• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    混合量子-經(jīng)典方法計算電荷轉移速率及其在實際體系中的應用

    2010-12-12 02:45:02南廣軍鄭仁慧帥志剛
    物理化學學報 2010年7期
    關鍵詞:中國科學院研究所分子

    南廣軍 鄭仁慧 史 強,* 帥志剛

    (1中國科學院化學研究所,分子動態(tài)與穩(wěn)態(tài)結構國家重點實驗室,北京分子科學國家實驗室,北京 100190; 2哈爾濱工業(yè)大學基礎與交叉科學研究院理論與模擬化學研究所,哈爾濱 150080; 3中國科學院化學研究所,有機固體院重點實驗室,北京分子科學國家實驗室,北京 100190;4清華大學化學系,北京 100084)

    Considerable progresses have been made recently in methods to rigorously calculate quantum dynamics in multi-dimensional systems[1-5].However,applications of these exact methods are still limited,and approximate methods are of great interest.In particular,various mixed quantum-classical methods have been developed.The strategy of the mixed quantum-classical methods is to describe the slow nuclear dynamics by classical mechanics while retaining quantum description for the fast electronic(or light weighted atomic)degrees of freedom(DoFs).Equations of motion for the quantum and classical DoFs are coupled together: the motion of the classical DoFs results in a time-dependent quantum Hamiltonian,while at the same time,evolution of the quantum DoFs alters the forces acting on the classical ones.A critical challenge in developing mixed quantum-classical methods is to properly treat the coupled motion of the quantum and classical DoFs.Different approaches have been developed to simulate the mixed quantum-classical dynamics,among which the most commonly used methods are the Ehrenfest method[6-8], the surface hopping(SH)method[9-16],and the more recently developed mixed quantum-classicalLiouville(MQCL)method[17-22].

    In both the Ehrenfest and SH methods,dynamics of the quantum subsystem is propagated fully coherently under the influence of a classical trajectory,which is sampled from a classical or quasi-classical initial distribution.However,the back-reaction to the classical dynamics is treated differently in these two methods.In the Ehrenfest method,the classical DoFs evolve on a mean field potential energy surface calculated from the expectation value of the electronic-nuclear potential energy with respect to the time-dependent quantum wave function.In the SH method,the classical DoFs move on a fixed potential surface at a given time,with localized(instantaneous)transitions between different potential surfaces using a transition probability determined by the motion of the quantum subsystem.In the MQCL method,the mixed quantum-classical dynamics is first formulated in the form of coupled Liouville equations,various propagation schemes are then designed to simulate the dynamics of these phase space equations.

    All these methods have been applied to wide ranges of problems.An interesting and often overlooked problem is the validity of these methods in specific kinds of applications.Berne and coworkers have investigated the applicability of the mixed quantum-classical approaches in calculation of relaxation rate constants[23-25]and vibronic spectra[26-27].In this paper,we perform similar studies in the charge transfer rate calculations by first explicitly deriving the rate constants from the Ehrenfest,SH,and MQCL methods,and then applying them to calculate charge transfer rates in organic semiconductors.The nonadiabatic limit is considered in this study since exact results can be obtained and compared with the mixed quantum-classical approaches.Charge transfer process in organic semiconductors has attracted much theoretical attentions in the emerging field of organic electronics[28-30].We will show that the Ehrenfest and SH methods may fail when high frequency modes are involved,and should be used with caution.The remaining parts of the article are organized as follows.In Sec.1,we present the model Hamiltonian and derive the charge transfer rate expressions in the nonadiabatic limit using the Ehrenfest,SH(in the diabatic representation,see Sec.1.2), and MQCL methods.Numerical results for realistic examples of charge transfer rates in organic semiconductor materials are presented in Sec.2.The reason that the Ehrenfest and SH results deviate from the correct ones is also analyzed.The conclusions are made in Sec.3.

    1 Theory

    We will consider the spin-boson(SB)Hamiltonian[31-32]as a simple model to study charge transfer reactions.The total system and bath Hamiltonian is written as

    where σxand σzare the Pauli matrices,Δ is the electronic matrix element that couples the donor state|1〉and the acceptor state|2〉,ε is the energy difference between the two states.HBand HCare the bath Hamiltonian and the system-bath coupling Hamiltonian,respectively,and can be written as

    Here,pjand xjare the jth mass-weighted nuclear normal momentum and coordinate,respectively,ωjis the frequency of the jth normal mode and cjis the coupling coefficient between the charge and the jth nuclear normal mode.The essential property of the harmonic bath is characterized by its spectral density J(ω), which is defined as

    where ω is electric frequency.The reorganization energy λ can be calculated from J(ω)as

    To calculate the charge transfer rates,we assume that the initial state is equilibrated on the donor state ρ0=e-β(HB-HC)/Z1?|1〉〈1|, where Z1=Tre-β(HB-HC).β=1/(kBT),kBis the Boltzmann constant and T is temperature.We will also consider the nonadiabatic limit where Δ is small,such that,during the establishment of the rate dynamics,the charge population on the donor state is almost unchanged,and a perturbation treatment of Δ can be applied.In the following subsections,we will derive the charge transfer rates for the Ehrenfest,SH,and MQCL methods by treating only the electronic DoFs quantum mechanically.

    For both the Ehrenfest and SH methods,dynamics of the quantum subsystem is governed by a time-dependent Hamiltonian that depends on the classical DoFs.We expand the wave function of the quantum subsystem|ψ(t)〉as

    where a1(t)and a2(t)are the complex-valued expansion coefficients.It is convenient to use the density matrix notation by defining Sx(t)=a1(t)a2(t)*+a1(t)*a2(t),Sy(t)=-i[a1(t)*a2(t)-a1(t)a2(t)*], Sz(t)=a1(t)a1(t)*-a2(t)*a2(t),where Szis the population difference between state|1〉and state|2〉,Sxand Syare two times of the real and imaginary parts of the coherence term between the two states,respectively.The equations of motion can now be written as(for simplicity,we have assumed that ?=1 throughout the paper)

    1.1 The Ehrenfest method

    In the Ehrenfest method,the nuclear potential energy function that determines the classical dynamics is the expectation value of the electronic-nuclear potential energy with respect to the electronic wave function,

    The simultaneous propagation of Eqs.(9-10)and Eqs.(6-8) defines the Ehrenfest method for the SB model.As we have assumed that the initial state is on the donor state,Sx(0)=Sy(0)=0 and Sz(0)=1.In the weak coupling limit and at short time,Sz(t)≈1, and we have

    xj(t)can then be solved from Eqs.(9)and(11)

    where xj0and pj0are the initial coordinate and momentum of the jth bath mode.

    Dynamics of the quantum DoFs can also be calculated analytically.It can be shown that the following equation now provides the solution to Eqs.(6-8)

    such that

    The dynamics of the quantum system can be obtained by averaging over mixed quantum-classical trajectories.

    Now we define P1(t)as the population on the donor state.Since P1(t)≈1 at short time,we can obtain from Eq.(14)that

    where the time dependent rate constant k(t)is as follows,

    Here,the average is taken over the initial probability distribution of the classical DoFs.As time increases,k(t)reaches a plateau, and the electronic dynamics can be described as a rate process. The charge transfer rate can then be obtained by taking t→∞in Eq.(16),when also using the stationary property of HC(t),

    We will use the Wigner transformed distribution to include the quantum effects in the initial sampling[33-36],which is important to account for the quantum zero-point motion for high frequency modes.Since the initial distribution is assumed to be the thermal equilibrium on the donor state,it can be calculated as

    where x0=(x1,x2,…)Tand Δx=(Δx1,Δx2,…)Tare column vectors, respectively.Using the above Eqs.(17-18),

    It should be noted that in calculating linear absorption spectra[25-27],the mixed quantum-classical result can be obtained by taking the classical limit of the full quantum formula.Although a similar route may also be taken here,our derivation above is more direct from the mixed quantum-classical equations when considering the static quantum effects described using the initial distribution Eq.(18).

    1.2 The surface hopping method

    In the SH calculations presented below,the diabatic representation is used.Although the adiabatic representation was often found to be superior in many applications[16],in the case of the nonadiabatic limit for the SB model,the small coupling Δ will cause singularity for the coupling vectors in the adiabatic representation.Instead,the diabatic representation becomes more convenient.

    The equations of motion for the nuclear DoFs on the two different surfaces are found to be

    where+(-)is used for dynamics on the donor(acceptor)surface.

    In the SH method,dynamics of the classical DoFs hops between different electronic surfaces.Different hopping algorithms have been proposed in the literature,among which the“fewest switches”algorithm,suggested by Tully[10,16]has been widely used. According to this algorithm,the probability per unit time of a hop from quantum state|1〉to state|2〉is given by

    Dynamics of the quantum DoFs is the same as that in the Ehrenfestmethod,so we can applyEq.(16)to calculate k(t)forthe SH method.The only difference here is that HC(τ)is now calculated along a“hopping”trajectory that switches between donor and acceptor states.After a short relaxation time,k(t)will reach a plateau,which allows us to calculate the charge transfer rate from the SH method by taking t→∞.

    From Eq.(21),we know that the hopping probability is proportional to Δ2.Such that in the weak electronic coupling limit, the probability for propagation on the acceptor surface is small, and the majority of the trajectories propagates on the donor surface before k(t)reaches the plateau.In such cases,the effect of surface hopping on the trajectory averaging can be neglected, and the SH rate constant is the same as the Ehrenfest result,

    1.3 The MQCL method

    In the mixed quantum-classical Liouville equation method, dynamics of the Wigner transform of the quantum density matrix isfirst obtained usingthe quantum-classicalapproximation[17-18,21-22]. For the SB model,the MQCL equations can be obtained as

    Intheaboveequations,the densitydistribution ρab(x,p)isthe multidimensional Wigner transform of the total density operator ρ:

    where a,b=1,2,denote the electronic states and x=(x1,x2,…)Tand Δx=(Δx1,Δx2,…)Tare column vectors,respectively.

    Eqs.(23-26)are known to be exact for the spin-boson model (e.g.,Refs.[20,37]).However,this set of multi-dimensional coupled partial differential equations is still hard to solve.In the nonadiabatic limit,the MQCL method will give the correct Fermi golden rule(FGR).The following derivation is for the reason of completeness and comparison with the Ehrenfest and SH methods.

    We first define

    then integrate the phase space variables x and p in Eq.(23),

    The perturbation calculation can be performed by setting ρ22and ρ11as their initial values in Eq.(25),ρ12can then be calculated using classical trajectory method,

    The initial distribution is taken from Eq.(18),while the dynamics is on the average surface,

    Assuming that P1(t)≈1 when the plateau is reached,by combining Eqs.(29)and(30)

    This is the FGR result.

    2 Results and discussion

    The Ehrenfest and SH rates(Eq.(19)and Eq.(22))only have subtle difference with the FGR rate(Eq.(32)):in calculating the oscillatory part of the integrand,the sinωjt term in Eq.(32)is replaced by the ωjt term.This will not cause a problem when only low frequency modes are involved,or when the exponential part decays very quickly.As in such cases,it becomes safe to replace sinωjt with ωjt,and the two rate expressions are equivalent. However,this is not the case when high frequency modes are involved,and we will present two such examples in calculating charge transfer rates in organic semiconductors below.In such systems,high frequency vibrations are ubiquitous and their contributions to the reorganization energy are usually large[28-29,38-39].

    We choose rubrene and sexithiophene as two examples to show the problem when high frequency modes are involved. Molecular structure of the two systems,as well as the methods to obtain the parameters used in the SB model are described in Ref.[40-41].The hole self-exchange reactions were considered in this paper,such that ε=0.The weak electronic coupling approximation is valid for the charge transfer in the c direction of rubrene(Δ=12.1 cm-1)and sexithiophene(Δ=5.8 cm-1)[40-41].

    In the hole self-exchange reactions considered for a molecular dimer,the two electronic states are|M+1M2〉and|M1M+2〉,where the positive charge resides on monomers 1 and 2,respectively. The harmonic boson modes that couple to the electronic DoFs consist of normal modes from both the neutral and cationic molecules.The contributions to the reorganization energy from each intramolecular mode of both the neutral and cationic molecules are shown in Fig.1.Using these parameters,the charge transfer rates were obtained from Eqs.(19),(22),and(32) and are shown in Fig.2.We can see that the difference between the Ehrenfest and SH methods and the FGR is significant.For rubrene,the rates from the Ehrenfest and SH methods are found to be larger than the result of FGR in very low temperatures and become substantially lower than the result of FGR when the temperature is higher than 20 K.For sexithiophene,the rates from the Ehrenfest and SH methods are consistently lower than the FGR result in the investigated temperature region.

    The common feature of the two systems is that the high frequency modes contribute significantly to the reorganization energy,which leads to different rates calculated from Eqs.(19),(22), and(32).To see more explicitly that the difference be-tween the Ehrenfest(SH)and FGR rates is mainly due to the high frequencymodes,we calculated the integrands of Eqs.(19),(22),and(32) as a function of time for rubrene,and the results are shown in Fig.3.The inset shows the contributions from the low frequency (ω<500 cm-1)and high frequency(ω>500 cm-1)modes to the total integrand.It can be seen that when all modes are considered,the integrands of Eqs.(19)and(22)differ significantly from that of Eq.(32),and the difference is largely caused by the high frequency modes,which eventually leads to the different electron transfer(ET)rates.

    Fig.1 Individual vibrational frequency ωjfor rubrene and sexithiophene,and their contributions to the total reorganization energy λj(a)neutral rubrene,(b)cationic rubrene,(c)neutral sexithiophene,(d)cationic sexithiophene; The total reorganization energies for rubrene and sexithiophene are 1212.3 and 2061.0 cm-1,respectively.

    Fig.2 Charge transfer rates as a function of temperature in nonadiabatic limit(a)rubrene,(b)sexithiophene;solid line:Fermi golden rule result, dashed line:Ehrenfest method or SH method;k0=Δ2/λ

    Fig.3 The integrand of Eqs.(19),(22),(32)at 300 K as functions of time for rubrene with all the modes shown in Fig.1The inset shows the results with the modes whose frequencies are(a)below 500 cm-1and(b)above 500 cm-1.solid line:Fermi golden rule result, dashed line:Ehrenfest or SH result

    As the MQCL method is exact in the nonadiabatic limit in the spin-boson model considered here,comparison of the three mixed quantum-classical methods reveals the problem of the Ehrenfest and SH methods found in the examples presented in this section:the critical problem is the treatment of the dynamics of the coherence terms(Sxand Syin the Ehrenfest and SH methods,and ρ12in the MQCL method).As shown in the MQCL method,dynamics of this term should be calculated on the average potential surface for the SB model.However,the Ehrenfest method describes it on the ensemble averaged potential,and SH method calculates its propagation by hopping between two surfaces.In the special case considered in this paper(weak electronic coupling,initial nuclear distribution equilibrated on the donor surface),both methods are applied to calculate the dynamics of the coherence term on the donor surface,which leads to the different rate constant expressions from the MQCL method.The above findings indicate that the Ehrenfest and SH methods should be used with caution when high frequency motions are important in the system-bath coupling.

    3 Conclusions

    In this paper,we have derived the charge transfer rate constants from the Ehrenfest,SH,and MQCL methods in the nonadiabatic limit.The results are applied to calculate charge transfer rates in organic semiconductor materials.It is found that the rate constants from Ehrenfest and SH methods can differ significantly from the correct result.Analysis shows that the dynamics of the off-diagonal terms of the density matrix are not correctly described in both methods,and the deviation is more severe when high frequency modes are involved.

    1 Makri,N.J.Math.Phys.,1995,36:2430

    2 Makri,N.Ann.Rev.Phys.Chem.,1999,50:167

    3 Beck,M.H.;Jackle,A.;Worth,G.A.;Meyer,H.D.Phys.Rep., 2000,324:1

    4 Thoss,M.;Wang,H.B.;Miller,W.H.J.Chem.Phys.,2001,115: 2991

    5 Wang,H.;Thoss,M.J.Chem.Phys.,2003,119:1289

    6 Micha,D.A.J.Chem.Phys.,1983,78:7138

    7 Billing,G.D.J.Chem.Phys.,1993,99:5849

    8 Stock,G.J.Chem.Phys.,1995,103:1561

    9 Tully,J.C.;Pretson,R.K.J.Chem.Phys.,1971,55:562

    10 Tully,J.C.J.Chem.Phys.,1990,93:1061

    11 Webster,F.J.;Wang,E.T.;Rossky,P.J.;Friesner,R.A.J.Chem. Phys.,1994,100:4835

    12 Coker,D.F.;Xiao,L.J.Chem.Phys.,1995,102:496.

    13 Prezhdo,O.V.;Kisil,V.V.Phys.Rev.A,1997,56:162

    14 Müller,U.;Stock,G.J.Chem.Phys.,1997,107:6230

    15 Fang,J.Y.;Hammes-Schiffer,S.J.Phys.Chem.A,1999,103: 9399

    16 Tully,J.C.Faraday Discuss.,1998,110:407

    17 Martens,C.C.;Fang,J.Y.J.Chem.Phys.,1997,106:4918

    18 Kapral,R.;Ciccotti,G.J.Chem.Phys.,1999,110:8919

    19 Santer,M.;Manthe,U.;Stock,G.J.Chem.Phys.,2001,114:2001

    20 Mac Kernan,D.;Ciccotti,G.;Kapral,R.J.Chem.Phys.,2002, 116:2346

    21 Shi,Q.;Geva,E.J.Chem.Phys.,2004,121:3393

    22 Kapral,R.Annu.Rev.Phys.Chem.,2006,57:129

    23 Bader,J.S.;Berne,B.J.J.Chem.Phys.,1994,100:8359

    24 Egorov,S.A.;Rabani,E.;Berne,B.J.J.Phys.Chem.B,1999, 103:10978

    25 Egorov,S.A.;Rabani,E.;Berne,B.J.J.Chem.Phys.,1999,110: 5238

    26 Egorov,S.A.;Rabani,E.;Berne,B.J.J.Chem.Phys.,1998,108: 1407

    27 Rabani,E.;Egorov,S.A.;Berne,B.J.J.Chem.Phys.,1998,109: 6376

    28 Brédas,J.L.;Beljonne,D.;Coropceanu,V.;Cornil,J.Chem.Rev., 2004,104:4971

    29 Coropceanu,V.;Cornil,J.;da Silva Filho,D.A.;Oliver,Y.;Silbey, R.;Brédas,J.L.Chem.Rev.,2007,107:926

    30 Gershenson,M.E.;Podzorov,V.;Morpurgo,A.F.Rev.Mod. Phys.,2006,78:973

    31 Leggett,A.J.;Chakravarty,S.;Dorsey,A.T.;Fisher,M.;Garg,A.; Zwerger,W.Rev.Mod.Phys.,1987,59:1

    32 Weiss,U.Quantum dissipative systems.2nd ed.London:World Scientific,1999

    33 Heller,E.J.J.Chem.Phys.,1976,65:1289

    34 Filinov,V.S.;Medevedev,V.V.;Kamskyi,V.L.Mol.Phys., 1995,85:711

    35 Sun,X.;Miller,W.H.J.Chem.Phys.,1997,106:916

    36 Pollak,E.;Liao,J.L.J.Chem.Phys.,1998,108:2733

    37 Frantsuzov,P.A.J.Chem.Phys.,1999,111:2075

    38 da Silva Filho,D.A.;Kim,E.G.;Brédas,J.L.Adv.Mater.,2005, 17:1072

    39 Yang,X.D.;Wang,L.J.;Wang,C.L.;Long,W.;Shuai,Z.G. Chem.Mater.,2008,20:3205

    40 Nan,G.J.;Yang,X.D.;Wang,L.J.;Shuai,Z.G.;Zhao,Y.Phys. Rev.B,2009,79:115203

    41 Nan,G.J.;Wang,L.J.;Yang,X.D.;Shuai,Z.G.;Zhao,Y. J.Chem.Phys.,2009,130:024704

    猜你喜歡
    中國科學院研究所分子
    《中國科學院院刊》新媒體
    中國科學院院士
    ——李振聲
    睡眠研究所·Arch
    睡眠研究所民宿
    未來研究所
    軍事文摘(2020年20期)2020-11-16 00:32:12
    分子的擴散
    祝賀戴永久編委當選中國科學院院
    “精日”分子到底是什么?
    新民周刊(2018年8期)2018-03-02 15:45:54
    米和米中的危險分子
    飲食科學(2017年12期)2018-01-02 09:23:20
    《中國科學院院刊》創(chuàng)刊30周年
    男女午夜视频在线观看| 18禁裸乳无遮挡免费网站照片| 麻豆国产av国片精品| 校园春色视频在线观看| 亚洲一区二区三区不卡视频| 此物有八面人人有两片| 久久久久九九精品影院| 久久伊人香网站| 欧美日本视频| 午夜福利18| 一二三四社区在线视频社区8| 极品教师在线免费播放| 很黄的视频免费| 免费人成在线观看视频色| 成年女人看的毛片在线观看| 久久性视频一级片| 国产在视频线在精品| 村上凉子中文字幕在线| av欧美777| 欧美性感艳星| 国产v大片淫在线免费观看| 中文资源天堂在线| 97碰自拍视频| a级毛片a级免费在线| 真人一进一出gif抽搐免费| 国产精品永久免费网站| 九九在线视频观看精品| 国产成年人精品一区二区| 精品人妻一区二区三区麻豆 | 麻豆久久精品国产亚洲av| 黄色女人牲交| 国产精品一区二区免费欧美| 99riav亚洲国产免费| 欧美黄色淫秽网站| 特级一级黄色大片| 最新中文字幕久久久久| 久久亚洲真实| 天堂影院成人在线观看| 全区人妻精品视频| 变态另类丝袜制服| 日韩有码中文字幕| 亚洲国产日韩欧美精品在线观看 | 91麻豆av在线| 岛国视频午夜一区免费看| 国产精品久久久久久亚洲av鲁大| 丝袜美腿在线中文| 欧美国产日韩亚洲一区| 日本黄色视频三级网站网址| 少妇的逼好多水| 久久九九热精品免费| 1000部很黄的大片| 淫秽高清视频在线观看| 国产成人欧美在线观看| 亚洲色图av天堂| 热99在线观看视频| 青草久久国产| 亚洲av成人精品一区久久| 午夜两性在线视频| 国产精品av视频在线免费观看| 国产精品影院久久| 97超级碰碰碰精品色视频在线观看| 夜夜爽天天搞| 最近在线观看免费完整版| 亚洲精品成人久久久久久| 精品人妻1区二区| 亚洲美女黄片视频| 国产成人aa在线观看| 婷婷丁香在线五月| a级一级毛片免费在线观看| 日韩精品中文字幕看吧| 日本免费一区二区三区高清不卡| 亚洲乱码一区二区免费版| 久久精品影院6| 久久精品91无色码中文字幕| 欧美色欧美亚洲另类二区| 啦啦啦观看免费观看视频高清| 国产探花在线观看一区二区| 看免费av毛片| 国产精品亚洲美女久久久| 国产精品综合久久久久久久免费| 中文字幕精品亚洲无线码一区| 18禁裸乳无遮挡免费网站照片| 三级男女做爰猛烈吃奶摸视频| 国产免费一级a男人的天堂| 在线观看一区二区三区| 国产精品日韩av在线免费观看| 亚洲18禁久久av| 久久久久久久精品吃奶| 亚洲精品乱码久久久v下载方式 | 欧美区成人在线视频| 无限看片的www在线观看| 日韩有码中文字幕| 久久久国产成人精品二区| 欧美激情久久久久久爽电影| 法律面前人人平等表现在哪些方面| 欧美成人免费av一区二区三区| 午夜激情福利司机影院| 精品国内亚洲2022精品成人| 国产亚洲精品一区二区www| 免费观看人在逋| 日韩欧美一区二区三区在线观看| 丁香欧美五月| 亚洲av一区综合| 在线观看日韩欧美| 国产精品免费一区二区三区在线| 久久国产乱子伦精品免费另类| 美女免费视频网站| 欧美一级a爱片免费观看看| 国产精品一区二区三区四区免费观看 | 床上黄色一级片| 一本久久中文字幕| 国产v大片淫在线免费观看| 韩国av一区二区三区四区| 国产极品精品免费视频能看的| 成年女人看的毛片在线观看| 亚洲美女视频黄频| 欧美激情在线99| 亚洲人成伊人成综合网2020| 国产高清三级在线| 日本成人三级电影网站| 亚洲乱码一区二区免费版| 国产私拍福利视频在线观看| 国产伦人伦偷精品视频| 日韩高清综合在线| 女人被狂操c到高潮| 一区二区三区国产精品乱码| 精品国产超薄肉色丝袜足j| 亚洲一区二区三区不卡视频| 久9热在线精品视频| 成人鲁丝片一二三区免费| 国产高清三级在线| 一个人看视频在线观看www免费 | 美女高潮喷水抽搐中文字幕| 九色成人免费人妻av| 深爱激情五月婷婷| 成人av在线播放网站| 久久久久国内视频| 精品欧美国产一区二区三| 成熟少妇高潮喷水视频| 中文资源天堂在线| 亚洲精品一区av在线观看| 老汉色av国产亚洲站长工具| 国产高清有码在线观看视频| 亚洲18禁久久av| 一区福利在线观看| 综合色av麻豆| 国产精品爽爽va在线观看网站| 亚洲aⅴ乱码一区二区在线播放| 18禁黄网站禁片午夜丰满| 九色国产91popny在线| 国产毛片a区久久久久| av天堂在线播放| 亚洲熟妇熟女久久| 亚洲成人久久爱视频| www.熟女人妻精品国产| 天天一区二区日本电影三级| 亚洲最大成人手机在线| 国产伦一二天堂av在线观看| 国产高清激情床上av| 欧美成狂野欧美在线观看| 国产伦精品一区二区三区四那| 一进一出抽搐gif免费好疼| 久久久久久久久大av| 午夜福利18| 高潮久久久久久久久久久不卡| 3wmmmm亚洲av在线观看| 国产真实乱freesex| 两人在一起打扑克的视频| 久久国产精品人妻蜜桃| 久久精品国产综合久久久| 久久香蕉精品热| 国语自产精品视频在线第100页| 不卡一级毛片| 亚洲精品成人久久久久久| 色播亚洲综合网| 欧美中文日本在线观看视频| 日韩欧美国产在线观看| 变态另类成人亚洲欧美熟女| 草草在线视频免费看| 国产黄色小视频在线观看| 99热6这里只有精品| 成人欧美大片| 91久久精品电影网| 国产精品一区二区三区四区久久| 久久人人精品亚洲av| 欧美高清成人免费视频www| 两个人的视频大全免费| 国产探花极品一区二区| 91久久精品电影网| 草草在线视频免费看| 男女视频在线观看网站免费| 少妇的丰满在线观看| 国内揄拍国产精品人妻在线| 中文字幕熟女人妻在线| 少妇人妻精品综合一区二区 | 国产主播在线观看一区二区| 90打野战视频偷拍视频| 18美女黄网站色大片免费观看| 女警被强在线播放| 99久久综合精品五月天人人| 一级毛片女人18水好多| 熟女电影av网| 色吧在线观看| 国产精品久久视频播放| 又黄又爽又免费观看的视频| 在线十欧美十亚洲十日本专区| 好男人电影高清在线观看| 99精品久久久久人妻精品| 窝窝影院91人妻| 日本黄大片高清| 五月玫瑰六月丁香| 真人一进一出gif抽搐免费| 美女被艹到高潮喷水动态| 麻豆久久精品国产亚洲av| 午夜福利视频1000在线观看| 亚洲国产高清在线一区二区三| 国产午夜精品久久久久久一区二区三区 | 一夜夜www| 成熟少妇高潮喷水视频| 在线十欧美十亚洲十日本专区| 国产真实伦视频高清在线观看 | 一本久久中文字幕| 免费无遮挡裸体视频| 国产免费av片在线观看野外av| 色播亚洲综合网| 久久国产精品影院| 97超视频在线观看视频| tocl精华| 啦啦啦韩国在线观看视频| 一进一出抽搐gif免费好疼| 亚洲美女黄片视频| 少妇裸体淫交视频免费看高清| 国产成人aa在线观看| 亚洲国产日韩欧美精品在线观看 | 亚洲精品在线观看二区| 丰满人妻一区二区三区视频av | 一边摸一边抽搐一进一小说| 亚洲第一欧美日韩一区二区三区| 欧美一级a爱片免费观看看| 国产一级毛片七仙女欲春2| 国产精品av视频在线免费观看| 亚洲av电影在线进入| 日韩有码中文字幕| 脱女人内裤的视频| 老熟妇仑乱视频hdxx| 亚洲熟妇中文字幕五十中出| 亚洲成av人片免费观看| 怎么达到女性高潮| 亚洲专区中文字幕在线| 国产一区二区亚洲精品在线观看| 中国美女看黄片| 黄色丝袜av网址大全| 国产视频一区二区在线看| 99国产精品一区二区蜜桃av| 亚洲精品乱码久久久v下载方式 | 欧美性猛交╳xxx乱大交人| 最新在线观看一区二区三区| 亚洲精品色激情综合| 亚洲精品456在线播放app | 手机成人av网站| 国产三级黄色录像| av黄色大香蕉| 国产亚洲av嫩草精品影院| 欧美绝顶高潮抽搐喷水| 深爱激情五月婷婷| 99热精品在线国产| 日韩欧美三级三区| 国产在视频线在精品| 少妇人妻一区二区三区视频| 夜夜看夜夜爽夜夜摸| 51午夜福利影视在线观看| 麻豆一二三区av精品| 一进一出好大好爽视频| 免费av不卡在线播放| 国产精品精品国产色婷婷| 久久久精品大字幕| 宅男免费午夜| av黄色大香蕉| 日韩欧美一区二区三区在线观看| 老司机午夜福利在线观看视频| 99视频精品全部免费 在线| or卡值多少钱| 真人做人爱边吃奶动态| 亚洲国产欧洲综合997久久,| 亚洲人成网站高清观看| 黄片小视频在线播放| 午夜福利成人在线免费观看| 午夜影院日韩av| 亚洲人成电影免费在线| 悠悠久久av| 国产成人影院久久av| 国产激情偷乱视频一区二区| 五月玫瑰六月丁香| 尤物成人国产欧美一区二区三区| 天天躁日日操中文字幕| 国产精品亚洲美女久久久| 国产三级黄色录像| 欧美最黄视频在线播放免费| 亚洲,欧美精品.| 婷婷丁香在线五月| 亚洲精品成人久久久久久| 在线看三级毛片| 欧美一区二区精品小视频在线| 麻豆成人午夜福利视频| 两个人的视频大全免费| 亚洲国产色片| 国产精品综合久久久久久久免费| 桃红色精品国产亚洲av| 国产老妇女一区| 国产色爽女视频免费观看| 久久午夜亚洲精品久久| 全区人妻精品视频| 午夜精品在线福利| 午夜免费成人在线视频| 亚洲欧美激情综合另类| 亚洲真实伦在线观看| 成人av在线播放网站| 动漫黄色视频在线观看| 亚洲欧美日韩高清专用| 久久伊人香网站| 国产精品爽爽va在线观看网站| 久久人妻av系列| 男女做爰动态图高潮gif福利片| 桃色一区二区三区在线观看| 亚洲狠狠婷婷综合久久图片| 天堂av国产一区二区熟女人妻| 久久99热这里只有精品18| 国内精品美女久久久久久| 在线观看午夜福利视频| 国产亚洲精品久久久久久毛片| 制服丝袜大香蕉在线| 日韩欧美在线乱码| 中文字幕熟女人妻在线| av天堂在线播放| 亚洲成人久久爱视频| av在线蜜桃| 美女被艹到高潮喷水动态| 亚洲精品色激情综合| 国产 一区 欧美 日韩| 久久这里只有精品中国| 99久久成人亚洲精品观看| 一区福利在线观看| 亚洲第一电影网av| 国内揄拍国产精品人妻在线| 国产精品永久免费网站| 18禁国产床啪视频网站| 国产aⅴ精品一区二区三区波| 一级a爱片免费观看的视频| 桃色一区二区三区在线观看| 少妇人妻一区二区三区视频| 91在线观看av| 少妇裸体淫交视频免费看高清| 国产伦精品一区二区三区四那| 国产91精品成人一区二区三区| 免费看日本二区| 色在线成人网| 精品日产1卡2卡| 日本与韩国留学比较| 国产午夜精品久久久久久一区二区三区 | 欧美极品一区二区三区四区| 999久久久精品免费观看国产| 国产精品精品国产色婷婷| 精品久久久久久久久久免费视频| 亚洲av成人不卡在线观看播放网| 国产一区二区亚洲精品在线观看| 欧美日韩一级在线毛片| 国产伦在线观看视频一区| 精品国产三级普通话版| 狂野欧美白嫩少妇大欣赏| 国产毛片a区久久久久| 国产国拍精品亚洲av在线观看 | 精品熟女少妇八av免费久了| 内射极品少妇av片p| 国产成年人精品一区二区| 欧美中文日本在线观看视频| 国产99白浆流出| 狠狠狠狠99中文字幕| 人妻丰满熟妇av一区二区三区| 最好的美女福利视频网| www.www免费av| 好看av亚洲va欧美ⅴa在| 88av欧美| 熟女少妇亚洲综合色aaa.| 1000部很黄的大片| 日本 欧美在线| 两性午夜刺激爽爽歪歪视频在线观看| 观看美女的网站| 国产精品99久久久久久久久| 日日干狠狠操夜夜爽| 婷婷亚洲欧美| 99riav亚洲国产免费| 日韩中文字幕欧美一区二区| 国产成人影院久久av| 精品一区二区三区视频在线观看免费| 国产亚洲精品久久久com| 动漫黄色视频在线观看| 中文在线观看免费www的网站| 欧美bdsm另类| 国产精品久久电影中文字幕| 久久久久久久久大av| 观看免费一级毛片| 国产黄a三级三级三级人| 国产伦精品一区二区三区四那| 国产国拍精品亚洲av在线观看 | АⅤ资源中文在线天堂| 人人妻人人看人人澡| 久久久久久久久中文| 丰满乱子伦码专区| 搡老熟女国产l中国老女人| 我要搜黄色片| 成年版毛片免费区| 禁无遮挡网站| 成人国产一区最新在线观看| 欧美黄色淫秽网站| 国产高清激情床上av| 国产高清videossex| 国产成年人精品一区二区| 免费人成在线观看视频色| 欧美性猛交黑人性爽| 国产熟女xx| 天美传媒精品一区二区| av天堂中文字幕网| 国产欧美日韩一区二区精品| 日韩欧美国产一区二区入口| 亚洲av二区三区四区| 日韩高清综合在线| 国产爱豆传媒在线观看| 国产亚洲欧美98| 精品人妻1区二区| 久久草成人影院| 久久亚洲精品不卡| 国产精品一区二区免费欧美| 美女高潮的动态| 精华霜和精华液先用哪个| 国产精品久久电影中文字幕| 国产成年人精品一区二区| 日本免费一区二区三区高清不卡| 一区二区三区国产精品乱码| 一个人免费在线观看的高清视频| 国产伦在线观看视频一区| 成人午夜高清在线视频| 在线天堂最新版资源| 久9热在线精品视频| 男人舔奶头视频| 久久精品91蜜桃| 日韩av在线大香蕉| 男女下面进入的视频免费午夜| 精品熟女少妇八av免费久了| 日本黄大片高清| 51国产日韩欧美| 午夜福利18| 亚洲国产高清在线一区二区三| 日本一二三区视频观看| 欧美+亚洲+日韩+国产| 色视频www国产| 久久精品夜夜夜夜夜久久蜜豆| 国产午夜精品论理片| 欧美激情在线99| 午夜两性在线视频| 黄色片一级片一级黄色片| 色在线成人网| 99久久成人亚洲精品观看| 老汉色av国产亚洲站长工具| 国产精品亚洲美女久久久| 久久亚洲真实| 成人av一区二区三区在线看| 欧美丝袜亚洲另类 | 小说图片视频综合网站| 麻豆成人午夜福利视频| 亚洲人成网站在线播放欧美日韩| 日韩亚洲欧美综合| 色在线成人网| 中文字幕人妻熟人妻熟丝袜美 | 久久久久免费精品人妻一区二区| 狠狠狠狠99中文字幕| 欧美区成人在线视频| svipshipincom国产片| АⅤ资源中文在线天堂| 搞女人的毛片| 色播亚洲综合网| 精品一区二区三区视频在线观看免费| bbb黄色大片| 丁香欧美五月| xxx96com| 麻豆国产97在线/欧美| 亚洲成av人片在线播放无| 88av欧美| 观看免费一级毛片| 日本撒尿小便嘘嘘汇集6| 1000部很黄的大片| 欧美色视频一区免费| 欧美又色又爽又黄视频| 精品熟女少妇八av免费久了| 精品一区二区三区人妻视频| www.www免费av| 婷婷精品国产亚洲av| 最近最新免费中文字幕在线| 一个人看的www免费观看视频| av女优亚洲男人天堂| 黄色成人免费大全| 国产精品久久久久久人妻精品电影| 午夜视频国产福利| 少妇的逼好多水| 精品国内亚洲2022精品成人| 99精品欧美一区二区三区四区| 日本三级黄在线观看| 在线观看一区二区三区| 特大巨黑吊av在线直播| 国产成人系列免费观看| 少妇的逼水好多| 国产av不卡久久| 窝窝影院91人妻| 国产黄a三级三级三级人| 啦啦啦观看免费观看视频高清| 91麻豆精品激情在线观看国产| 精品久久久久久成人av| 久久精品国产亚洲av香蕉五月| 性欧美人与动物交配| 九九久久精品国产亚洲av麻豆| 国产精品一区二区免费欧美| 少妇裸体淫交视频免费看高清| 国产精品99久久99久久久不卡| 毛片女人毛片| 成人三级黄色视频| 高潮久久久久久久久久久不卡| 国产一区二区三区在线臀色熟女| 国产精品国产高清国产av| 国产精品嫩草影院av在线观看 | 国产激情欧美一区二区| 91久久精品国产一区二区成人 | 国产精品久久久久久人妻精品电影| 夜夜看夜夜爽夜夜摸| 成年免费大片在线观看| 国产精品,欧美在线| 中文资源天堂在线| 男人的好看免费观看在线视频| 在线观看av片永久免费下载| 亚洲色图av天堂| 成人av在线播放网站| 男人舔女人下体高潮全视频| 国产精品野战在线观看| 嫩草影院入口| 波多野结衣高清无吗| 久久久久精品国产欧美久久久| 19禁男女啪啪无遮挡网站| 国内精品一区二区在线观看| 99在线视频只有这里精品首页| 欧美xxxx黑人xx丫x性爽| 嫩草影视91久久| 欧洲精品卡2卡3卡4卡5卡区| 老汉色∧v一级毛片| 国产单亲对白刺激| 狂野欧美白嫩少妇大欣赏| 国产主播在线观看一区二区| 色综合婷婷激情| 久久天躁狠狠躁夜夜2o2o| 亚洲av成人不卡在线观看播放网| 最新在线观看一区二区三区| 久久久久久久久久黄片| 一个人看视频在线观看www免费 | 亚洲精品在线观看二区| 中文在线观看免费www的网站| 亚洲无线在线观看| 免费av不卡在线播放| 日本撒尿小便嘘嘘汇集6| 色吧在线观看| 日韩国内少妇激情av| 亚洲国产色片| 久久这里只有精品中国| 亚洲成av人片在线播放无| 亚洲五月婷婷丁香| 亚洲成人中文字幕在线播放| 成人欧美大片| 免费一级毛片在线播放高清视频| 欧美zozozo另类| 好男人电影高清在线观看| 国内久久婷婷六月综合欲色啪| www.999成人在线观看| 午夜免费观看网址| 老司机深夜福利视频在线观看| 国产亚洲av嫩草精品影院| 啦啦啦免费观看视频1| 免费观看精品视频网站| 天天躁日日操中文字幕| 人人妻,人人澡人人爽秒播| 国产精品一区二区免费欧美| 成人午夜高清在线视频| 亚洲精品亚洲一区二区| 久久国产精品人妻蜜桃| 日本a在线网址| 精品电影一区二区在线| 中文字幕人妻熟人妻熟丝袜美 | 免费av不卡在线播放| 夜夜夜夜夜久久久久| 亚洲国产欧洲综合997久久,| 白带黄色成豆腐渣| 97超级碰碰碰精品色视频在线观看| 久久精品国产清高在天天线| 两性午夜刺激爽爽歪歪视频在线观看| 欧美成狂野欧美在线观看| 一a级毛片在线观看| netflix在线观看网站| netflix在线观看网站| 一本一本综合久久| 国产高清激情床上av| 搡老熟女国产l中国老女人| 精品欧美国产一区二区三| 国产精品av视频在线免费观看| 看黄色毛片网站| 国产精华一区二区三区| 午夜福利欧美成人| 亚洲成av人片在线播放无| 国产 一区 欧美 日韩| 欧美zozozo另类| 999久久久精品免费观看国产|