達(dá)澤蛟,祝秉東,張穎
1. 蘭州大學(xué)結(jié)核病研究中心暨病原生物學(xué)研究所,蘭州 730000; 2. 美國(guó)約翰·霍普金斯大學(xué)布隆博格公共衛(wèi)生學(xué)院分子微生物學(xué)與免疫學(xué)系,馬里蘭州 21205
結(jié)核分枝桿菌(Mycobacteriumtuberculosis, Mtb)是一種頑固的病原體,已感染全世界1/3人口。每年有約900萬(wàn)例新發(fā)結(jié)核病患者,近200萬(wàn)例死于結(jié)核病[1]。隨著越來(lái)越多耐藥菌株的出現(xiàn),特別是耐多藥(至少對(duì)2種一線抗結(jié)核藥物異煙肼和利福平耐藥)和廣泛耐藥(在耐多藥的基礎(chǔ)上,又對(duì)2種主要的二線抗結(jié)核藥物氨基糖苷類(lèi)和氟喹諾酮類(lèi)藥物耐藥)菌株的出現(xiàn),給結(jié)核病的控制帶來(lái)了巨大挑戰(zhàn)[2]。由于人類(lèi)免疫缺陷病毒(human immunodeficiency virus,HIV)感染、社會(huì)經(jīng)濟(jì)影響(如部分地區(qū)經(jīng)濟(jì)發(fā)展落后、個(gè)體營(yíng)養(yǎng)狀況差)、精神及軀體壓力等因素,宿主免疫力低下,最終使處于潛伏期的結(jié)核分枝桿菌活化或?qū)е虏糠謧€(gè)體再感染[3]。這使得當(dāng)前結(jié)核病疫情愈加嚴(yán)峻。
目前,結(jié)核病疫情與其化療藥物和卡介苗(bacillus Calmette-Guérin,BCG)的有效性形成矛盾。導(dǎo)致該結(jié)果的主要因素包括:結(jié)核病需要長(zhǎng)期服藥和結(jié)核分枝桿菌耐藥,特別是結(jié)核病控制策略沒(méi)有充分考慮到結(jié)核分枝桿菌的潛伏感染。BCG不能提供有效的免疫保護(hù)力來(lái)抵抗結(jié)核分枝桿菌的感染,尤其不會(huì)對(duì)處于潛伏期的結(jié)核病患者產(chǎn)生任何效果。每年900萬(wàn)的新發(fā)結(jié)核病例,在某種程度上反映了這個(gè)問(wèn)題。結(jié)核分枝桿菌的潛伏感染就像一顆定時(shí)炸彈,已成為結(jié)核病防治的一大隱患。當(dāng)機(jī)體免疫力低下時(shí)(如HIV感染、麻疹、營(yíng)養(yǎng)不良、情緒低落等),潛伏的結(jié)核分枝桿菌感染就可能轉(zhuǎn)化為活動(dòng)性結(jié)核病[4]。因此,對(duì)于結(jié)核病防治,必須兼顧針對(duì)活動(dòng)期和潛伏期的結(jié)核分枝桿菌感染。本文將圍繞結(jié)核病免疫發(fā)病機(jī)制的研究進(jìn)展,討論如何將其用于新疫苗研制,同時(shí)對(duì)當(dāng)前新疫苗研發(fā)的進(jìn)展作一綜述。
當(dāng)人吸入結(jié)核分枝桿菌后,30%個(gè)體會(huì)被感染。感染個(gè)體中,90%處于潛伏期,不到10%發(fā)展為活動(dòng)性結(jié)核。處于潛伏感染期的個(gè)體,一生中有不到10%的概率發(fā)展為活動(dòng)性結(jié)核病。導(dǎo)致以上變化發(fā)生的危險(xiǎn)因素包括宿主的易感性、社會(huì)經(jīng)濟(jì)發(fā)展落后、年老及其他原因?qū)е碌拿庖吡Φ拖?。如HIV感染者發(fā)展為活動(dòng)性結(jié)核病的概率每年>10%[5]。
結(jié)核分枝桿菌經(jīng)呼吸道引起肺部感染,在機(jī)體建立免疫力前被肺泡巨噬細(xì)胞吞噬,并在其中增殖。機(jī)體在抗結(jié)核免疫反應(yīng)作用下,細(xì)胞及組織病理?yè)p傷表現(xiàn)為典型的干酪樣壞死,參與的各種免疫細(xì)胞包括巨噬細(xì)胞、樹(shù)突細(xì)胞、中性粒細(xì)胞和淋巴細(xì)胞,并構(gòu)成結(jié)核肉芽腫。在機(jī)體免疫反應(yīng)作用下,結(jié)核分枝桿菌停止增殖,病理?yè)p傷有所局限。但不是所有結(jié)核分枝桿菌都被殺死,在機(jī)體免疫力低下時(shí)又會(huì)增殖。干酪樣損傷進(jìn)一步液化,流入血管引起血行播散,形成粟粒型肺結(jié)核和肺外結(jié)核(如結(jié)核性腦膜炎)。病灶液化可侵入氣道形成結(jié)核空洞,大量結(jié)核分枝桿菌在空洞增殖、生長(zhǎng),并通過(guò)呼吸道進(jìn)行傳播[6]。
結(jié)核分枝桿菌通過(guò)補(bǔ)體受體3(complement receptor 3,CR3)[7]、甘露糖受體(mannose receptor,MR)和清道夫受體(scavenger receptor,SR)[8]被巨噬細(xì)胞吞噬,形成吞噬體(圖1)。吞噬體與溶酶體融合形成自噬溶酶體,溶酶體中的酶再降解結(jié)核分枝桿菌的蛋白及其他成分,該過(guò)程稱(chēng)為自噬,是天然免疫的一部分。但結(jié)核分枝桿菌通過(guò)分泌酸性磷酸酶(secreted acid phosphatase,SapM)[9]、蛋白激酶G(protein kinase G,PKG)[10]和糖基化磷脂酰肌醇等來(lái)抑制吞噬體與溶酶體的融合[11]。SapM是一種分泌型類(lèi)脂磷酸酶,能水解磷脂酰肌醇-3-磷酸(phosphatidylinositol-3-phosphate,PI3P)。PI3P是位于吞噬體膜表面的一種運(yùn)輸調(diào)節(jié)脂類(lèi),為吞噬體與溶酶體融合所必需[9]。吞噬體中的結(jié)核分枝桿菌清除PI3P,能阻止吞噬體與溶酶體的融合。另外,結(jié)核分枝桿菌細(xì)胞壁成分脂阿拉伯甘露聚糖(lipoarabinomannan,LAM)可模仿哺乳動(dòng)物磷脂酰肌醇阻止磷脂酰肌醇3激酶(phosphatidylinositol 3 kinase,PI3K)及其產(chǎn)物PI3P,從而抑制吞噬體發(fā)展為吞噬溶酶體,使結(jié)核分枝桿菌存活[11,12]。PKG類(lèi)似于真核細(xì)胞的絲氨酸/蘇氨酸蛋白激酶(serine/threonine kinase,Akt),與抑制吞噬體與溶酶體融合有關(guān)[10],但確切機(jī)制及其宿主靶位還不清楚。最近研究表明,T輔助細(xì)胞1型(T helper cell type 1,Th1)相關(guān)細(xì)胞因子——γ干擾素(interferon γ,IFN-γ)能促進(jìn)吞噬體與溶酶體融合,并通過(guò)干擾素誘導(dǎo)蛋白1(interferon-inducible Golgi membrane associated GTPase,Irgm1/LRG-47)[13,14]和PI3K[15]細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)通路發(fā)揮作用。然而Th2相關(guān)細(xì)胞因子——白細(xì)胞介素4(interleukin 4,IL-4)和IL-13可通過(guò)Akt信號(hào)途徑終止自噬功能和自噬介導(dǎo)的殺菌作用。此外,IL-4和IL-13通過(guò)信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活子6(signal transducer and activator of transcription 6,STAT6)轉(zhuǎn)錄因子抑制IFN-γ誘發(fā)的自噬作用[16]。除吞噬作用相關(guān)的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo),結(jié)核分枝桿菌19kD脂蛋白、脂化甘露聚糖、磷脂酰肌醇甘露糖苷和核酸與巨噬細(xì)胞表面Toll樣受體2(Toll-like receptor 2,TLR2)、TLR4、TLR9等模式識(shí)別受體相互作用,通過(guò)髓樣分化因子88(myeloid differentiation factor 88,MyD88)、IL-1 I型受體相關(guān)蛋白激酶激活TLR介導(dǎo)的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)通路,導(dǎo)致核因子κB(nuclear factor κB,NF-κB)活化入核,促進(jìn)腫瘤壞死因子(tumor necrosis factor,TNF)、IL-12表達(dá)和一氧化氮(nitric oxide,NO)等生成增多[17]。此外,TLR2活化激活巨噬細(xì)胞維生素D受體和維生素D-1-羥化酶基因,最終分泌抗菌肽以殺死細(xì)胞內(nèi)的結(jié)核分枝桿菌[18]。
圖1 結(jié)核分枝桿菌與宿主細(xì)胞在巨噬細(xì)胞水平的相互作用
Fig.1Mycobacteriumtuberculosis-host cell interaction at macrophage level
感染的巨噬細(xì)胞和樹(shù)突細(xì)胞分泌各種細(xì)胞因子,包括IL-12、IL-23、IL-7、IL-15、TNF,并呈遞各種抗原給CD4+T細(xì)胞、CD8+T細(xì)胞、CD1限制性T細(xì)胞(識(shí)別脂質(zhì)抗原)和γδT細(xì)胞(圖2)[19]?;罨腡細(xì)胞分泌IFN-γ,與TNF共同激活巨噬細(xì)胞,通過(guò)活性氮、活性氧介導(dǎo),殺死胞內(nèi)的結(jié)核分枝桿菌。另外,CD8+細(xì)胞毒性T細(xì)胞分泌顆粒溶素、穿孔素,殺死胞內(nèi)結(jié)核分枝桿菌。但CD4+Th2產(chǎn)生的IL-4和CD4+CD25+Foxp3+調(diào)節(jié)性T細(xì)胞(regulatory T cell,Treg)產(chǎn)生的IL-10和轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor β,TGF-β)抑制IFN-γ介導(dǎo)的殺結(jié)核分枝桿菌作用[20-22],有效下調(diào)炎癥反應(yīng),從而有助于結(jié)核分枝桿菌生存。另有研究發(fā)現(xiàn),結(jié)核分枝桿菌甘露糖末端修飾的LAM可刺激Treg分泌免疫抑制因子IL-10和TGF-β[23]。近幾年來(lái),對(duì)以分泌IL-17為特征的新T細(xì)胞亞群Th17的研究表明,Th17是重要的炎癥反應(yīng)和CD4+T細(xì)胞免疫反應(yīng)的調(diào)節(jié)者[24]。Th17分泌IL-17并募集中性粒細(xì)胞、單核細(xì)胞。CD4+T細(xì)胞分泌IFN-γ,刺激趨化因子表達(dá)[24]。但I(xiàn)FN-γ亦能抑制Th17分泌IL-17,有利于限制結(jié)核分枝桿菌誘導(dǎo)的免疫病理?yè)p傷(圖2)[25]。雖然近幾年免疫學(xué)發(fā)展迅速,但目前對(duì)干酪樣壞死及液化的機(jī)制仍不清楚。
圖2 結(jié)核分枝桿菌感染的免疫反應(yīng)
Fig.2 Cellular immune response toMycobacteriumtuberculosisinfection
BCG是Calmette和Guérin將牛型結(jié)核分枝桿菌經(jīng)過(guò)230次傳代培養(yǎng),歷時(shí)13年(1908~1921年)所研制的減毒分枝桿菌。BCG是目前應(yīng)用最廣泛的結(jié)核分枝桿菌疫苗,已接種76%新生兒。它能降低小兒患嚴(yán)重結(jié)核性腦膜炎及粟粒型肺結(jié)核的風(fēng)險(xiǎn),保護(hù)70%~80%的新生兒;但其保護(hù)效應(yīng)不穩(wěn)定,尤其對(duì)患肺結(jié)核的成人保護(hù)力較差。如在南印度Chingleput地區(qū),BCG的保護(hù)率為0%;而在英國(guó)學(xué)齡兒童中保護(hù)率可高達(dá)80%[26,27]。盡管BCG得到廣泛應(yīng)用,但面對(duì)全球結(jié)核病疫情的蔓延卻無(wú)能為力。因?yàn)樽鳛橐环N預(yù)防性疫苗,它不能有效治療結(jié)核分枝桿菌的潛伏感染。此外,由于BCG仍存在一定毒力,免疫力低下的兒童(多為先天性免疫缺陷)接種BCG后可引起結(jié)核病樣的BCG疾病(經(jīng)血行及淋巴播散全身)。
BCG缺乏有效性的確切原因還不清楚,可能與以下因素有關(guān)[27]:BCG菌株多樣,不同菌株的免疫原性可導(dǎo)致不同的保護(hù)效應(yīng);BCG菌株可能在反復(fù)的體外培養(yǎng)中丟失了一些重要的抗原;也可能與宿主的遺傳因素有關(guān);環(huán)境分枝桿菌的感染可能掩蓋BCG的保護(hù)力;最近研究顯示BCG與臨床致病結(jié)核分枝桿菌有很大不同,如BCG對(duì)流行的臨床菌株北京株缺乏有效作用[28];還可能與寄生蟲(chóng)感染增強(qiáng)Th2反應(yīng)和Treg減弱BCG的保護(hù)效應(yīng)有關(guān)[29]。
由于現(xiàn)有的BCG存在很多問(wèn)題,因此尋找新的疫苗尤為重要[19,26,30,31]??偟膩?lái)說(shuō),處于現(xiàn)研究階段的疫苗可分為3類(lèi):暴露前疫苗(預(yù)防為主)、暴露后疫苗(針對(duì)潛伏感染活化)和治療性疫苗(可提高化療的療效,增強(qiáng)殺菌效果)。
當(dāng)前候選疫苗也可分為BCG替代疫苗和亞單位疫苗[19,26]。BCG替代疫苗包括表達(dá)結(jié)核分枝桿菌抗原Ag85和38kD的重組BCG,重組李斯特菌溶素(listeriolysin)[32]或產(chǎn)氣莢膜梭菌溶素(perfringolysin)(http://www.aeras.org)的BCG,以及減毒活疫苗(結(jié)核分枝桿菌leuD、panCD、lysA、RD-1、phoP和mce2/3的突變體)[33-35]。亞單位疫苗包括蛋白疫苗(使用新型佐劑的融合蛋白Mtb72f、Ag85-ESAT6、Ag85-TB10.4)、表達(dá)結(jié)核分枝桿菌抗原(如Ag85A)的病毒載體疫苗(痘病毒和腺病毒)[36,37]和DNA疫苗(HSP60、Ag85)[26,38]。表1列出了一系列處于不同研發(fā)階段的結(jié)核候選疫苗。其中進(jìn)展最快的為MVA85A(表達(dá)Ag85A的Ankara改良痘苗病毒),用于強(qiáng)化BCG免疫,已進(jìn)入臨床Ⅱ期試驗(yàn)[39]。早期分泌抗原靶蛋白6(early secretory antigenic target 6,ESAT6)已作為診斷抗原,用以區(qū)別BCG免疫和結(jié)核分枝桿菌感染。因此,在各種研發(fā)的疫苗中,含有ESAT6的候選疫苗可能給結(jié)核病的診斷帶來(lái)困難[40]。
表1 處于不同研發(fā)階段的主要候選疫苗
Tab.1 Current tuberculosis vaccine candidates
Vaccine candidateDeveloperStageDescriptionAeras 422AerasClinical ⅠOverexpression of selected antigens and endosome escape to enhance antigen immunogenicityBCG::RD1Institut PasteurPreclinicalRecombinant BCG with reintroduction of RD1 and expressing antigens ESAT6 and CFP10rBCG::ΔureC-hlyMax Planck InstituteClinical ⅠUrease-deleted recombinant BCG expressing listeri-olysin from Listeria monocytogenesAttenuated MtbAlbert Einstein College of MedicinePreclinicalMtb with double deletion of lysA/panCD and RD-1/panCD Mtb ΔphoPInstitut PasteurPreclinicalMtb with inactivation of phoP by inserting a drug-resistance geneMVA85AOxford UniversityClinicalⅡA recombinant modified vaccinia virus Ankara (MVA) containing Mtb antigen 85AAeras 402 / Crucell Ad35Crucell N.V./AerasClinicalⅡA replication-deficient adenovirus Ad35 containing Mtb antigens 85A, 85B, and TB10.4Mtb72FAeras/GlaxoSmithKlineClinicalⅡA fusion protein of Rv1196 and Rv0125 in adjuvant AS01 or AS02H1-CAF01Statens Serum Institut Clinical ⅠA fusion protein of 85B and ESAT6 in adjuvant CAF01H1-IC31Statens Serum Institut Clinical ⅠA fusion protein of 85B and ESAT6 in adjuvant IC31SSI/SP H4-IC31Statens Serum Institut /AerasClinical ⅠA fusion protein of 85B and TB10.4 in adjuvant IC31
Mtb,Mycobacteriumtuberculosis.
目前,BCG和重組BCG初次免疫后再用亞單位疫苗加強(qiáng)免疫的免疫策略被人們所接受[19,26,36]。巴西的研究表明[41],反復(fù)接種BCG不能增強(qiáng)BCG的保護(hù)效果,即增加接種BCG次數(shù)也不能提高疫苗本身的效果。
各型疫苗的研發(fā)主要集中在抗原篩選方面,但僅考慮抗原是遠(yuǎn)遠(yuǎn)不夠的,因?yàn)閱蝹€(gè)抗原所引起的免疫效應(yīng)有限,需合適的佐劑提高其免疫效應(yīng)和保護(hù)力。因此,新一代結(jié)核蛋白亞單位疫苗需要尋找一個(gè)理想的佐劑。70多年來(lái),鋁佐劑是唯一一個(gè)在世界范圍廣泛應(yīng)用的注冊(cè)佐劑。另外,MF59在一些國(guó)家作為預(yù)防流行性感冒(簡(jiǎn)稱(chēng)流感)和甲型肝炎疫苗的佐劑,已經(jīng)注冊(cè)[42,43]。但以上2種佐劑主要介導(dǎo)體液免疫,對(duì)以細(xì)胞免疫為主的結(jié)核疫苗效果不佳。結(jié)核分枝桿菌與HIV的合并感染已成為世界公共衛(wèi)生問(wèn)題,這2種疾病都以細(xì)胞免疫為特點(diǎn),但現(xiàn)有疫苗缺乏理想的針對(duì)細(xì)胞免疫為主的佐劑。
近幾年來(lái),隨著佐劑技術(shù)的發(fā)展,一系列能誘導(dǎo)較強(qiáng)細(xì)胞免疫的佐劑已進(jìn)入臨床試驗(yàn)。如Ag85B-TB10.4、Ag85B-ESAT6和Mtb72F融合蛋白分別在一種陽(yáng)離子多肽﹝KLKL5KLK與寡脫氧核苷構(gòu)成的佐劑(IC31)和由單磷酰脂A和皂角苷QS-21構(gòu)成的水-油乳濁液(AS02A) ﹞介導(dǎo)下,可誘導(dǎo)有效的細(xì)胞免疫反應(yīng),并具有免疫保護(hù)效應(yīng)[44,45]。由陽(yáng)離子脂質(zhì)體二甲基三十六烷基銨(dimo-thylidioctyl ammonium bromide,DDA)和trehalose 6,6-dibehenate (TDB)構(gòu)成一種新型的復(fù)合佐劑CAF01,可輔助結(jié)核融合蛋白Ag85B-ESAT6誘導(dǎo)較強(qiáng)的細(xì)胞免疫效應(yīng)。TDB為結(jié)核分枝桿菌細(xì)胞壁索狀因子(cord factor)類(lèi)似合成物,動(dòng)物實(shí)驗(yàn)顯示其保護(hù)效果較理想,已進(jìn)入Ⅰ期臨床試驗(yàn)[46]。從以上不難看出佐劑發(fā)展的一個(gè)趨勢(shì),即單個(gè)成分的佐劑可能被復(fù)合佐劑所取代。單個(gè)佐劑的免疫效應(yīng)有限,且不同佐劑之間各有特點(diǎn),所以合理搭配不同的佐劑已成為研發(fā)新型佐劑的趨勢(shì)。一些新技術(shù)的應(yīng)用(如納米技術(shù))也推動(dòng)了佐劑發(fā)展,如以聚乳酸-羥基乙酸共聚物﹝poly(lactic-co-glycolic acid),PLGA﹞為載體的佐劑聯(lián)合融合蛋白TB10.4-Ag85B,能增強(qiáng)T細(xì)胞免疫反應(yīng)[47]。
雖然佐劑技術(shù)有了長(zhǎng)足進(jìn)步,但尋找一個(gè)安全、穩(wěn)定和有效的佐劑,仍需要大量的研究和時(shí)間檢驗(yàn)。
抗結(jié)核疫苗的保護(hù)效率通常以免疫原性、結(jié)核菌載量(bacterial load)和感染動(dòng)物的生存時(shí)間來(lái)評(píng)價(jià)[19,26]。免疫原性的實(shí)驗(yàn)指標(biāo)包括與保護(hù)相關(guān)的細(xì)胞因子(如IFN-γ、IL-2和TNF-α)分泌量和活化的T細(xì)胞數(shù)目(CD4+和CD8+T細(xì)胞)。評(píng)價(jià)結(jié)核疫苗的保護(hù)效率是一項(xiàng)十分復(fù)雜的工作,牽涉諸多因素,包括不同的動(dòng)物模型(小鼠、豚鼠、兔和靈長(zhǎng)類(lèi)動(dòng)物),不同的免疫途徑(皮內(nèi)、皮下、腹膜內(nèi)、肌內(nèi)、鼻內(nèi)、氣溶膠和口腔),不同的劑量(低、中、高),不同的間隔時(shí)間和加強(qiáng)次數(shù)(4周、6周、8周),不同的毒力菌株(Erdman、H37Rv、臨床株),不同的毒株攻擊劑量(低、中、高),不同的感染途徑(氣溶膠、靜脈),從感染到檢測(cè)時(shí)間間隔(4周、6周、8周)和不同的判斷標(biāo)準(zhǔn)(動(dòng)物生存狀況、菌落形成單位、病理學(xué)和脾臟重量)。
在人體評(píng)價(jià)疫苗的免疫原性更復(fù)雜,因?yàn)槟鼙Wo(hù)人體有關(guān)的免疫參數(shù)還未徹底搞清楚。不過(guò),新方法的建立給疫苗篩選帶來(lái)了啟發(fā)。如從已注射疫苗動(dòng)物體內(nèi)分離T細(xì)胞,與巨噬細(xì)胞進(jìn)行體外結(jié)核分枝桿菌抑制檢測(cè)。最近Ⅱ期臨床試驗(yàn)表明,BCG初次免疫后用MVA85A強(qiáng)化可誘導(dǎo)較高的細(xì)胞免疫反應(yīng), IFN-γ和TNF-α分泌增多,并誘導(dǎo)可分泌IL-2的記憶性T細(xì)胞[39],但其保護(hù)效果仍有待觀察。然而,南非的研究發(fā)現(xiàn),新生兒接種BCG 2年后,CD4+T細(xì)胞分泌IFN-γ的水平與免疫保護(hù)效果并不相關(guān)[48]。
新疫苗的臨床試驗(yàn)花費(fèi)巨大,耗時(shí)較長(zhǎng),在整個(gè)臨床試驗(yàn)階段,評(píng)價(jià)體系又不夠精確,因此新疫苗的臨床前研究至關(guān)重要。如果能在實(shí)驗(yàn)室盡可能系統(tǒng)地評(píng)價(jià)出理想的新疫苗,就有可能避免臨床試驗(yàn)時(shí)不必要的浪費(fèi),節(jié)省大量的資金和時(shí)間。合適的動(dòng)物模型是首先要考慮的問(wèn)題。不同動(dòng)物對(duì)結(jié)核分枝桿菌的敏感性不同,不同動(dòng)物針對(duì)結(jié)核分枝桿菌的免疫特點(diǎn)也不同(如小鼠感染結(jié)核分枝桿菌后可誘導(dǎo)明顯的細(xì)胞免疫,但不能形成典型的干酪樣壞死病變,而豚鼠恰好相反)。因此,長(zhǎng)期以來(lái)作為結(jié)核免疫研究對(duì)象的兔模型,已得到很多學(xué)者的重視。有研究表明,兔模型在篩選疫苗方面可能有更好的優(yōu)勢(shì)。為避免不同動(dòng)物模型的局限性,盡可能選擇多個(gè)動(dòng)物模型,最后綜合評(píng)價(jià),也許是不錯(cuò)的辦法[49]。
目前,許多實(shí)驗(yàn)室都選擇H37Rv標(biāo)準(zhǔn)株作為毒力攻擊株,這也存在很大的局限性,或許應(yīng)該選擇一些臨床菌株如北京株。最好在進(jìn)行流行病學(xué)調(diào)查的基礎(chǔ)上,選擇當(dāng)?shù)氐膬?yōu)勢(shì)菌株進(jìn)行毒力攻擊實(shí)驗(yàn),這可能更有臨床意義[50]。
長(zhǎng)期以來(lái),人們普遍認(rèn)為T(mén)h1型細(xì)胞因子IFN-γ能保護(hù)機(jī)體抵抗結(jié)核病,但過(guò)強(qiáng)的Th1型免疫反應(yīng)會(huì)引起組織病理?yè)p傷。Th2反應(yīng)和Treg抑制Th1反應(yīng)能阻止組織損傷,但會(huì)導(dǎo)致結(jié)核分枝桿菌存活[16,22]。如何在兩者之間找到平衡,在保護(hù)組織、局限組織損傷的同時(shí),也能限制甚至殺死結(jié)核分枝桿菌,是理想疫苗設(shè)計(jì)的關(guān)鍵。Th2型細(xì)胞因子IL-4、IL-13對(duì)抗IFN-γ介導(dǎo)的免疫保護(hù),減少TNF介導(dǎo)的感染細(xì)胞的凋亡和誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)的活動(dòng),增強(qiáng)Treg作用,提高TNF的毒性,故會(huì)減弱抗菌作用[22]。疫苗可能不僅需提高CD4的Th1反應(yīng),還要減弱Th2(IL-4)和Treg反應(yīng)(IL-10、TGF- β)[22]。最近研究表明,重復(fù)接種可刺激Th1反應(yīng)的候選疫苗可能導(dǎo)致隨后向Th2反應(yīng)發(fā)展。如有保護(hù)效果的Ag85B DNA疫苗經(jīng)蛋白Ag85B加強(qiáng)后,免疫保護(hù)效果丟失。這可能是由于經(jīng)過(guò)強(qiáng)化免疫后,免疫反應(yīng)向Th2方向發(fā)展[51]。Ag85A DNA疫苗初次免疫能增強(qiáng)BCG的保護(hù)效果,但BCG免疫后用Ag85A的DNA、85A蛋白或MVA85A強(qiáng)化免疫不能增強(qiáng)BCG的保護(hù)力,相反可引起與病理相關(guān)的IL-17分泌[52]。
候選疫苗(rBCG::△ureC-hly、DNA疫苗、表達(dá)結(jié)核分枝桿菌抗原的病毒載體)刺激CD8+T細(xì)胞,能提供有效的保護(hù)力,抵抗肺結(jié)核的發(fā)生[32,37,38,53]。德國(guó)馬普研究所依據(jù)宿主與病原體之間的免疫反應(yīng),設(shè)計(jì)了重組BCG(rBCG::△ureC-hly),從BCG剔除了尿素酶基因以防尿素酶堿化吞噬小體空泡,而酸化空泡可利于吞噬小體與溶酶體的融合。此外,該BCG變異株表達(dá)來(lái)自于李斯特菌的溶菌素基因,導(dǎo)致吞噬小體溶解,更有效地通過(guò)主要組織相容性復(fù)合物(major histocompatibility complex,MHC)Ⅰ類(lèi)分子呈遞抗原給CD8+T細(xì)胞。同時(shí),使已感染的巨噬細(xì)胞凋亡,樹(shù)突細(xì)胞攝取其裂解物,反過(guò)來(lái)進(jìn)行更有效的抗原呈遞,整個(gè)過(guò)程稱(chēng)交叉致敏[32]。人們依據(jù)產(chǎn)氣莢膜梭菌溶素研制了一個(gè)類(lèi)似的疫苗。
新型佐劑IC31已用于重組結(jié)核分枝桿菌Ag85B和TB10.4蛋白,可有效刺激T細(xì)胞和B細(xì)胞[44]。此外,佐劑AS02與蛋白亞單位疫苗Mtb72F能誘導(dǎo)Th1免疫反應(yīng)(表1)[45]。
BCG缺乏RD1區(qū)域,已表明將該區(qū)域基因互補(bǔ)入BCG能提高其保護(hù)力[54],但是否會(huì)增強(qiáng)BCG的毒力還有待進(jìn)一步評(píng)價(jià)。PhoP是結(jié)核分枝桿菌的一個(gè)重要毒力致病因子,結(jié)核分枝桿菌減毒株H37Ra株毒力降低與phoP基因突變密切相關(guān)。phoP突變株亦可能是一個(gè)有希望的候選疫苗[34]。最近,H37Ra基因組測(cè)序已經(jīng)完成[55],有可能以H37Ra株為參照研制出新的減毒活疫苗。
利用處于休眠期的蛋白研制針對(duì)潛伏感染的疫苗,引起了人們的濃厚興趣。人們?cè)O(shè)計(jì)了表達(dá)休眠相關(guān)基因如DosR調(diào)節(jié)蛋白的重組BCG(表1)[56]或基于DosR蛋白設(shè)計(jì)亞單位疫苗[57,58]。最近有研究報(bào)道,將結(jié)核分枝桿菌休眠期抗原Rv2660c和Ag85B、ESAT6融合制備的疫苗既具有預(yù)防性疫苗的作用,還可有效預(yù)防潛伏感染結(jié)核分枝桿菌的復(fù)活[59]。
結(jié)核病疫苗的發(fā)展面臨諸多挑戰(zhàn),如缺乏預(yù)測(cè)臨床保護(hù)效果的替代指標(biāo),這將是疫苗研發(fā)的巨大障礙。Ⅲ期臨床試驗(yàn)需花費(fèi)很長(zhǎng)時(shí)間(3~4年,甚至更長(zhǎng))和大量患者,試驗(yàn)成本昂貴。更重要的是,缺乏臨床試驗(yàn)場(chǎng)所。不過(guò),最近Aeras全球結(jié)核病疫苗基金會(huì)正在印度、南非、肯尼亞和烏干達(dá)等地建立試驗(yàn)場(chǎng)地(http://www.aeras.org),包括歐洲和發(fā)展中國(guó)家的合伙人也正在增建臨床試驗(yàn)場(chǎng)地,這些將為結(jié)核疫苗的最終應(yīng)用奠定基礎(chǔ)。
在結(jié)核疫苗的發(fā)展研制過(guò)程中,出現(xiàn)了很多有趣的問(wèn)題。許多候選疫苗正在進(jìn)行臨床前研究,有幾種已經(jīng)進(jìn)入臨床Ⅰ期或Ⅱ期試驗(yàn)研究。Aeras全球結(jié)核病疫苗基金會(huì)受比爾·蓋茨及梅林達(dá)·蓋茨基金會(huì)資助,將在肺結(jié)核病防治中發(fā)揮重要作用,有望在未來(lái)幾年內(nèi)開(kāi)發(fā)出能控制結(jié)核病疫情的新疫苗 (http://www.aeras.org)。但依然有很多不確定的因素,如動(dòng)物研究中有效的候選疫苗在人體是否同樣有效?所以,有必要進(jìn)一步探索與人體保護(hù)效果有關(guān)的人體免疫參數(shù)或生物標(biāo)記,然后用多參數(shù)分析復(fù)雜的免疫系統(tǒng)。對(duì)比分析結(jié)核病患者和純化蛋白衍生物(purified protein derivative,PPD)陽(yáng)性健康對(duì)照的免疫反應(yīng),同時(shí)動(dòng)態(tài)、長(zhǎng)時(shí)間監(jiān)測(cè)處于潛伏期感染的個(gè)體免疫參數(shù),尤其是發(fā)展為結(jié)核病和最終未發(fā)展為結(jié)核病的個(gè)體參數(shù),可揭示免疫系統(tǒng)(包括固有免疫和獲得性免疫)抗結(jié)核及控制潛伏感染的機(jī)制。這將使人們不僅更深入了解宿主針對(duì)結(jié)核分枝桿菌的免疫保護(hù)反應(yīng),還有助于研發(fā)更有效的疫苗。為能更好地控制結(jié)核病,不僅需要快速診斷和較短時(shí)間的化療,更重要的是需要一種優(yōu)于BCG或可強(qiáng)化BCG的疫苗即接觸前疫苗,還需要針對(duì)結(jié)核分枝桿菌潛伏感染的治療性疫苗。
[1] World Health Organization. World Health Organization Tuberculosis (TB). [Accessed April 17 2007] [EB/OL]. http://www.who.int/tb/en/.
[2] World Health Organization. XDR-TB, extensively drug-resistant tuberculosis [EB/Online]. http://www.who.int/tb/publications/mdr_surveillance/en/index.html.
[3] Small PM, Shafer RW, Hopewell PC, Singh SP, Murphy MJ, Desmond E, Sierra MF, Schoolnik GK. Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in patients with advanced HIV infection [J]. N Engl J Med, 1993, 328(16): 1137-1144.
[4] Zhang Y. Persistent and dormant tubercle bacilli and latent tuberculosis [J]. Front Biosci, 2004, 9: 1136-1156.
[5] Collins HL, Kaufmann SH. Prospects for better tuberculosis vaccines [J]. Lancet Infect Dis, 2001, 1(1): 21-28.
[6] Dannenberg A. Pathogenesis of Human Pulmonary Tuberculosis: Insights from the Rabbit [M]. Washington DC: ASM Press, 2006.
[7] Schlesinger LS, Bellinger-Kawahara CG, Payne NR, Horwitz MA. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3 [J]. J Immunol, 1990, 144(7): 2771-2780.
[8] Ernst JD. Macrophage receptors for Mycobacterium tuberculosis [J]. Infect Immun, 1998, 66(4): 1277-1281.
[9] Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis [J]. Proc Natl Acad Sci USA, 2005, 102(11): 4033-4038.
[10] Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, Klebl B, Thompson C, Bacher G, Pieters J. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages [J]. Science, 2004, 304(5678): 1800-1804.
[11] Fratti RA, Chua J, Vergne I, Deretic V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest [J]. Proc Natl Acad Sci USA, 2003, 100(9): 5437-5442.
[12] Vergne I, Singh S, Roberts E, Kyei G, Master S, Harris J, de Haro S, Naylor J, Davis A, Delgado M, Deretic V. Autophagy in immune defense against Mycobacterium tuberculosis [J]. Autophagy, 2006, 2(3): 175-178.
[13] Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria [J]. Science, 2006, 313(5792): 1438-1441.
[14] MacMicking JD, Taylor GA, McKinney JD. Immune control of tuberculosis by IFN-gamma-inducible LRG-47 [J]. Science, 2003, 302(5645): 654-659.
[15] Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages [J]. Cell, 2004, 119(6): 753-766.
[16] Harris J, DeHaro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis [J]. Immunity, 2007, 27(3): 505-517.
[17] Bhatt K, Salgame P. Host innate immune response to Mycobacterium tuberculosis [J]. J Clin Immunol, 2007, 27(4): 347-362.
[18] Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response [J]. Science, 2006, 311(5768): 1770-1773.
[19] Kaufmann SH, Baumann S, Nasser Eddine A. Exploiting immunology and molecular genetics for rational vaccine design against tuberculosis [J]. Int J Tuberc Lung Dis, 2006, 10(10): 1068-1079.
[20] Ribeiro-Rodrigues R, Resende Co T, Rojas R, Toossi Z, Dietze R, Boom WH, Maciel E, Hirsch CS. A role for CD4+CD25+T cells in regulation of the immune response during human tuberculosis [J]. Clin Exp Immunol, 2006, 144(1): 25-34.
[21] Hougardy JM, Place S, Hildebrand M, Drowart A, Debrie AS, Locht C, Mascart F. Regulatory T cells depress immune responses to protective antigens in active tuberculosis [J]. Am J Respir Crit Care Med, 2007, 176(4): 409-416.
[22] Rook GA. Th2 cytokines in susceptibility to tuberculosis [J]. Curr Mol Med, 2007, 7(3): 327-337.
[23] Garg A, Barnes PF, Roy S, Quiroga MF, Wu S, Garcia VE, Krutzik SR, Weis SE, Vankayalapati R. Mannose-capped lipoarabinomannan- and prostaglandin E2-dependent expansion of regulatory T cells in human Mycobacterium tuberculosis infection [J]. Eur J Immunol, 2008, 38(2): 459-469.
[24] Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL, Locksley RM, Haynes L, Randall TD, Cooper AM. IL-23 and IL-17 in the establishment of protective pulmonary CD4+T cell responses after vaccination and during Mycobacterium tuberculosis challenge [J]. Nat Immunol, 2007, 8(4): 369-377.
[25] Cruz A, Khader SA, Torrado E, Fraga A, Pearl JE, Pedrosa J, Cooper AM, Castro AG. Cutting edge: IFN-gamma regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection [J]. J Immunol, 2006, 177(3): 1416-1420.
[26] Skeiky YA, Sadoff JC. Advances in tuberculosis vaccine strategies [J]. Nat Rev Microbiol, 2006, 4(6): 469-476.
[27] Fine PE. Variation in protection by BCG: implications of and for heterologous immunity [J]. Lancet, 1995, 346(8986): 1339-1345.
[28] Tsenova L, Harbacheuski R, Sung N, Ellison E, Fallows D, Kaplan G. BCG vaccination confers poor protection against M. tuberculosis HN878-induced central nervous system disease [J]. Vaccine, 2007, 25(28): 5126-5132.
[29] Elias D, Britton S, Kassu A, Akuffo H. Chronic helminth infections may negatively influence immunity against tuberculosis and other diseases of public health importance [J]. Expert Rev Anti Infect Ther, 2007, 5(3): 475-484.
[30] Young D, Dye C. The development and impact of tuberculosis vaccines [J]. Cell, 2006, 124(4): 683-687.
[31] Williams A, Hatch GJ, Clark SO, Gooch KE, Hatch KA, Hall GA, Huygen K, Ottenhoff TH, Franken KL, Andersen P, Doherty TM, Kaufmann SH, Grode L, Seiler P, Martin C, Gicquel B, Cole ST, Brodin P, Pym AS, Dalemans W, Cohen J, Lobet Y, Goonetilleke N, McShane H, Hill A, Parish T, Smith D, Stoker NG, Lowrie DB, Kallenius G, Svenson S, Pawlowski A, Blake K, Marsh PD. Evaluation of vaccines in the EUTB Vaccine Cluster using a guinea pig aerosol infection model of tuberculosis [J]. Tuberculosis (Edinb), 2005, 85(1-2): 29-38.
[32] Grode L, Seiler P, Baumann S, Hess J, Brinkmann V, Nasser Eddine A, Man P, Goosmann C, Bandermann S, Smith D, Bancroft GJ, Reyrat JM, van Solingen D, Raupach B, Ksufmann SH. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin [J]. J Clin Invest, 2005, 115(9): 2472-2479.
[33] Sambandamurthy VK, Jacobs WR Jr. Live attenuated mutants of Mycobacterium tuberculosis as candidate vaccines against tuberculosis [J]. Microbes Infect, 2005, 7(5-6): 955-961.
[34] Asensio JA, Arbues A, Perez E, Gicquel B, Martin C. Live tuberculosis vaccines based on phoP mutants: a step towards clinical trials [J]. Expert Opin Biol Ther, 2008, 8(2): 201-211.
[35] Aguilar LD, Infante E, Bianco MV, Cataldi A, Bigi F, Pando RH. Immunogenicity and protection induced by Mycobacterium tuberculosis mce-2 and mce-3 mutants in a Balb/c mouse model of progressive pulmonary tuberculosis [J]. Vaccine, 2006, 24(13): 2333-2342.
[36] McShane H, Pathan AA, Sander CR, Goonetilleke NP, Fletcher HA, Hill AV. Boosting BCG with MVA85A: the first candidate subunit vaccine for tuberculosis in clinical trials [J]. Tuberculosis (Edinb), 2005, 85(1-2): 47-52.
[37] Xing Z, Santosuosso M, McCormick S, Yang TC, Millar J, Hitt M, Wan Y, Bramson J, Vordermeler HM. Recent advances in the development of adenovirus- and poxvirus-vectored tuberculosis vaccines [J]. Curr Gene Ther, 2005, 5(5): 485-492.
[38] Lowrie DB, Tascon RE, Bonato VL, Lima VM, Faccioli LH, Stavropoulos E, Colston MJ, Hewinson RG, Moelling K, Silva CL. Therapy of tuberculosis in mice by DNA vaccination [J]. Nature, 1999, 400(6741): 269-271.
[39] Beveridge NE, Price DA, Casazza JP, Pathan AA, Sander CR, Asher TE, Ambrozak DR, Precopio ML, Scheinberg P, Alder NC, Roederer M, Koup RA, Douek DC, Hill AV, McShane H. Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+memory T lymphocyte populations [J]. Eur J Immunol, 2007, 37(11): 3089-3100.
[40] Pollock JM, Andersen P. The potential of the ESAT-6 antigen secreted by virulent mycobacteria for specific diagnosis of tuberculosis [J]. J Infect Dis,1997, 175(5): 1251-1254.
[41] Rodrigues LC, Pereira SM, Cunha SS, Genser B, Ichihara MY, de Brito SC, Hijar MA, Dourado I, Cruz AA, Sant’Anna C, Bierrenbach AL, Barreto ML. Effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: the BCGREVAC cluster-randomised trial [J]. Lancet, 2005, 366(9493): 1290-1295.
[42] O’Hagan DT. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection [J]. Expert Rev Vaccines, 2007, 6(5): 699-710.
[43] Gluck R, Moser C, Metcalfe IC. Influenza virosomes as an efficient system for adjuvanted vaccine delivery [J]. Expert Opin Biol Ther, 2004, 4(7): 1139-1145.
[44] Agger EM, Rosenkrands I, Olsen AW, Hatch G, Williams A, Kritsch C, Lingnau K, von Gabain A, Andersen CS, Korsholm KS, Andersen P. Protective immunity to tuberculosis with Ag85B-ESAT-6 in a synthetic cationic adjuvant system IC31 [J]. Vaccine, 2006, 24(26): 5452-5460.
[45] Garcon N, Chomez P, van Mechelen M. GlaxoSmithKline adjuvant systems in vaccines: concepts, achievements and perspectives [J]. Expert Rev Vaccines, 2007, 6(5): 723-739.
[46] Agger EM, Rosenkrands I, Hansen J, Brahimi K, Vandahl BS, Aagaard C, Werninghaus K, Kirschning C, Lang R, Christensen D, Theisen M, Follman F, Andersen P. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements [J].PLoS One, 2008, 3(9): e3116.
[47] Shi S, Hickey AJ. PLGA microparticles in respirable sizes enhance an in vitro T cell response to recombinant Mycobacterium tuberculosis antigen TB10.4-Ag85B [J]. Pharm Res, 2010, 27(2): 350-360.
[48] Kagina BM, Abel B, Scriba TJ, Hughes EJ, Keyser A, Soares A, Gamieldien H, Sidibana M, Hatherill M, Gelderbloem S, Mahomed H, Hawkridge A, Hussey G, Kaplan G, Hanekom WA. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guérin vaccination of newborns [J].Am J Respir Crit Care Med, 2010, 182(8): 1073-1079.
[49] Dannenberg AM Jr. Perspectives on clinical and preclinical testing of new tuberculosis vaccines [J].Clin Microbiol Rev, 2010, 23(4): 781-794.
[50] Kremer K, van der Werf MJ, Au BK, Anh DD, Kam KM, van Doorn HR, Borgdorff MW, van Soolingen D. Vaccine-induced immunity circumvented by typical Mycobacterium tuberculosis Beijing strains [J]. Emerg Infect Dis, 2009, 15(2): 335-339.
[51] Palma C, Iona E, Giannoni F, Pardini M, Brunori L, Orefici G, Fattorini L, Cassone A. The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B DNA vaccine into a potent but non-protective Th1 immune response in mice [J]. Cell Microbiol, 2007, 9(6): 1455-1465.
[52] Romano M, Roupie V, Wang XM, Denis O, Jurion F, Adnet PY, Laali R, Huygen K. Immunogenicity and protective efficacy of tuberculosis DNA vaccines combining mycolyl-transferase Ag85A and phosphate transport receptor PstS-3 [J]. Immunology, 2006, 118(3): 321-332.
[53] Behar SM, Woodworth JS, Wu Y. Next generation: tuberculosis vaccines that elicit protective CD8+T cells [J]. Expert Rev Vaccines, 2007, 6(3): 441-456.
[54] Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths KE, Marchal G, Leclerc C, Cole ST. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis [J]. Nat Med, 2003, 9(5): 533-539.
[55] Zheng H, Lu L, Wang B, Pu S, Zhang X, Zhu G, Shi W, Zhang L, Wang H, Wang S, Zhao G, Zhang Y. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv [J]. PLoS One, 2008, 3(6): e2375.
[56] Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program [J]. J Exp Med, 2003, 198(5): 705-713.
[57] Andersen P. Vaccine strategies against latent tuberculosis infection [J]. Trends Microbiol, 2007, 15(1): 7-13.
[58] Lin MY, Ottenhoff TH. Not to wake a sleeping giant: new insights into host-pathogen interactions identify new targets for vaccination against latent Mycobacterium tuberculosis infection [J]. Biol Chem, 2008, 389(5): 497-511.
[59] Aagaard C, Hoang T, Dietrich J, Cardona PJ, Izzo A, Dolganov G, Schoolnik GK, Cassidy JP, Billeskov R, Andersen P. A multistage tuberculosis vaccine that confers efficient protection before and after exposure [J]. Nat Med, 2011,17(2):189-194.