• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    β-環(huán)糊精與系列無(wú)機(jī)鹽分子-離子加合物的粉末X射線(xiàn)衍射分析

    2010-03-06 04:44:50宋樂(lè)新
    物理化學(xué)學(xué)報(bào) 2010年7期
    關(guān)鍵詞:加合物環(huán)糊精X射線(xiàn)

    黨 政 宋樂(lè)新

    (中國(guó)科學(xué)技術(shù)大學(xué)高分子科學(xué)與工程學(xué)系,中國(guó)科學(xué)院軟物質(zhì)化學(xué)重點(diǎn)實(shí)驗(yàn)室,合肥 230026)

    β-Cyclodextrin(β-CD)is a cyclic oligosaccharide consisting of seven glucopyranose units,in the form of a hollow truncated cone[1-3].With hydrophilic exterior and hydrophobic interior,it can form supramolecular inclusion complexes with many kinds of guests such as organic molecules,polymers,inorganic ions, and coordination compounds by weak interaction processes[4-8]. Owing to good crystallization behavior,β-CD as well as its inclusion complexes can be analyzed by X-ray diffraction(XRD) technology[9-11].

    A solid inorganic ion-CD adduct means the product formed by a CD and a certain inorganic salt,such as CaCl2[12]and CuCl2[12-13]. For small inorganic ions,they are likely to be in the form of an intercalary structure between CD molecules in their adducts with the aid of the molecule-ion encapsulation interaction[2](Fig.1).

    As a whole,even in solution,the studies concerned about the formation of the molecule-ion adducts formed by CDs and inorganic salts are quite rare[1,14-15].In crystal state,a few reports show that there is molecule-ion interaction between CD molecules and simpleinorganicions[16-17],suchasI-3,I-5,and I-7[18-21].Recent studies indicate that the existence of CD molecules can seriously affect the crystal packing modes of inorganic salts.For example,in terms of XRD data,CaCO3nanoparticles formed in water present a calcite structure[22].However,if the isolated nano-particles are grown in the aqueous solution of β-CD,they have an aragonitestructure[23].Thisworkprovidesagoodparadigmforrevealing the significance of the molecule-ion interaction between CD molecules and inorganic ions.Nevertheless,it only refers to the influenceofmolecule-ioninteractionbetween β-CDandCa2+onthe growth and packing behavior of CaCO3and does not mention the effect of this interaction on those of β-CD.

    As shown in Fig.1,the molecule-ion interaction between β-CD molecules and inorganic ions is unlike the intermolecular complexation between β-CD and water molecules as well as organic guests.As most of inorganic ions have a small size and a high polarity,the van der Waals interaction between inorganic ions and the cavities of CDs was found to be extremely weak in aqueous solution[24],possibly because inorganic ions are preferred to be outside the hydrophobic cavities of CDs.

    For example,like hydrates of β-CD,the single crystal structure of molecule-ion adduct formed by CaCl2with β-CD is just in the form of a cage packing mode[11],in which neither calcium ion nor chloride ion is embedded in the cavity of β-CD.This is why the products formed by molecule-ion interactions are regarded as adducts instead of inclusion complexes.

    Previous studies have concentrated on the confirmation of molecule-ion interaction either in aqueous solution or in single crystal state.To the best of our knowledge,there are very few reports on the spectral behavior of molecule-ion adducts in a crystal state so far though numerous papers are associated with the characterization of inclusion complexes formed through intermolecular interaction between CDs and guest molecules in solution as well as in solid state[5-10].

    Fig.1 Proposed molecule-ion interaction mode between β-CD and inorganic ions

    The absence of such studies is the more striking,since with the development of molecular biology and medical chemistry,it is suggested that many simple inorganic drugs,such as Li2CO3, NaAsO2and so on,play an important role in treating all aspects of health care[25-28].Assuredly,how to reduce their acute oral toxicity in vivo is a significant and particularly useful subject for studies concerning the link between bioinorganic chemistry and supramolecular chemistry.Possibly,this question can be solved by means of the formation of supramolecular adducts between common inorganic drugs and biomacromolecules such as CDs. Further,what is the spectral difference of similar adducts in solid state?In the present work,we attempt to prepare a series of adducts of β-CD with inorganic salts and try to analyze the spectral difference in powder X-ray diffraction(PXRD)patterns among inorganic salts,β-CD and their adducts in order to evaluatetheperformanceofmolecule-ioninteractionsinacrystalstate. We believe that the research will be very useful for pharmaceutical and biomedical analysis as well as preparation of inorganic nanoparticles[27].

    1 Experimental

    1.1 Materials

    β-CD(≥98.0%)was purchased from Shanghai Chemical Reagent Company and recrystallized twice from deionized water. Lithium chloride(LiCl,≥99.5%),ammonium chloride(NH4Cl,≥99.5%),potassium chloride(KCl,≥99.5%),sodium chloride (NaCl,≥99.5%),potassium nitrate(KNO3,≥99.5%)and lanthanum chloride(LaCl3,≥99.0%)were purchased from Shanghai Chemical Reagent and used without further purification.Calcium chloride(CaCl2,≥96%)was purchased from Sinopharm Chemical Reagent Company and used without further purification. NaAsO2(≥98.0%)is purchased from Sigma and used without further purification.All other reagents are of analytical-reagent grade,unless stated otherwise.

    1.2 Preparation of molecule-ion adducts

    The adducts of β-CD with the selected inorganic salts were prepared under a hydrothermal condition,by mixing β-CD (0.1135 g,0.1 mmol)with an inorganic salt(1∶1,molar ratio)in aqueous solution(50 mL)into an autoclave.Subsequently,the autoclave was heated at 393 K for 4 h.Then the solution was transferred to a temperature controlled water bath.After solvent was removed below 313 K under reduced pressure,the residue was dried thoroughly at 383 K in vacuo,and used without further purification.

    1.3 Preparation of physical mixtures

    Unground and ground physical mixtures between β-CD and inorganic salts were obtained by mixing them in 1∶1(molar ratio) with a grinding time of 0 and 20 min,respectively.

    1.4 Measurements of samples

    PXRD spectra of solid samples were performed on a Philips X′Pert Pro X-ray diffractometer.The solid samples were irradi-ated with monochromatized Cu Kαand analyzed with 5°≤2θ≤40°.The voltage and current were 40 kV and 40 mA,respectively.The sample mass was about 5.5 mg for each measurement. In order to diminish the effect of water molecules on PXRD patterns,all samples to be analyzed were kept under the same conditions,i.e.,383 K for 4 h before use.2θ angles(low angle range) of solid samples:β-CD,9.1°(moderate,m),10.8°(weak,w),12.6° (strong,s),15.6°(w),17.3°(w),19.3°(m)19.7°(w),and 22.7° (w);LiCl,30.0°(s),34.9°(s),and 50.1°(m);LiCl-β-CD,9.3° (w),10.9°(w),12.7°(s),15.8°(m),16.3°(m),17.1°(m),19.5° (m),21.3°(m),and 22.9°(m);NH4Cl,22.9°(m),32.6°(s),and 40.2°(w);NH4Cl-β-CD,9.2°(m),10.9°(w),12.8°(s),15.8°(m), 17.3°(m),19.7°(m),21.2°(m),22.8°(s),and 32.0°(m);KCl, 24.9°(w)and 35.4°(s);KCl-β-CD,9.2°(m),12.7°(s),14.8° (w),15.7°(m),17.3°(m),19.3°(m),22.8°(m),and 32.0°(m); NaCl,26.5°(w)and 32.8°(s);NaCl-β-CD,9.1°(w),10.8°(w), 12.7°(s),15.6°(m),17.9°(m),19.6°(m),21.1°(w),24.4°(m), 25.3°(w),28.8°(w),and 32°(w);LaCl3,13.7°(s),24.5°(s), 27.5°(m),31.4°(m),and 34.4°(s);LaCl3-β-CD,8.3°(w),9.1° (w),12.6°(s),12.9°(s),13.5°(s),17.0°(m),18.3°(m),19.6° (m),and 21.0°(m);CaCl2,19.8°(s),25.5°(m),29.1°(s),31.3° (m),and 38.5°(m);CaCl2-β-CD,9.0°(w),10.5°(m),12.5°(s), 15.6°(m),19.5°(m),22.9°(m),and 29.5°(w);KNO3,27.2°(s), 33.0°(m),and 39.6°(m);KNO3-β-CD,9.0°(w),10.5°(m), 12.5°(s),16.1°(m),19.2°(m),and 22.9°(m);NaAsO2,12.6° (w),18.2°(m),25.1°(m),28.4°(s)and 33.6°(m);NaAsO2-β-CD, 8.9°(w),9.7°(w),10.6°(m),12.4°(s),15.4°(m),17.8°(m), 19.5°(s),22.8°(m),28.0°(w),and 34.1°(w).The field emission scanning electron microscope(FESEM)images of solid samples wererecordedonaJEOL-JSM-6700Ffield-emittingmicroscope.

    2 Results and discussion

    2.1 Comparisons of PXRD spectra among free components,physical mixtures and adducts of β-CD with inorganic salts

    First of all,we should examine what is the difference in spectral property among free components,their ground mixture,and prepared adduct in a system.As an example,four PXRD spectra of the adduct system between β-CD and NaCl,including free NaCl,free β-CD,the ground mixture of them(1∶1,molar ratio), and the prepared adduct NaCl-β-CD under the same drying condition,are presented in Fig.2.

    In Fig.2A,the strongest characteristic peak of free NaCl occurs at 2θ of 32.9°(200).Although the peak is still observed clearly in both the mixture(Fig.2C)and the adduct(Fig.2D),its position shifts to a low 2θ angle upon mixing(2θ,32.2°)with β-CD especially after adduct(2θ,32.0°)with β-CD,and its intensity is significantly weakened from the mixture to the adduct.The left shift of this peak means that the interlayer distance(d(200))of complexed NaCl in the adduct is increased due to the molecule-ion interaction between NaCl and β-CD,indicating that the ion packing of the complexed NaCl becomes looser than that of free NaCl.

    Fig.2 Linear PXRD patterns of free NaCl(A),free β-CD(B), ground mixture(C),and prepared adduct(D)Those signals shown in bold lines come from NaCl.

    On the contrary,all major characteristic peaks in the range from 5°to 15°due to β-CD shift toward higher 2θ angles slightly from the ground mixture to the adduct.For example,the first strongest peak(P1)form 12.6°in the free or the mixed sample shifts to 12.7°in the adduct,which represents the(410)plane of crystal.This phenomenon implies that the molecular packing of complexed β-CD becomes closer than that of free β-CD.At the same time,several sharp signals belonging to β-CD,such as the second strongest peak(P2,19.3°)and the third strongest peak(P3, 9.1°),are weakened markedly after adduct with NaCl.

    These observations described above reveal that molecule-ion interactions may also appear during the process of mixing especially grinding(Supporting Information),and they have different spectral performances in different molecule-ion systems,suggesting significant effects of inorganic ions.Additionally,the PXRD spectra of either mixtures or adducts are mainly dominated by β-CD,possibly because the mass percentage of inorganic salts is much lower than that of β-CD.

    2.2 Effects of inorganic anions on the PXRD spectra of adducts

    It is found that there are considerable differences in the PXRD spectra between oxysalt and chloride adducts of β-CD(Supporting Information).

    First,several main peaks belonging to β-CD shift to a lower angle slightly from chloride adducts to oxysalt adducts.For example,the peak at 2θ of about 12.7°(P1)in the spectra of the two chloride adducts occurs in a lower angle of 12.4°for NaAsO2-β-CD and 12.5°for KNO3-β-CD.

    The shift of the peaks in a low 2θ angle range toward a lower angle reflects that there is a relative lower interlayer force between β-CD molecules in an oxysalt adduct than in a chloride adduct.We hypothesize that this is associated with the size of anions because the presence of a big anion in interlayer between β-CD molecules will lead to the increase of interlayer distances.

    Next,the peak at 19.3°(P2)of free β-CD shifts to 19.5°in the two oxysalt adducts(P2),and is strengthened in the presence of NaAsO2.However,the positions of P2in the two chloride adducts appear at 23.0°for NaCl and 22.8°for KCl.

    These observations reveal the complexity of molecule-ion in-teractions between β-CD and inorganic salts.As a result,different anions have different influences on the arrangement of β-CD molecules.

    The phenomenon that the spectral difference in PXRD patterns between the adducts of β-CD with the same anion but different cations is obviously smaller than that between the adducts of β-CD with the same cation but different anions seems to imply that inorganic anions play a more important role than cations in changing the stacking behavior of β-CD molecules.For instance,in the spectra of NaAsO2-β-CD[29]and NaCl-β-CD,several main characteristic peaks corresponding to β-CD shift towards different directions relative to free β-CD.This obvious spectral difference in 2θ angles between the two adducts indicates that the presence of NaAsO2and NaCl has increased and decreased the interlayer distances(d)in the direction of corresponding crystal faces,respectively.This fact that the size of Na+, AsO-2,and Cl-is insignificant relative to that of the cavity of β-CD provides important evidence that these inorganic ions exist outside the cavities of β-CD molecules.Because if the small ions are embedded within the large cavities,then there will not exist such a difference in d values between the molecule-ion adducts. In addition,there are some new peaks after adduct,such as those at 28.0°and 34.1°in NaAsO2-β-CD and those at 21.1°,25.3°, and 28.8°in NaCl-β-CD.The occurrence of the new peaks efficiently demonstrates the presence of molecule-ion interactions in the adducts.In addition to the effect of inorganic anions,we wish to further investigate how the properties of inorganic cations affect the spectral behavior of β-CD.

    2.3 Effects of inorganic cations on the PXRD spectra of adducts

    Meanwhile,we find that upon adduct the shifts of main characteristic peaks of free components vary with different cations. The PXRD spectra of the adducts of β-CD with several monochlorides(NH4Cl,KCl,NaCl,and LiCl)are depicted in Fig.3.

    Fig.3 PXRD patterns of β-CD(A),NH4Cl-β-CD(B), KCl-β-CD(C),NaCl-β-CD(D),and LiCl-β-CD(E)

    As shown in Fig.3,all those peaks belonging to β-CD on the left side of P1,shift to a higher 2θ angle in the case of four adducts,and the extent of the shift has an increasing order of NH4Cl-β-CD<KCl-β-CD<NaCl-β-CD<LiCl-β-CD.This result indicates that there are different interlayer forces between corresponding crystal faces of the polycrystalline bodies mainly resulted from β-CD molecules.Importantly,such an order can be explained by the fact that the order of the radii of these ions is Li+<Na+<K+<NH+4.In the case of the same anion,the presence of cations brings the arrangement of β-CD molecules closer.Li+ions,due to the highly positive charge density,produce a larger effect on the molecular arrangement of β-CD.It may be because some crystal lattice water molecules are replaced by the cations, which causes the occurrence of stronger electrostatic interaction between these ions and some of the end hydroxyl groups of β-CD molecules,leading to the possibility that the smaller the cation,the stronger the hydrogen bonding interaction between β-CD molecules.Interestingly,the observation is just contrary to the situation of those analyzed anions above.These results indicate that the existence of inorganic ions located at interstitial sites of β-CD molecules can modulate the stacking behavior of β-CD to a different extent dependent on the nature of inorganic salts.This should be an important reason why β-CD as well as many organic additives is being widely applied in controlling the size and shape of inorganic nanoparticles.

    In order to estimate the possible influence of ion charges on electrostatic interaction,the PXRD data of KCl-β-CD and two polychlorides(CaCl2-β-CD and LaCl3-β-CD)are compared(Supporting Information).The strongest characteristic peak(P1,12.7°) in KCl-β-CD has shifted to a lower 2θ angle in CaCl2-β-CD(P1, 12.5°),but it shifts to a higher 2θ angle(P1,13.5°)in LaCl3-β-CD. This result is different from the situation in monochloride adducts described before because the order of the radii of the three metal ions is Ca2+<La3+<K+,implying that the shift orientation of the characteristic peak not only is affected by the radii of metal ions,but also depends on charges of metal ions in the case of the same anions.

    Fig.4 SEM images of β-CD(A),NaCl-β-CD(B),KCl-β-CD (C),and NH4Cl-β-CD(D)

    Interestingly,the SEM images display that the surface structure of β-CD was seriously affected by the existence of different cations(Supporting Information).As shown in Fig.4,β-CD shows the convexity of hexagonal prism with sizes from 2 to 10 μm. However,in the presence of NaCl,KCl,and NH4Cl,the surface morphology of β-CD changes to square,tile,and bar shapes,respectively.The order of particle sizes from small to big is NH4Cl-β-CD<KCl-β-CD<NaCl-β-CD<β-CD.The changes in SEM images prove that different molecule-ion interactions induce the difference of the crystallization behavior of β-CD, which supports the results obtained from PXRD.

    3 Conclusions

    In summary,although inorganic salts cannot form stable inclusion complexes with β-CD in aqueous solution,they may influence the arrangement behavior of β-CD molecules in the process of crystallization to a different extent,resulting in structural difference of molecule-ion adducts in solid state.Also,there is a close relationship between the performance of PXRD patterns and their impact factors such as formation conditions of adducts, natures of anions or cations,ionic charges and so on.The comparison from SEM images supports the results from PXRD.The present work offers a framework that may be especially useful for the study of those systems that involve the molecule-ion interaction between sugars and salts in biophysical chemistry, molecular biology,and preparation of inorganic nanoparticles.

    Supporting Information available free of charge via the internet at http://www.whxb.pku.edu.cn.

    1 Liu,Y.;You,C.C.;Zhang,H.Y.Supramolecular chemistry. Tianjin:Nankai University Press,2001 [劉 育,尤長(zhǎng)城,張衡益.超分子化學(xué).天津:南開(kāi)大學(xué)出版社,2001]

    2 Song,L.X.;Bai,L.;Xu,X.M.;He,J.;Pan,S.Z.Coord.Chem. Rev.,2009,253:1276

    3 Tong,L.H.Chemistry of cyclodextrins.Beijing:Science Press, 2001:192 [童林薈.環(huán)糊精化學(xué).北京:科學(xué)出版社,2001:192]

    4 Cai,W.S.;Sun,T.T.;Liu,P.;Chipot,C.;Shao,X.G.J.Phys. Chem.B,2009,113:7836

    5 Yu,Y.M.;Cai,W.S.;Chipot,C.;Sun,T.T.;Shao,X.G.J.Phys. Chem.B,2008,112:5268

    6 Yu,Y.M.;Cai,W.S.;Shao,X.G.J.Incl.Phenom.Macro.,2006, 56:225

    7 Kamigauchi,M.;Kawanishi,K.;Onishi,H.;Ishida,T.Chem. Pharm.Bull.,2007,55:729

    8 Liu,Y.;Ke,C.F.;Zhang,H.Y.;Wu,W.J.;Shi,J.J.Org.Chem., 2007,72:280

    9 Wang,E.J.;Lian,Z.X.;Cai,J.W.Carbohyd.Res.,2007,342: 767

    10 Rodriquez-Llamazares,S.;Yutronic,N.;Jara,P.;Englert,U.; Noyong,M.;Simon,U.Eur.J.Org.Chem.,2007:4298

    11 Marques,J.;Anjo,L.;Marques,M.P.M.;Santos,T.M.;Paz,F.A. A.;Braga,S.S.J.Organomet.Chem.,2008,693:3021

    12 Nicolis,I.;Coleman,A.W.;Charpin,P.;deRango,C.Acta Crystallogr.Sect.B,1996,52:122

    13 Kurokawa,G.;Sekii,M.;Ishida,T.;Nogami,T.Supramol.Chem., 2004,16:381

    14 Spencer,J.N.;He,Q.;Ke,X.M.;Wu,Z.Q.;Fetter,E.J.Solution Chem.,1998,27:1009

    15 Buvari,A.;Barcza,L.J.Incl.Phenom.Macro.,1989,7:379

    16 Matsui,Y.;Ono,M.;Tokunaga,S.Bull.Chem.Soc.Jpn.,1997, 70:535

    17 Masar,M.;Bodor,R.;Kaniansky,D.J.Chromatogr.A,1999,834: 179

    18 Nimz,O.;Gessler,K.;Uson,I.;Laettig,S.;Welfle,H.;Sheldrick, G.M.;Saenger,W.Carbohydr.Res.,2003,338:977

    19 Charalampopoulos,V.G.;Papaioannou,J.C.;Karayianni,H.S. Solid State Sci.,2006,8:97

    20 Papaioannou,J.C.;Charalampopoulos,V.G.;Xynogalas,P.; Viras,K.J.Phys.Chem.Solids,2006,67:1379

    21 Charalampopoulos,V.G.;Papaioannou,J.C.Carbohydr.Res., 2007,342:2075

    22 Sonawane,S.H.;Shirsath,S.R.;Khanna,P.K.;Pawar,S.; Mahajan,C.M.;Paithankar,V.;Shinde,V.;Kapadnis,C.V.Chem. Eng.J.,2008,143:308

    23 Zhang,X.Y.;Liao,Z.J.;Yang,L.;Hu,Z.G.;Jiang,K.;Guo,Y. M.Acta Chim.Sin.,2003,61:69 [張秀英,廖照江,楊 林,胡志國(guó),蔣 凱,郭玉明.化學(xué)學(xué)報(bào),2003,61:69]

    24 Yamashoji,Y.;Fujiwara,M.;Matsushita,T.;Tanaka,M.Chem. Lett.,1993:1029

    25 Wolf,R.;D′avino,M.;De Angelis,F.;Ruocco,E.;Lombardi,M. L.J.Eur.Acad.Dermatol.Vener.,2000,14:97

    26 Manna,P.;Sinha,M.;Sil,P.C.Redox.Rep.,2008,13:67

    27 Song,L.X.;Dang,Z.J.Phys.Chem.B,2009,113:4998

    28 Song,L.X.;Bai,L.J.Phys.Chem.B,2009,113:9035

    29 Dang,Z.;Song,L.X.;Pan,S.Z.;Wang,M.Acta Phys.-Chim.Sin., 2009,25:1059 [黨 政,宋樂(lè)新,潘淑臻,王 莽.物理化學(xué)學(xué)報(bào),2009,25:1059]

    猜你喜歡
    加合物環(huán)糊精X射線(xiàn)
    硫芥與活性硫醇化合物加合特性的分析研究
    “X射線(xiàn)”的那些事兒
    實(shí)驗(yàn)室X射線(xiàn)管安全改造
    半胱氨酸消減丙烯酰胺的機(jī)理及消減工藝在薯?xiàng)l中的應(yīng)用
    DNA加合物組的預(yù)處理及檢測(cè)方法研究進(jìn)展
    虛擬古生物學(xué):當(dāng)化石遇到X射線(xiàn)成像
    科學(xué)(2020年1期)2020-01-06 12:21:34
    鴉膽子油β-環(huán)糊精包合物的制備
    中成藥(2018年8期)2018-08-29 01:28:08
    β-環(huán)糊精對(duì)決明子的輔助提取作用
    中成藥(2018年4期)2018-04-26 07:12:43
    食品致癌物雜環(huán)胺的生物標(biāo)記物的研究進(jìn)展
    基于DirectShow的便攜式X射線(xiàn)數(shù)字圖像采集的實(shí)現(xiàn)
    日本vs欧美在线观看视频| 久久这里只有精品19| 午夜福利成人在线免费观看| 一区二区三区国产精品乱码| 精品国产超薄肉色丝袜足j| 美女午夜性视频免费| 亚洲中文av在线| 久久性视频一级片| 亚洲精品国产一区二区精华液| 精品高清国产在线一区| 日本免费一区二区三区高清不卡 | 亚洲情色 制服丝袜| 真人做人爱边吃奶动态| 精品国产乱子伦一区二区三区| 精品第一国产精品| 久久热在线av| 成人精品一区二区免费| 久久青草综合色| 高清在线国产一区| 高清在线国产一区| 欧美久久黑人一区二区| xxx96com| 国产成人免费无遮挡视频| 日日摸夜夜添夜夜添小说| 丁香六月欧美| 好看av亚洲va欧美ⅴa在| 欧美激情久久久久久爽电影 | 91av网站免费观看| 色播亚洲综合网| 99在线视频只有这里精品首页| 久久久精品国产亚洲av高清涩受| 国内精品久久久久精免费| 亚洲三区欧美一区| АⅤ资源中文在线天堂| 如日韩欧美国产精品一区二区三区| 午夜久久久久精精品| 国产精品免费视频内射| 国产av一区二区精品久久| 亚洲国产精品成人综合色| 亚洲一区高清亚洲精品| 欧美日韩瑟瑟在线播放| 久久婷婷人人爽人人干人人爱 | 男男h啪啪无遮挡| 国产精品亚洲美女久久久| 成人精品一区二区免费| 成人精品一区二区免费| 在线观看舔阴道视频| 一区二区三区国产精品乱码| 久久国产精品人妻蜜桃| 日韩大尺度精品在线看网址 | 88av欧美| 日韩欧美三级三区| 免费高清视频大片| 国产精品av久久久久免费| 夜夜爽天天搞| 好男人在线观看高清免费视频 | 精品久久久久久成人av| 日韩欧美国产在线观看| 亚洲中文日韩欧美视频| 国产精品一区二区精品视频观看| 精品电影一区二区在线| 久久精品aⅴ一区二区三区四区| 精品人妻在线不人妻| 亚洲中文字幕日韩| 成人国产综合亚洲| 亚洲自拍偷在线| 国产午夜精品久久久久久| 一级片免费观看大全| 十八禁人妻一区二区| 如日韩欧美国产精品一区二区三区| 免费久久久久久久精品成人欧美视频| 成人永久免费在线观看视频| 国产精品久久久久久亚洲av鲁大| 精品乱码久久久久久99久播| 日韩av在线大香蕉| 久久草成人影院| 欧美色欧美亚洲另类二区 | 午夜免费成人在线视频| 国产一区二区在线av高清观看| 香蕉国产在线看| 麻豆国产av国片精品| 多毛熟女@视频| 成人欧美大片| 国产亚洲av高清不卡| 欧美在线黄色| 啦啦啦 在线观看视频| 久久久久久久久久久久大奶| 黄色片一级片一级黄色片| 法律面前人人平等表现在哪些方面| 精品高清国产在线一区| 老汉色∧v一级毛片| 少妇被粗大的猛进出69影院| 国产高清有码在线观看视频 | 丝袜在线中文字幕| avwww免费| 国产成人精品无人区| 欧美中文日本在线观看视频| 男男h啪啪无遮挡| 免费在线观看影片大全网站| 巨乳人妻的诱惑在线观看| 国产精品自产拍在线观看55亚洲| 两性夫妻黄色片| 狂野欧美激情性xxxx| 波多野结衣巨乳人妻| 岛国在线观看网站| 日本五十路高清| 亚洲,欧美精品.| 免费人成视频x8x8入口观看| 国产亚洲精品一区二区www| 老司机在亚洲福利影院| 亚洲精品一区av在线观看| 亚洲成av片中文字幕在线观看| 国内毛片毛片毛片毛片毛片| a级毛片在线看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人欧美在线观看| 亚洲情色 制服丝袜| 又黄又粗又硬又大视频| 少妇粗大呻吟视频| 宅男免费午夜| 精品国产乱码久久久久久男人| 这个男人来自地球电影免费观看| bbb黄色大片| 国产片内射在线| 国产精品国产高清国产av| 免费少妇av软件| 18禁美女被吸乳视频| 成人国语在线视频| 亚洲一区二区三区不卡视频| 男人舔女人的私密视频| 国产一区二区三区综合在线观看| 亚洲精品中文字幕一二三四区| 亚洲欧美激情综合另类| svipshipincom国产片| 亚洲一区二区三区不卡视频| 免费看a级黄色片| 久久亚洲精品不卡| 亚洲五月天丁香| 两人在一起打扑克的视频| 美国免费a级毛片| 不卡一级毛片| 亚洲成人精品中文字幕电影| 黑丝袜美女国产一区| 又大又爽又粗| 国产精品永久免费网站| 岛国在线观看网站| 成人三级黄色视频| 亚洲狠狠婷婷综合久久图片| 18禁黄网站禁片午夜丰满| 黄色a级毛片大全视频| 少妇熟女aⅴ在线视频| 乱人伦中国视频| 欧美黑人精品巨大| or卡值多少钱| 久久精品成人免费网站| 可以免费在线观看a视频的电影网站| 亚洲色图综合在线观看| 亚洲午夜精品一区,二区,三区| 成人国产一区最新在线观看| 美女大奶头视频| 亚洲成av片中文字幕在线观看| 在线天堂中文资源库| 国产精品,欧美在线| 黄色视频不卡| 免费女性裸体啪啪无遮挡网站| 久久久精品国产亚洲av高清涩受| 怎么达到女性高潮| 在线观看66精品国产| 亚洲自拍偷在线| 在线天堂中文资源库| 久久亚洲真实| 亚洲人成电影免费在线| svipshipincom国产片| 久久精品国产综合久久久| 女同久久另类99精品国产91| 无遮挡黄片免费观看| 国产成年人精品一区二区| 日本a在线网址| 一进一出抽搐动态| 亚洲在线自拍视频| 亚洲精品国产区一区二| 久久人妻福利社区极品人妻图片| 欧美一级a爱片免费观看看 | 精品少妇一区二区三区视频日本电影| 成人免费观看视频高清| 黄色丝袜av网址大全| 男人舔女人的私密视频| 一本久久中文字幕| 欧美精品啪啪一区二区三区| av有码第一页| 级片在线观看| 97人妻精品一区二区三区麻豆 | 欧美日韩福利视频一区二区| 高潮久久久久久久久久久不卡| 国产午夜福利久久久久久| av中文乱码字幕在线| 久久久国产精品麻豆| 禁无遮挡网站| 成人亚洲精品av一区二区| 日日爽夜夜爽网站| 亚洲成人免费电影在线观看| 欧美黑人精品巨大| 19禁男女啪啪无遮挡网站| 久久久久九九精品影院| 亚洲avbb在线观看| 热re99久久国产66热| 免费在线观看影片大全网站| 久久中文看片网| 国产成人精品久久二区二区91| 最新美女视频免费是黄的| 日韩欧美国产一区二区入口| 久久性视频一级片| 手机成人av网站| 美女高潮到喷水免费观看| 熟女少妇亚洲综合色aaa.| 免费在线观看影片大全网站| 这个男人来自地球电影免费观看| 亚洲一区二区三区不卡视频| 久久香蕉国产精品| 黄色丝袜av网址大全| 日本五十路高清| 午夜免费激情av| 男男h啪啪无遮挡| 国产精品久久久久久精品电影 | 久久精品国产综合久久久| 18禁国产床啪视频网站| 精品日产1卡2卡| 麻豆久久精品国产亚洲av| 国产高清有码在线观看视频 | 三级毛片av免费| 一级黄色大片毛片| 精品久久久久久久毛片微露脸| 久久久久久亚洲精品国产蜜桃av| 人人澡人人妻人| 久久婷婷成人综合色麻豆| 国产精品久久久久久精品电影 | 香蕉国产在线看| 色综合婷婷激情| 午夜福利高清视频| 国产精品九九99| 女警被强在线播放| 成人精品一区二区免费| 精品一区二区三区视频在线观看免费| 在线观看免费视频网站a站| 久久久久久大精品| 国产成人影院久久av| 久久草成人影院| 午夜日韩欧美国产| 亚洲 欧美 日韩 在线 免费| 搡老岳熟女国产| 国产av精品麻豆| 精品无人区乱码1区二区| 国产99久久九九免费精品| 老司机靠b影院| 天堂动漫精品| av视频在线观看入口| 在线观看免费午夜福利视频| 亚洲国产精品久久男人天堂| 欧美日韩精品网址| 日韩欧美一区二区三区在线观看| 视频在线观看一区二区三区| 久久午夜综合久久蜜桃| 精品国产超薄肉色丝袜足j| 18禁国产床啪视频网站| 亚洲成av人片免费观看| 欧美一级a爱片免费观看看 | e午夜精品久久久久久久| 亚洲av片天天在线观看| 午夜福利18| 国产亚洲精品久久久久5区| 人妻久久中文字幕网| 一二三四在线观看免费中文在| 欧美激情 高清一区二区三区| 精品欧美国产一区二区三| 国产精品野战在线观看| 国产精品免费一区二区三区在线| 成人18禁在线播放| 久久亚洲精品不卡| 午夜福利成人在线免费观看| 97人妻精品一区二区三区麻豆 | 日本一区二区免费在线视频| 欧美日本视频| 中文字幕人成人乱码亚洲影| 91成年电影在线观看| 最新在线观看一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲美女黄片视频| 午夜福利免费观看在线| 成人三级做爰电影| 少妇熟女aⅴ在线视频| 亚洲激情在线av| 日本 欧美在线| 久久热在线av| 国产精品综合久久久久久久免费 | 欧美黄色淫秽网站| 亚洲午夜精品一区,二区,三区| 午夜免费观看网址| 麻豆国产av国片精品| 一级黄色大片毛片| 中亚洲国语对白在线视频| 国产精品乱码一区二三区的特点 | 午夜激情av网站| 久久中文字幕人妻熟女| 亚洲午夜理论影院| 久久久国产精品麻豆| 亚洲欧美日韩高清在线视频| 少妇被粗大的猛进出69影院| 在线播放国产精品三级| 国产精品久久久久久精品电影 | 国产精品99久久99久久久不卡| 18禁美女被吸乳视频| 91在线观看av| 天天添夜夜摸| 女人爽到高潮嗷嗷叫在线视频| 亚洲第一青青草原| 久久香蕉激情| 色综合婷婷激情| 国产精品久久久久久精品电影 | 国产伦一二天堂av在线观看| 香蕉丝袜av| 中文字幕高清在线视频| 国产一区二区在线av高清观看| 精品第一国产精品| 欧美黑人欧美精品刺激| 熟女少妇亚洲综合色aaa.| 老汉色∧v一级毛片| 亚洲aⅴ乱码一区二区在线播放 | 这个男人来自地球电影免费观看| 91老司机精品| ponron亚洲| 女性生殖器流出的白浆| 久久久久久亚洲精品国产蜜桃av| 日韩中文字幕欧美一区二区| 亚洲av电影在线进入| 桃色一区二区三区在线观看| 岛国在线观看网站| 免费女性裸体啪啪无遮挡网站| 咕卡用的链子| 99国产综合亚洲精品| 色综合婷婷激情| 女生性感内裤真人,穿戴方法视频| 久久久久久久久免费视频了| 亚洲精品美女久久久久99蜜臀| 国产精品一区二区在线不卡| 在线免费观看的www视频| 在线播放国产精品三级| 欧美老熟妇乱子伦牲交| 最新美女视频免费是黄的| 他把我摸到了高潮在线观看| 国产aⅴ精品一区二区三区波| 国产精品久久久久久精品电影 | 欧美日韩精品网址| 18美女黄网站色大片免费观看| 美女国产高潮福利片在线看| 亚洲精华国产精华精| 亚洲最大成人中文| 99国产精品一区二区蜜桃av| 精品福利观看| a在线观看视频网站| 一边摸一边做爽爽视频免费| 午夜精品在线福利| 亚洲成人久久性| 后天国语完整版免费观看| 亚洲中文字幕一区二区三区有码在线看 | 国产精品 欧美亚洲| 午夜影院日韩av| 一区二区三区精品91| 欧美日韩瑟瑟在线播放| 一级片免费观看大全| 精品高清国产在线一区| 99热只有精品国产| 看免费av毛片| 90打野战视频偷拍视频| 欧美乱色亚洲激情| 久久久久久久精品吃奶| 亚洲欧美日韩另类电影网站| 亚洲五月婷婷丁香| 狂野欧美激情性xxxx| 色在线成人网| www国产在线视频色| 亚洲国产毛片av蜜桃av| 国产精品久久电影中文字幕| 国产私拍福利视频在线观看| 高潮久久久久久久久久久不卡| 亚洲男人天堂网一区| 欧美另类亚洲清纯唯美| 亚洲精品一区av在线观看| 后天国语完整版免费观看| 真人做人爱边吃奶动态| 男女做爰动态图高潮gif福利片 | 丰满人妻熟妇乱又伦精品不卡| 久久久久久免费高清国产稀缺| 极品教师在线免费播放| 成人18禁高潮啪啪吃奶动态图| 欧美+亚洲+日韩+国产| 国产成人精品无人区| 亚洲精品av麻豆狂野| 村上凉子中文字幕在线| 90打野战视频偷拍视频| 国产激情久久老熟女| 老司机在亚洲福利影院| 欧美激情 高清一区二区三区| 精品欧美一区二区三区在线| 午夜视频精品福利| 少妇裸体淫交视频免费看高清 | 美国免费a级毛片| 99国产精品免费福利视频| 亚洲精品国产一区二区精华液| 国产一区二区三区视频了| 性色av乱码一区二区三区2| 国产精品一区二区免费欧美| 此物有八面人人有两片| 99九九线精品视频在线观看视频| 级片在线观看| 国产女主播在线喷水免费视频网站 | 麻豆精品久久久久久蜜桃| 小说图片视频综合网站| 亚洲av日韩精品久久久久久密| 亚洲人成网站在线播| 两个人的视频大全免费| 在线观看午夜福利视频| 久久精品国产亚洲av涩爱 | 性插视频无遮挡在线免费观看| 精品久久久久久久久久免费视频| 国产免费av片在线观看野外av| 国产v大片淫在线免费观看| 国产精品一区二区性色av| 69人妻影院| 91在线观看av| 女生性感内裤真人,穿戴方法视频| 又黄又爽又刺激的免费视频.| 国产蜜桃级精品一区二区三区| 久久精品国产亚洲网站| 麻豆久久精品国产亚洲av| 真人一进一出gif抽搐免费| 全区人妻精品视频| 日韩欧美精品免费久久| 白带黄色成豆腐渣| 日本a在线网址| 国产探花极品一区二区| 麻豆国产97在线/欧美| 十八禁国产超污无遮挡网站| 国产爱豆传媒在线观看| 精品久久久久久久久久免费视频| 少妇人妻一区二区三区视频| 久久精品国产亚洲网站| 99国产极品粉嫩在线观看| 狂野欧美白嫩少妇大欣赏| 动漫黄色视频在线观看| 在现免费观看毛片| 亚洲电影在线观看av| 桃红色精品国产亚洲av| 一区二区三区激情视频| 精品久久久久久久末码| 黄色一级大片看看| 成人三级黄色视频| 99热只有精品国产| 99热这里只有是精品50| 国产av在哪里看| 成年免费大片在线观看| av中文乱码字幕在线| 桃色一区二区三区在线观看| 国产高清视频在线播放一区| 成人av在线播放网站| 大型黄色视频在线免费观看| 99热6这里只有精品| 人人妻人人澡欧美一区二区| 最新在线观看一区二区三区| 国产 一区精品| 亚洲av电影不卡..在线观看| 最新中文字幕久久久久| 色视频www国产| 国产在视频线在精品| 国产高潮美女av| 国内精品宾馆在线| 亚洲人成网站在线播放欧美日韩| 国产精品爽爽va在线观看网站| 91精品国产九色| 亚洲自拍偷在线| 91麻豆av在线| 国产一区二区在线观看日韩| 国产单亲对白刺激| 国产三级在线视频| 性欧美人与动物交配| 亚洲成人精品中文字幕电影| 免费看av在线观看网站| 久久精品人妻少妇| 亚洲人与动物交配视频| 又粗又爽又猛毛片免费看| 一本久久中文字幕| 成人特级黄色片久久久久久久| 最后的刺客免费高清国语| 人人妻,人人澡人人爽秒播| 国产亚洲精品久久久com| 婷婷精品国产亚洲av| 免费人成视频x8x8入口观看| 少妇熟女aⅴ在线视频| 精品久久久久久久久av| 亚洲不卡免费看| 色综合亚洲欧美另类图片| 九九爱精品视频在线观看| 国产私拍福利视频在线观看| 男女那种视频在线观看| 草草在线视频免费看| 老司机午夜福利在线观看视频| 一进一出抽搐gif免费好疼| 久99久视频精品免费| 男人舔奶头视频| 久久精品国产亚洲网站| 精品人妻视频免费看| 亚洲男人的天堂狠狠| 国产高清激情床上av| 国产精品永久免费网站| 99久久中文字幕三级久久日本| 九色国产91popny在线| 国产精品久久久久久精品电影| 久久国产精品人妻蜜桃| 亚洲国产欧洲综合997久久,| 亚洲人成网站高清观看| 精品午夜福利在线看| 窝窝影院91人妻| 久久久久久国产a免费观看| 又爽又黄a免费视频| 黄色女人牲交| 亚洲天堂国产精品一区在线| 高清日韩中文字幕在线| 精品久久久久久久久久免费视频| 九色成人免费人妻av| 国产精品电影一区二区三区| 美女黄网站色视频| 成年女人毛片免费观看观看9| 最新中文字幕久久久久| 内地一区二区视频在线| 一区福利在线观看| 亚洲美女搞黄在线观看 | 成人欧美大片| 丰满乱子伦码专区| 看黄色毛片网站| 国产精品爽爽va在线观看网站| 亚洲精华国产精华液的使用体验 | 国产成人福利小说| 国产又黄又爽又无遮挡在线| 亚洲美女视频黄频| av黄色大香蕉| 十八禁网站免费在线| 午夜精品一区二区三区免费看| 变态另类丝袜制服| 欧美最黄视频在线播放免费| 久久久久久久午夜电影| 日韩欧美在线乱码| 精品免费久久久久久久清纯| 九九在线视频观看精品| 久99久视频精品免费| 神马国产精品三级电影在线观看| 免费看av在线观看网站| 国产不卡一卡二| 精品人妻一区二区三区麻豆 | 97碰自拍视频| 欧美3d第一页| 在线观看一区二区三区| 国产精品永久免费网站| 久久精品国产清高在天天线| 成人美女网站在线观看视频| 亚洲内射少妇av| 18+在线观看网站| 精品免费久久久久久久清纯| 婷婷精品国产亚洲av| 禁无遮挡网站| 91久久精品电影网| 99九九线精品视频在线观看视频| 人妻久久中文字幕网| 日韩欧美精品v在线| 老司机午夜福利在线观看视频| 精华霜和精华液先用哪个| 国产亚洲欧美98| 久久精品国产自在天天线| 亚洲美女搞黄在线观看 | 婷婷精品国产亚洲av在线| 干丝袜人妻中文字幕| 搡老岳熟女国产| 别揉我奶头 嗯啊视频| 亚洲熟妇熟女久久| 中文字幕高清在线视频| 免费观看人在逋| 精品福利观看| 久久亚洲真实| 亚洲精品一卡2卡三卡4卡5卡| 在现免费观看毛片| 人人妻人人澡欧美一区二区| 久久草成人影院| 黄色女人牲交| 99久久成人亚洲精品观看| 国产精品,欧美在线| 国产探花在线观看一区二区| 色哟哟·www| 真人做人爱边吃奶动态| 我要看日韩黄色一级片| 少妇高潮的动态图| 精品久久久久久久末码| 国产精品1区2区在线观看.| 真人一进一出gif抽搐免费| 日韩一本色道免费dvd| 国产视频内射| 国产真实伦视频高清在线观看 | 成年女人看的毛片在线观看| 国产精华一区二区三区| 一区二区三区高清视频在线| 国产麻豆成人av免费视频| 国产一区二区在线观看日韩| 国产aⅴ精品一区二区三区波| АⅤ资源中文在线天堂| 中文资源天堂在线| 女人十人毛片免费观看3o分钟| 精品一区二区三区视频在线观看免费| 欧美色欧美亚洲另类二区|