 °C) until impurities such as sulfate ions were no longer detected in the washing water. The black precipitate was then dried at 75 °C to form the sulfonated catalyst (SC) (about 1.4 g).

    2.3 Characterization

    The obtained sulfonated carbon catalyst was characterized by X-ray diffraction (XRD) (D8 Advance, Bruker), thermogravimetry (TG) and derivative thermogravimetry (DTG) (TGAQ 5000, TA Instruments Co., USA), Fourier transform infrared spectroscopy (FTIR) (Nexus 670, Nicolet), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) (S-3700N, Hitachi, Japan), X-ray photoelectron spectroscopy (XPS) (Kratos AXis Ultra, Shimadzu, Japan), Brunauer-Emmett-Teller (BET) surface area (ASAP 2020 V3.03 H, Micromeritics), and elemental analyzer (elementar Vario EL III, Germany).

    The total SO3H + COOH and SO3H + COOH + OH contents were estimated from the exchange of Na+in aqueous NaCl and NaOH solutions, respectively. The densities of SO3H groups were estimated based on the sulfur content determined from sample compositions obtained by elemental analysis and XPS analysis [5].

    2.4 Catalytic activity test

    Methyl oleate production was performed in a stirred 25 ml round-bottomed flask at 65 °C for 4 h. 0.05 g of solid acid catalyst was added to 1 g of oleic acid and 8 ml of methanol. The yield of methyl oleate was analyzed by the external method through gas chromatography [Shimadzu QP 2010 Plus equipped, with Rxi-5ms column (30 m×0.25 mm×0.25 μm)]. The temperature of the injector was set at 270 °C, the oven temperature was started at 200 °C for 2 min, heated at a rate of 10 °C·min?1to 275 °C, and then held for 5 min. A standard curve was obtained by correlating the peak area with the concentration of a series of methyl oleate solutions, and then the content of methyl oleate after reaction was calculated according to the peak area and the standard curve.

    2.5 Catalyst regeneration

    Regeneration Method 1: the 3rd time reused catalyst was dipped into 10% H2SO4solution for about 10 h (including sonic oscillation for 1 h) and washed with pure water. Subsequently, the catalyst was dried and resupplied for the next experimental run. The regenerated catalyst was labeled as regenerated SC-1.

    Regeneration Method 2: the 3rd time reused catalyst was regenerated according to Refs. [15, 16]. Briefly, it was dipped into 150 °C concentrated H2SO4for 12 h, and then it was washed and, dried, and resupplied for the next experimental run. This regenerated catalyst was labeled as regenerated SC-2.

    3 RESULTS AND DISCUSSION

    3.1 Characterization of catalyst

    The SC exists as solid particles, and the surface topography is shown by SEM spectra image in Fig. 1. The XRD pattern (Fig. 2) shows a broad diffraction peak in a 2θ range of 20°-30°, and the wide-angle pattern matches well with that previously report for non-graphitic carbon [5]. This indicates that the RLS can not be completely graphitized by concentrated H2SO4carbonization at such a low temperature (200 °C). FT-IR spectrum (Fig. 3) shows that the SC owns the aromatic structure (1610, 1420 cm?1), OH group (3410 cm?1), SO3H group (1170, 1040 cm?1) and C O group (1713 cm?1). Compared with the FT-IR spectrum of SC and RLS, the SO3H group on the SC can be derived from

    Figure 1 SEM spectra of SC

    Figure 2 XRD pattern of SC

    Figure 3 FT-IR spectrum of SC and RLS

    both the RLS and concentrated H2SO4, while the C O group is probably produced by concentrated H2SO4oxidation of OH and CH groups. From the TG and derivative thermogravimetry (DTG) curves (Fig. 4), the sample mass decreased with increasing temperature, and the mass loss before 200 °C is moderate, which maybe caused by the loss of water adsorbed on the SC. As shown in Fig. 5, the results of XPS analysis show the sulphur (S) exists in the forms of SO3H groups and other groups, and the S 2p region in XPS spectrum indicates that about 68% S exists in the form of SO3H group (168 eV). There are two binding energy peaks for the carbon: the peak at 285 eV corresponds to the elemental carbon, which is the substrate of the catalyst; while the small peak at 289 eV corresponds to COOH groups (Fig. 5). Elemental analysis (Table 1), ash test (Table 1), XPS analysis, and cation-exchange experiments (Table 2) reveal that the sample composition is (CH0.68O0.65S0.026)An(A is ash, with a mass content of 0.74%), and the amounts of SO3H, COOH, and phenolic OH groups bonded to the carbon skeleton are 0.74 mmol·g?1, 0.78 mmol·g?1, 2.18 mmol·g?1, respectively.

    Figure 4 TG and DTG curves of SC

    The element content on and near the surface of fresh SC was detected by EDS analysis (Table 3). Compared with the elemental analysis data in Table 1,the results show that the S, O contents on and near the surface are higher than the contents on the whole fresh SC, while the C content on and near the surface is lower than that on the whole fresh SC. These results indicate that the fresh SC is made up of C enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. According to the above discussion, a schematic structure of SC is proposed as shown in Fig. 6.

    Table 1 Ash content and elementary analysis by elemental analyzer

    Table 2 Cation-exchange values and specific surface area

    3.2 Catalytic activity

    Figure 5 The XPS spectrum of SC

    Table 3 Surface elementary analysis of SCs (fresh, 3rd time reused, and regenerated) by EDS

    Figure 6 The proposed schematic structure of SC

    The catalytic effects for methyl oleate production are shown in Fig. 7. The yield of the control experiments is lower than 1%, while the yield with fresh SC addition reaches about 85%. And the fresh SC shows much higher yield than that of all the other traditional solid acid catalysts (sulfated zirconia, 732 cation exchange resin, and HZSM-5 molecular sieve). Compared with Table 2 and Fig. 7, there seems no relations between catalytic activity and BET specific surface area, cation-exchange capacity for different catalysts. The possible reasons of the strong SC catalytic activity are discussed: (1) The SC possesses three different

    acidic functional groups (OH, COOH, SO3H), there may be synergic action among the three acidic functional groups though the SO3H group is often considered as the major catalytic active sites, while those traditional solid acid catalysts usually contain single acidic functional groups; (2) there was a large content of OH group (2.18 mmol·L?1) in the SC, which can incorporate both the two polar reactants (methanol and oleic acid) to the catalyst surface, and then acceleratethe esterification reaction.

    Figure 7 The yield of methyl oleate produced with or without catalysts

    Figure 8 The proposed sulfonated catalyst deactivation and regeneration mechanism, and the deactivation mechanism were a revision according to Fraile et al. [17]

    However, the SC catalytic activity decreases with more recycles (Fig. 7), which is coincided with the results of catalysts produced by two procedures (high temperature carbonization, and then sulfonation) reported by Chen and Fang [3], Rao et al. [14], and Fraile et al [17]. The SO3H and the COOH contents decreased from 1.52 to 0.65 mmol·g?1after the 3rd time reuse (Table 2). The reuse experiments caused deactivation should be related to the leaching of SO3H groups from polycyclic aromatic hydrocarbons and/or formation of sulfonate esters according to the former reports [3, 14, 17]. The S content on and near the 3rd time reused SC surface (3.25%, by mass) was 11.6% lower than that on the fresh SC (3.68%, by mass), however, the catalytic activity was almost deactivated after the 3rd time reuse, that indicated the small portion leaching of S was not the main deactivation reasons. These results also indicate that the carbon based sulfonated catalysts produced by direct sulfonation and carbonization from macromolecule polymer may own better stabilities than that from low molecular mass compounds, as compared with the results reported by Hara et al [9].

    In regeneration Method 1, 10% H2SO4was used to regenerate the catalyst from the 3rd time reuse. After the catalyst regeneration with 10% H2SO4, the SO3H and COOH contents are back to 1.05 mmol·g?1(Table 2), and more than half of the catalytic activity is recovered, and the catalytic activity is much better than that of 732 cation exchange resin (Fig. 7). On the other hand, the S content on and near the 3rd time reused SC surface after regeneration is only slightly changed (from 3.25% to 3.28%, by mass Table 3). However, few papers on the carbon based sulfonated catalyst regeneration mechanism in this area were reported in the past works. In this paper, the possible SC deactivation and regeneration mechanism are proposed as shown in Fig. 8. Considering the change of cationexchange values (the SO3H and COOH contents) and S contents among different samples (the fresh SC, the 3rd time reused SC, and regenerated SC-1), the main deactivation of the SC should be the formation of sulfonate esters and carbonic esters, similar to the resultsthat reported by Fraile et al [17]. The probable reason for the regeneration results is that the sulfonate methyl esters and carboxylic acid methyl esters on the SC were hydrolyzed, and the SO3H and COOH groups were regained by 10% H2SO4regeneration, as H2SO4is a well know ester hydrolysis catalyst. This deactivation and regeneration mechanism suggests that the carbon based sulfonated catalysts can be deactivated in alcohol involved reactions, e.g. esterification, and these kinds of deactivated catalysts can be simply regenerated by dilute acid treatment.

    However, the regeneration Method 1 was not effective enough though most of the catalytic activity can be recovered, so regeneration Method 2 was developed. As shown in Fig. 7, compared with the fresh SC, the regenerated SC-2 showed almost the same catalytic activity. Compared with regeneration Method 1, the regeneration Method 2 showed efficient recovery of catalytic activity but had complicated process conditions. Since the SC is produced from a low-cost raw material with a simple procedure, and can be regeneratable, it can probably compete with commercial catalysts (such as strong-acid 732 cation exchange resin) for the esterification of fatty acids into biodiesel. Further improvement on catalytic stability and simplify of regeneration Method 2 are required before this SC can be considered on an industrial scale.

    4 CONCLUSIONS

    A carbon based sulfonated catalyst containing SO3H, COOH, OH groups was produced by one step from low value-added RLS in a moderate condition, with a composition of (CH0.68O0.65S0.026)An. Catalytic activity for methyl oleate production was tested, and the fresh catalyst showed higher catalytic activity in esterification of oleic acid compared to traditional solid acid catalysts. The catalyst deactivated gradually after recycles usage, and the catalytic activity of the reused catalyst can be mostly regained by regeneration Method 1 and fully regained by regeneration Method 2, respectively. The deactivation and regeneration mechanisms of catalyst were proposed. Considering the somewhat low leaking degree of the S species from RLS derived sulfonated catalyst, further work on catalyst produced by direct sulfonation and carbonization of some other macromolecular polymers seems promising.

    REFERENCES

    1 Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi, S., Domen, K., Hara, M., “Biodiesel made with sugar catalyst”, Nature, 480, 178 (2005).

    2 Lou, W.Y., Zong, M.H., Duan, Z.Q., “Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts”, Bioresour. Technol., 99 (18), 8752-8758 (2008).

    3 Chen, G., Fang, B., “Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production”, Bioresour. Technol., 102 (3), 2635-2640 (2011).

    4 Shu, Q., Gao, J., Liao, Y., Wang, J., “Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst”, Chin. J. Chem. Eng., 19 (1), 163-168 (2011).

    5 Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., Hara, M., “Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups”, J. Am. Chem. Soc., 130 (38), 12787-12793 (2008).

    6 Liang, X., Zeng, M., Qi, C., “One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization”, Carbon, 48 (6), 1844-1848 (2010).

    7 Zhang, W., Tao, H., Zhang, B., Ren, J., Lu, G., Wang, Y., “One-pot synthesis of carbonaceous monolith with surface sulfonic groups and its carbonization/activation”, Carbon, 49 (6), 1811-1820 (2011).

    8 Shu, Q., Nawaz, Z., Liao, Y., Zhang, Q., Wang, D., Wang, J., “Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: Reaction and separation”, Bioresour. Technol., 101 (3), 5374-5384 (2010).

    9 Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J.N., Hayashi, S., Domen, K., “A carbon material as a strong protonic acid”, Angew Chem. Int. Ed., 43 (22), 2955-2958 (2004).

    10 Gan, M., Pan, D., Ma, L., Yue, E., Hong, J. “The kinetics of the esterification of free fatty acids in waste cooking oil using Fe2(SO4)3/C Catalyst”, Chin. J. Chem. Eng., 17 (1), 83-87 (2009)

    11 Li, J., Fu, Y.J., Qu, X.J., Wang, W., Luo, M., Zhao, C.J., Zu, Y.G.,“Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge) seed oil using ion exchange resin as heterogeneous catalyst”, Bioresour. Technol., 108, 112-118 (2012).

    12 Yee, K.F., Lee, K.T., Ceccato, R., Abdullah, A.Z., “Production of biodiesel from Jatropha curcas L. oil catalyzed by SO42- /ZrO2 catalyst: Effect of interaction between process variables”, Bioresour. Technol., 102 (5), 4285-4289 (2011).

    13 Shibasaki-Kitakawa, N., Honda, H., Kuribayashi, H., Toda, T., Fukumura, T., Yonemoto, T., “Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst”, Bioresour. Technol., 98 (2), 416-421 (2007).

    14 Rao, B.V.S.K., Mouli, K.C., Rambabu, N., Dalai, A.K., Prasad, R.B.N., “Carbon-based solid acid catalyst from de-oiled canola meal for biodiesel production”, Catal. Commun., 14 (1), 20-26 (2011).

    15 Yang, X., Wan, J., “Preparation of carbon- based solid acid catalyst and its catalytic performance”, Modern Chemical Industry, 31 (10), 34-37 (2011). (in Chinese)

    16 Zhao, Y., Wan, J., “Hydrolysis saccharification of OCC by a sulfonated carbon solid-acid catalyst”, Modern Chemical Industry, 30 (9), 40-44 (2010). (in Chinese)

    17 Fraile, J.M., García-Bordejé, E., Roldán, L., “Deactivation of sulfonated hydrothermal carbons in the presence of alcohols: Evidences for sulfonic esters formation”, J. Catal., 289, 73-79 (2012).

    2012-11-27, accepted 2013-04-17.

    * Supported by the State Key Development Program for Basic Research of China (2013CB228104, 2010CB732205), Ph. D Programs Foundation of Ministry of Education of China (20120172110011), and the National High Technology Research and Development Program of China (2012AA051801).

    ** To whom correspondence should be addressed. E-mail: changjie@scut.edu.cn

    猜你喜歡
    世民
    “石頭表哥”尹世民
    8年前的“小姨托孤”,如今有了最暖的結(jié)局
    A multilayer network diffusion-based model for reviewer recommendation
    濺蝕過程中紅壤團聚體周轉(zhuǎn)路徑的定量表征
    黃科院田世民、呂錫芝、張雷入選水利青年拔尖人才
    人民黃河(2022年4期)2022-04-07 09:03:16
    理發(fā)師
    科教新報(2021年21期)2021-07-21 15:38:12
    清華大學(xué)有所神秘學(xué)院
    科教新報(2020年23期)2020-07-21 22:49:18
    清華大學(xué)有所神秘學(xué)院
    科教新報(2020年22期)2020-06-11 08:48:29
    最后的麥子
    小說月刊(2016年5期)2016-05-06 16:42:27
    倫敦塔世民酒店 不走尋常路
    酒店精品(2016年4期)2016-04-29 00:44:03
    国产黄色免费在线视频| 大片免费播放器 马上看| 少妇人妻精品综合一区二区| 80岁老熟妇乱子伦牲交| av网站免费在线观看视频| 日韩大片免费观看网站| 午夜老司机福利剧场| 国产一级毛片在线| 午夜免费男女啪啪视频观看| 汤姆久久久久久久影院中文字幕| 伦理电影免费视频| 简卡轻食公司| 另类亚洲欧美激情| 成人毛片60女人毛片免费| 美女国产视频在线观看| 一区二区三区乱码不卡18| 99热这里只有精品一区| 久久久久久久久久久免费av| 国产成人91sexporn| 少妇猛男粗大的猛烈进出视频| 亚洲国产欧美日韩在线播放 | 国产欧美另类精品又又久久亚洲欧美| 国产精品熟女久久久久浪| 国产乱人偷精品视频| 五月开心婷婷网| av免费观看日本| 在线观看国产h片| 水蜜桃什么品种好| kizo精华| 男的添女的下面高潮视频| 中文欧美无线码| 亚洲三级黄色毛片| 国产免费又黄又爽又色| 成年女人在线观看亚洲视频| 久热这里只有精品99| 久久这里有精品视频免费| 国产伦在线观看视频一区| 亚洲国产日韩一区二区| 欧美+日韩+精品| 伦精品一区二区三区| 一级毛片黄色毛片免费观看视频| av又黄又爽大尺度在线免费看| 精品久久久精品久久久| 久久国产精品男人的天堂亚洲 | 中文字幕久久专区| 国产熟女欧美一区二区| 亚洲怡红院男人天堂| 男男h啪啪无遮挡| 亚洲精品国产av蜜桃| www.av在线官网国产| 少妇人妻一区二区三区视频| 色视频在线一区二区三区| 热re99久久精品国产66热6| 日韩在线高清观看一区二区三区| 国产熟女午夜一区二区三区 | 国产精品久久久久久久久免| 国产欧美亚洲国产| 七月丁香在线播放| 高清欧美精品videossex| 久久久a久久爽久久v久久| 精品国产一区二区三区久久久樱花| 成人国产麻豆网| 美女福利国产在线| 免费黄频网站在线观看国产| 纵有疾风起免费观看全集完整版| 成人影院久久| 久久99热6这里只有精品| 亚洲精华国产精华液的使用体验| av在线观看视频网站免费| 青春草亚洲视频在线观看| 国产视频内射| av有码第一页| 亚洲一级一片aⅴ在线观看| 日韩免费高清中文字幕av| 亚洲精品乱码久久久v下载方式| 成人亚洲精品一区在线观看| 国产成人91sexporn| 国产在视频线精品| 自线自在国产av| 熟妇人妻不卡中文字幕| 久久影院123| 青青草视频在线视频观看| 欧美日韩av久久| 一级毛片aaaaaa免费看小| 天天操日日干夜夜撸| 多毛熟女@视频| 狂野欧美白嫩少妇大欣赏| 成年女人在线观看亚洲视频| 一区二区三区精品91| 亚洲情色 制服丝袜| 一级av片app| 国产在线视频一区二区| 亚洲av.av天堂| 夜夜骑夜夜射夜夜干| 成人综合一区亚洲| 久久99精品国语久久久| 久久国产亚洲av麻豆专区| 乱人伦中国视频| 欧美区成人在线视频| 黑人高潮一二区| 国产精品一区www在线观看| 欧美变态另类bdsm刘玥| 日韩中字成人| 能在线免费看毛片的网站| 久久久国产欧美日韩av| 久久久久久久久久久久大奶| 国产黄片视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 男人添女人高潮全过程视频| av.在线天堂| 一级毛片电影观看| 69精品国产乱码久久久| 黑丝袜美女国产一区| 免费看光身美女| 永久免费av网站大全| 精品国产一区二区久久| 日日爽夜夜爽网站| 精品99又大又爽又粗少妇毛片| 黄色配什么色好看| 日韩中字成人| 人人妻人人添人人爽欧美一区卜| 99久国产av精品国产电影| 老女人水多毛片| 中文字幕人妻丝袜制服| av福利片在线| 青春草亚洲视频在线观看| 日本av手机在线免费观看| 一本大道久久a久久精品| 国产在线一区二区三区精| www.av在线官网国产| 久久久亚洲精品成人影院| 精品久久国产蜜桃| 水蜜桃什么品种好| 97在线人人人人妻| 十八禁网站网址无遮挡 | 国国产精品蜜臀av免费| 热re99久久国产66热| 妹子高潮喷水视频| 在线精品无人区一区二区三| 中文天堂在线官网| 欧美少妇被猛烈插入视频| 精品国产国语对白av| 伊人久久国产一区二区| 欧美高清成人免费视频www| 欧美日韩综合久久久久久| 一区二区av电影网| 黄色毛片三级朝国网站 | 亚洲国产精品一区二区三区在线| 午夜av观看不卡| 各种免费的搞黄视频| 国产成人a∨麻豆精品| 婷婷色av中文字幕| 日日摸夜夜添夜夜添av毛片| 日日啪夜夜撸| 青春草亚洲视频在线观看| 3wmmmm亚洲av在线观看| 亚洲欧洲精品一区二区精品久久久 | 国产成人aa在线观看| 亚洲av综合色区一区| 国产精品不卡视频一区二区| 国内少妇人妻偷人精品xxx网站| av福利片在线| 久久青草综合色| 亚洲成人一二三区av| 亚洲精品一二三| 交换朋友夫妻互换小说| 一级片'在线观看视频| 亚洲高清免费不卡视频| 九九爱精品视频在线观看| 久久av网站| 91午夜精品亚洲一区二区三区| 国产亚洲欧美精品永久| 国模一区二区三区四区视频| 极品少妇高潮喷水抽搐| 99视频精品全部免费 在线| 亚洲欧美精品专区久久| 黑人高潮一二区| 天美传媒精品一区二区| 午夜激情福利司机影院| 日韩一区二区视频免费看| 永久免费av网站大全| 自拍欧美九色日韩亚洲蝌蚪91 | a级片在线免费高清观看视频| 国产成人精品久久久久久| 色婷婷av一区二区三区视频| 中文字幕av电影在线播放| 中文字幕制服av| 亚洲欧美精品自产自拍| 少妇裸体淫交视频免费看高清| 久久精品国产a三级三级三级| 日本黄大片高清| 国产高清国产精品国产三级| 成年av动漫网址| 国产女主播在线喷水免费视频网站| 国产综合精华液| 精品亚洲乱码少妇综合久久| 这个男人来自地球电影免费观看 | 久久久久精品久久久久真实原创| 色婷婷av一区二区三区视频| av卡一久久| 免费看日本二区| 成人午夜精彩视频在线观看| 交换朋友夫妻互换小说| 久久久久视频综合| 精品久久久精品久久久| 国产一区有黄有色的免费视频| 日本-黄色视频高清免费观看| 国内揄拍国产精品人妻在线| 丰满乱子伦码专区| 婷婷色av中文字幕| 99精国产麻豆久久婷婷| 99国产精品免费福利视频| 在线观看av片永久免费下载| 久久人人爽av亚洲精品天堂| 免费黄网站久久成人精品| 美女脱内裤让男人舔精品视频| 一本色道久久久久久精品综合| 午夜老司机福利剧场| 亚洲av不卡在线观看| 99re6热这里在线精品视频| 只有这里有精品99| 18禁在线播放成人免费| 日本黄色片子视频| 日韩在线高清观看一区二区三区| 最新的欧美精品一区二区| 成人18禁高潮啪啪吃奶动态图 | 国产精品一区二区在线不卡| 最近的中文字幕免费完整| 另类亚洲欧美激情| 欧美亚洲 丝袜 人妻 在线| 人妻人人澡人人爽人人| 99国产精品免费福利视频| 国产一区二区在线观看日韩| 我要看黄色一级片免费的| 美女中出高潮动态图| 男女边摸边吃奶| 成人影院久久| 亚洲精品456在线播放app| 日韩,欧美,国产一区二区三区| 精华霜和精华液先用哪个| 国产精品久久久久久av不卡| 十八禁高潮呻吟视频 | 春色校园在线视频观看| 午夜影院在线不卡| 亚洲精品视频女| 国产精品三级大全| a级毛色黄片| a级片在线免费高清观看视频| 国产一区二区在线观看av| 亚洲欧美日韩另类电影网站| 国产女主播在线喷水免费视频网站| 91久久精品国产一区二区成人| 日韩欧美一区视频在线观看 | 日韩精品免费视频一区二区三区 | 人体艺术视频欧美日本| 国产亚洲91精品色在线| av国产精品久久久久影院| 精华霜和精华液先用哪个| 男女边吃奶边做爰视频| 我要看黄色一级片免费的| 蜜桃在线观看..| 男人舔奶头视频| 国产国拍精品亚洲av在线观看| 国产日韩欧美视频二区| 久久av网站| 少妇丰满av| 久久国内精品自在自线图片| 99热这里只有是精品50| 在线看a的网站| 亚州av有码| 日本欧美国产在线视频| 欧美97在线视频| 国产永久视频网站| av一本久久久久| 特大巨黑吊av在线直播| 成人毛片60女人毛片免费| 毛片一级片免费看久久久久| 成年人免费黄色播放视频 | 国产乱来视频区| 高清黄色对白视频在线免费看 | 人妻夜夜爽99麻豆av| 久久韩国三级中文字幕| 精品人妻熟女毛片av久久网站| 九色成人免费人妻av| 精品人妻一区二区三区麻豆| 草草在线视频免费看| 久久精品久久久久久久性| av网站免费在线观看视频| 午夜福利影视在线免费观看| 亚洲经典国产精华液单| 久久6这里有精品| 亚洲欧美成人精品一区二区| 丰满乱子伦码专区| 久热这里只有精品99| 97超视频在线观看视频| 亚洲美女搞黄在线观看| 五月伊人婷婷丁香| 男人狂女人下面高潮的视频| 亚洲美女黄色视频免费看| 亚洲国产色片| 免费观看av网站的网址| 日韩欧美精品免费久久| 成年人免费黄色播放视频 | 中文字幕久久专区| 亚洲国产欧美在线一区| 国产亚洲av片在线观看秒播厂| 最新中文字幕久久久久| 亚洲人成网站在线播| 91午夜精品亚洲一区二区三区| 色视频在线一区二区三区| 国产亚洲精品久久久com| 中文精品一卡2卡3卡4更新| 亚洲va在线va天堂va国产| 亚洲精品一区蜜桃| 制服丝袜香蕉在线| 插阴视频在线观看视频| 亚洲中文av在线| 偷拍熟女少妇极品色| 欧美变态另类bdsm刘玥| a级毛片免费高清观看在线播放| 免费黄频网站在线观看国产| 一本色道久久久久久精品综合| 99久久人妻综合| 日本色播在线视频| 91精品国产九色| 蜜臀久久99精品久久宅男| 国产片特级美女逼逼视频| 欧美日韩一区二区视频在线观看视频在线| 国产在视频线精品| 亚洲电影在线观看av| 18禁在线无遮挡免费观看视频| 欧美日本中文国产一区发布| 啦啦啦中文免费视频观看日本| 97超碰精品成人国产| 国产国拍精品亚洲av在线观看| 丝袜在线中文字幕| 永久免费av网站大全| 26uuu在线亚洲综合色| 成人国产麻豆网| 国产精品久久久久久av不卡| 国产成人一区二区在线| 精品久久久久久久久av| 亚洲国产成人一精品久久久| av.在线天堂| 日日爽夜夜爽网站| 精品视频人人做人人爽| 国产精品无大码| 亚洲人与动物交配视频| 国产精品久久久久久久电影| √禁漫天堂资源中文www| 国产在线免费精品| 深夜a级毛片| 国语对白做爰xxxⅹ性视频网站| 国产色爽女视频免费观看| 少妇人妻一区二区三区视频| 日韩 亚洲 欧美在线| .国产精品久久| 久久人人爽av亚洲精品天堂| 极品少妇高潮喷水抽搐| 午夜av观看不卡| 一本大道久久a久久精品| 成人午夜精彩视频在线观看| 国产精品偷伦视频观看了| 国模一区二区三区四区视频| 99热这里只有是精品50| 久久国产乱子免费精品| 国产亚洲精品久久久com| 国产成人freesex在线| 国产亚洲欧美精品永久| 亚洲国产欧美日韩在线播放 | 国产精品欧美亚洲77777| 妹子高潮喷水视频| 欧美日韩一区二区视频在线观看视频在线| 伦理电影免费视频| 又爽又黄a免费视频| 日韩人妻高清精品专区| 午夜福利影视在线免费观看| 国产精品人妻久久久久久| 亚洲av男天堂| a级毛色黄片| 色网站视频免费| 国产精品一区二区在线不卡| av黄色大香蕉| av播播在线观看一区| 高清欧美精品videossex| 亚洲,欧美,日韩| 18禁裸乳无遮挡动漫免费视频| 97精品久久久久久久久久精品| 女人久久www免费人成看片| 国产成人精品婷婷| 狠狠精品人妻久久久久久综合| 国产成人精品无人区| 亚洲成人手机| 赤兔流量卡办理| 极品人妻少妇av视频| 少妇熟女欧美另类| 黑丝袜美女国产一区| 色视频在线一区二区三区| 国产色爽女视频免费观看| 观看av在线不卡| 最近2019中文字幕mv第一页| 人体艺术视频欧美日本| 亚洲情色 制服丝袜| 男女无遮挡免费网站观看| 国产极品粉嫩免费观看在线 | 国产精品一区二区在线不卡| av线在线观看网站| 汤姆久久久久久久影院中文字幕| 午夜91福利影院| 欧美+日韩+精品| 国产男人的电影天堂91| 蜜桃久久精品国产亚洲av| 一级,二级,三级黄色视频| 丰满少妇做爰视频| 国产欧美亚洲国产| 亚洲精品国产色婷婷电影| 亚洲第一av免费看| 久久久久精品久久久久真实原创| 韩国av在线不卡| .国产精品久久| 亚洲欧洲精品一区二区精品久久久 | 国产在线男女| 色吧在线观看| 天堂俺去俺来也www色官网| 精品国产露脸久久av麻豆| 欧美日韩视频高清一区二区三区二| 新久久久久国产一级毛片| 草草在线视频免费看| 亚洲精品国产av蜜桃| av在线观看视频网站免费| 久久久久网色| 三级国产精品欧美在线观看| 嫩草影院入口| 国产伦在线观看视频一区| 日韩大片免费观看网站| 国产精品久久久久久精品古装| 男女边摸边吃奶| 欧美 亚洲 国产 日韩一| h日本视频在线播放| 黄色怎么调成土黄色| a级片在线免费高清观看视频| 日韩三级伦理在线观看| 老熟女久久久| 3wmmmm亚洲av在线观看| 99热这里只有是精品在线观看| 天天操日日干夜夜撸| 女性被躁到高潮视频| 国产av精品麻豆| 久久国产亚洲av麻豆专区| 80岁老熟妇乱子伦牲交| 五月玫瑰六月丁香| 又爽又黄a免费视频| 最黄视频免费看| 中文字幕亚洲精品专区| 国产 一区精品| 一级毛片 在线播放| av女优亚洲男人天堂| 三级国产精品欧美在线观看| 国产精品久久久久成人av| 国产av精品麻豆| 国产免费一区二区三区四区乱码| 免费大片黄手机在线观看| 国产高清国产精品国产三级| 久久国产精品男人的天堂亚洲 | 国产在线一区二区三区精| 日本色播在线视频| 成人二区视频| 亚洲精品自拍成人| 亚洲欧美中文字幕日韩二区| 成人亚洲欧美一区二区av| 亚洲色图综合在线观看| 国产伦理片在线播放av一区| 国国产精品蜜臀av免费| av视频免费观看在线观看| 多毛熟女@视频| 国产在线男女| 少妇的逼好多水| 99久久精品一区二区三区| 日日撸夜夜添| 晚上一个人看的免费电影| 亚洲精品自拍成人| 水蜜桃什么品种好| 男女免费视频国产| 五月天丁香电影| 高清午夜精品一区二区三区| 一级毛片我不卡| 伊人久久精品亚洲午夜| 亚洲精品色激情综合| 新久久久久国产一级毛片| 精品国产一区二区久久| 国产深夜福利视频在线观看| 九九久久精品国产亚洲av麻豆| 久久久久久久国产电影| 美女主播在线视频| 午夜精品国产一区二区电影| 一区二区三区精品91| 久久精品国产亚洲网站| 国产精品秋霞免费鲁丝片| 老熟女久久久| 亚洲欧美成人综合另类久久久| 乱人伦中国视频| 十分钟在线观看高清视频www | 久久久久久久久久成人| 丰满乱子伦码专区| 日韩电影二区| 丰满人妻一区二区三区视频av| 又爽又黄a免费视频| 久久国产乱子免费精品| 亚洲成人一二三区av| 天天操日日干夜夜撸| 亚洲精品日本国产第一区| 男的添女的下面高潮视频| 人妻人人澡人人爽人人| 黄色一级大片看看| 嫩草影院新地址| 国产欧美日韩精品一区二区| 又大又黄又爽视频免费| 久久久久久久大尺度免费视频| 99热国产这里只有精品6| 中文字幕制服av| 亚洲av成人精品一二三区| 亚洲精品乱码久久久v下载方式| 国产精品秋霞免费鲁丝片| 国产在线一区二区三区精| 国产成人91sexporn| 高清在线视频一区二区三区| 亚洲欧洲国产日韩| 精品亚洲成a人片在线观看| 国产一区亚洲一区在线观看| 亚洲国产欧美日韩在线播放 | 欧美丝袜亚洲另类| 国产熟女午夜一区二区三区 | 日韩视频在线欧美| 亚洲av福利一区| 午夜视频国产福利| 爱豆传媒免费全集在线观看| 免费黄频网站在线观看国产| 亚州av有码| 国产色婷婷99| 九色成人免费人妻av| 欧美高清成人免费视频www| 成人特级av手机在线观看| 午夜免费男女啪啪视频观看| 又粗又硬又长又爽又黄的视频| 黑人巨大精品欧美一区二区蜜桃 | 18禁在线无遮挡免费观看视频| 看免费成人av毛片| 亚洲,一卡二卡三卡| 免费大片黄手机在线观看| 在线观看美女被高潮喷水网站| 麻豆成人av视频| 啦啦啦中文免费视频观看日本| h日本视频在线播放| 中文字幕精品免费在线观看视频 | 亚洲av综合色区一区| 久久精品久久久久久噜噜老黄| 久久久久久人妻| 色婷婷av一区二区三区视频| 亚洲国产毛片av蜜桃av| 欧美少妇被猛烈插入视频| 国产探花极品一区二区| 国产av国产精品国产| 久久女婷五月综合色啪小说| 一本久久精品| 欧美精品人与动牲交sv欧美| 国产老妇伦熟女老妇高清| 91午夜精品亚洲一区二区三区| 99热这里只有是精品在线观看| 久久国产乱子免费精品| 亚洲国产精品国产精品| 亚洲精品乱久久久久久| 大又大粗又爽又黄少妇毛片口| av天堂久久9| 黄色一级大片看看| av国产久精品久网站免费入址| 在线精品无人区一区二区三| 国产成人精品婷婷| 久久久精品免费免费高清| 偷拍熟女少妇极品色| 少妇高潮的动态图| 欧美日韩国产mv在线观看视频| 国产av码专区亚洲av| 国产精品一区www在线观看| 国产亚洲5aaaaa淫片| 国产精品伦人一区二区| 日韩伦理黄色片| 自线自在国产av| 在线观看三级黄色| 亚洲欧美成人精品一区二区| av一本久久久久| 人人妻人人看人人澡| 丰满乱子伦码专区| 精品少妇黑人巨大在线播放| 免费观看无遮挡的男女| 黑丝袜美女国产一区| 久久久久国产精品人妻一区二区| 免费高清在线观看视频在线观看| 欧美精品亚洲一区二区| 交换朋友夫妻互换小说| 国产精品久久久久久精品电影小说| 国产成人精品久久久久久| 国产精品嫩草影院av在线观看| 日本黄大片高清| 在线 av 中文字幕| 天天操日日干夜夜撸| 欧美精品亚洲一区二区| 亚洲激情五月婷婷啪啪| 99热全是精品| 国产精品成人在线| 亚洲精品中文字幕在线视频 | 亚洲av男天堂| 丝瓜视频免费看黄片| 99久久精品热视频| 伊人久久国产一区二区| 大片电影免费在线观看免费|