• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    關(guān)于衛(wèi)星姿態(tài)確定非線性濾波算法的研究

    2010-01-25 01:30:26荊武興
    宇航學(xué)報(bào) 2010年12期
    關(guān)鍵詞:工程系哈爾濱工業(yè)大學(xué)東方紅

    黃 琳,荊武興

    (1.航天東方紅衛(wèi)星有限公司研發(fā)中心,北京100094;2.哈爾濱工業(yè)大學(xué),航天工程系,哈爾濱150001)

    0 Introduction

    Spacecraft attitude determination from a sequence of vector observations in gyro-equipped spacecraft has been intensively investigated and widely applied in practice[1-2].Thequaternion is a most popular attitude representation for the global attitude estimation,though it is not a minimal representation because of its four dimensions.Various methods are proposed to keep the normalization constraint that has to be addressed in quaternion filtering problems.In general these methods can be classified as constrained estimation scheme and unconstrained estimation scheme[3-5].The former scheme assumes the quaternion estimation error covariance matrix must be singular,and the central idea is to use a nonsingular representation(i.e.,quaternion)for a reference attitude and a three-component representation for the deviations from the reference.The latter scheme assumes no such singularity and treats the four components of the quaternion as independent,but it has to incorporate some special normalization stages.More details about the two schemes and their advantages/disadvantages have been given in[3-5].

    Nonlinear filtering algorithms have been used to estimate the quaternion and the gyro drift rate bias.Up to now,a number of attitude determination filters have been proposed,and some classical filters such as the multiplicative extended Kalman filter(MEKF[1]),the augmented extended Kalman filter(AEKF[6]),and the unscented Kalman quaternion filter(USQUE[7])have been widely accepted.The MEKF and the USQUE are typical constrained estimation filters,which are brought forward based on the EKF algorithm and the UKFalgorithm respectively.The AEKF is a typical unconstrained estimation filter which is proposed based on the EKFalgorithm.Recently,thesequential Monte-Carlo algorithms or the particle filtering methods[8]have been applied to spacecraft attitude determination.Cheng and Crassidis proposed a particle filter to determine the modified Rodrigues parameter(MRP)and the drift rate bias[9].However,the singularity associated with the MRP representation has to be addressed by frequently switching to an alternative set of MRPs or the quaternion,and also the ambiguity of the MRPhas to be addressed by using a so-called‘CONDMRP’solution.Moreover,the six-dimensional particle filter has to simultaneously observe several vectors and use a huge number of particles(as many as 2000,an impractical computation burden for current onboard computers).As a result,the filter is not satisfied.A different estimator is proposed by Oshman and Carmi[10],which consists of a quaternion particle filter(QPF)and a genetic algorithm(GA)embedded gyro bias maximum-likelihood estimator.The QPF is a numerical unconstrained estimator which works directly with a number of weighted quaternion particles,and it is able to completely avoid the problem of singularity.This is a remarkable advantage over the Kalman filter variants,because they have to propagate and update the quaternion estimation error covariancematrix.The quaternion ambiguity problem has also been eliminated by using a special regularization method.The bias estimation is temporarily decoupled from thequaternion estimation at each iteration.Genetic algorithms are introduced to search an optimal bias estimate from a maximumlikelihood cost function.The GA-embedded bias estimator is interlacing with the QPF,therefore the combined attitude determination filter is called by GA-QPF.The simulated results show this filter(even with 150 quaternion particles and a 200-element population for the bias estimator)can achieve a better performance with respect to several classical filters in the simulation cases where the initial quaternion estimate is uncertain.Nevertheless,the bias estimator seems sophisticated and over computing time consuming.Jiang et al propose a dual particle filter which includes an attitude particle filter and a bias particle filter[11].The proposed attitude particle filter uses two attitude representations,the quaternion and the generalized Rodrigues parameter(GRP[12]).The quaternion is used for initial quaternion particle sampling,time propagating,observation updating,and particle resampling,while the GRPis used for the computations of the mean and the covariance matrix and the rougheing of the resampled particles.A similar idea has been given in[9]also.However,the GRP ambiguity problem has been ignored in[11].The bias particle filter is the direct application of astandard particle filter(i.e.,bootstrap filter).Jiang et al[13]proposed a marginalized particle filter for spacecraft attitude determination,by applying the Rao-Blackwellisation technique to an approximated quaternion and bias estimation,where the bias vector is partitioned from the augmented state of quaternion and bias and assumed to be conditionally linear Gaussian.Therefore the used bias estimator is a Kalman filter in nature.However,the model approximation of the original nonlinear/non-Gaussian attitude determination problems destroy the normalization constraint of the quaternion propagation,and its uncertain influence has not been considered and investigated.Once again,the GRPambiguity problem has not been eliminated in this work.

    This paper proposes two novel attitude determination filters for a low-Earth satellite with a three-axis magnetometer(TAM)and a three-axis gyro(TAG).The two filters are modified from the GA-QPF and the DPF[11].Both filters take the QPF as their quaternion estimator,so that the frequent switching between the GRP and the quaternion is avoided for the particle attitude filter of[11],whereas the QPF given in this paper uses a slightly different quaternion particle resampling and regularizing methods.The main difference between the twofilters is using different bias estimators.Onefilter uses an auxiliary particle filter,which is believed to be capable of resolving the state filtering problems with small process noise better than the bootstrap filter[8].The other uses a UKFwhich is believed to be an appropriate algorithm for the gyro bias estimation of approximately Gaussian distribution and also for its low amount of calculation.Hence the two novel filters are named of the modified DPF and the HFrespectively.

    1 Gyro-equipped attitude determination state space models

    A general continuous dynamics model is given in[1-2],which in general is discretized as[2,7]

    whereqkis the quaternion,q =[qTq4]T,q is the vector part and q4is the scalar part.βkis the TAGdrift rate bias vector;is a stationary zero-mean,white noise process with covariancewhereinis an orthogonal transition matrix about the true angular velocityωkof the body(B)frame with respect to the reference(R)frame,(ωkis resolved in B frame.)and the matrix is given

    the true rateωkis unknown and is obtained from the TAG measurement,whereinis the TAG measurement,ηυ,kis the zero-mean white Gaussian measurement noise with covarianceThe TAM vector observation model is given[2]

    where~bkis the TAMmeasurement,bR,kis the reference geomagnetic field,vB,kis the TAM observation noise whose distribution is already known,Akis the attitude matrix of the B frame with respect to the R frameand is the matrix representation of the quaternion qk.

    2 Modified dual particle filter

    In this section,first the present quaternion particle filter which is slightly different from the QPF is simply introduced,then an auxiliary particle bias filter is completely given.Consider the resamplingand regularizing disturb the posterior representation[8],it is better for the precision with a posterior estimation to implement the computations of the mean and the covariance before the resampling and regularizing stage.

    2.1 Quaternion particle filter

    2.1.1 Initialization(k=0)

    A single vector observation can not make the threedimensional attitude completely observable,though the rest uncertain attitude information is reduced to one dimension,i.e.,the rotation angle around the vector.Oshman and Carmi make use of the fact and propose a method to generate a number of initial quaternion parti-cles(or samples)which keep the normalization constraint.A detailed technique is presented in Appendix B of[10].However,the choice of an appropriate number of initial quaternion particles denoted by NSdepends on simulation experience.Denote the initial prior quaternion particle set byand the corresponding weight set byClearly,

    2.1.2 Observation update(k=0,…,N)

    Firstly calculate the likelihood probability of the quaternion particle

    whereρv(·)represents the probability density of the observation noise vB,k.

    2.1.3 Computation of mean and covariance(k=0,…,N)

    The application of the classical solutions to compute the mean and the covariance from the weighted particle set to the weighted quaternion particles may destroy the normalization constraint and get in trouble with the quaternion ambiguity problem.One maximumposterior probability(MAP)approach and two minimum mean square error(MMSE)approaches are recommended in[10]to compute the mean quaternion.Consider a low accuracy of the MAP approach and the identical character of the two MMSE approaches,this paper only uses the second MMSE approach that is similar to Davenport’s well known‘q-method’.The optimal quaternion estimateis the normalized eigenvector corresponding to the largest eigenvalue of matrix

    where tr(·)is operation of‘trace’,matrix Bkand vectorζare respectively defined by

    The quaternion estimation error covariance is given[10]

    2.1.4 Resample and regularization(k=0,…,N)Calculate the effective sample size

    Denote the 3×3 matrix of the vector part of the quaternion estimation error covariancebyand its square root matrix bythen draw samples as

    wherein N(·|m,S)is a multivariate normal density with mean mand variance S;hGis the bandwidth of the Gaussian kernel and is suggested with the optimal value

    Finally,the diversity of the resampled quaternion particles is added as

    2.1.5 quaternion particle propagation(k=0,…,N)

    The TAG sample periodΔh is much smaller than the TAM sample periodΔt.Assume the two periods satisfy KRIG=Δt/Δh,where KRIGis an integer.The quaternion particle is propagated by using

    2.2 Auxiliary particle bias filter

    Based on the standard particle filter(e.g.,bootstrap filter),Pitt and Sheppard[14]proposed a socalled auxiliary particle filter that is able to automaticly generate particles from the particles of the previous time step which are most likely to the true state.Compared to the bootstrap filter,this filter is effective to deal with state filtering problems when the process noise is small.Consider that the process noiseηu,kis small for the bias vectorβk,one can see the auxiliary particle filter is a better bias estimator.

    2.2.1 Initialization(k=0)

    Draw initial aprior bias particles from the prior distributionρ(θ0),say,a Gaussian distribution

    whereβ^0andare the initial bias mean estimate and covariance estimaterespectively.Denote theinitial aprior bias particleset by

    and their corresponding weight set by.Clearly,Calculate the initial likelihood probability

    where the NPinitial quaternion particlesmight be chosen from the generated initial quaternion particleOf course,this is for the case where NP≤NS.Otherwise,theextra NP-NS+1quaternion particleshave to be additionally generalized.In this paper,assume NP=NS.Finally,calculate the weightsand normalize them as

    2.2.2 Bias particle propagation(k=1,…,N)

    Secondly,calculate the likelihood probability of some biasby using a similar method as Eq.(4)

    Thirdly,calculate the weightsand normalize them as

    select the high likely bias particles of previous time step using the systematic resample method,e.g.,

    where il represents the current particle‘l’is drawn from the particle‘i’of previous time step.

    Finally,the bias particles are propagated as

    2.2.3 Observation update(k=1,…,N)

    Firstly,calculate the likelihood probability again

    2.2.4 Computation of Mean and Covariance(k=0,…,N)

    2.2.5 Resample and regularization(k=0,…,N)

    This step is believed to be unnecessary for an auxiliary particle filter by Arulampalam et al[8],but improved by Pitt and Sheppard[14].This paper suggests taking this step when the effective sample sizeis below given threshold,e.g.,2NP/3.The weights of the resampled bias particles are set to1/NP.Regularize the resampled bias particles as follows

    3 Hybrid filter

    The difference of the HFfromthe modified DPFis the use of a UKF bias estimator,which is a direct application of the UKF algorithm to the 3-dimensional bias estimation.The bias UKF is given as follows.

    3.1 Initialization(k=0)

    Denote theinitial aprior mean estimate and covariance estimateandto generate a initial bias sigma point setthe weights for calculating the mean and the covariance are denoted byandrespectively.

    Then choose seven initial aprior quaternion particles from the setand generate seven prediction observation sigma points as

    3.2 Observation update(k=0,…,N)

    Firstly,calculate the mean observation

    Secondly,calculate the innovation and its covariance respectively

    where Rkis the covariance of the observation noisevB,kwhich is regarded as a zero-mean,white Gaussian noise.

    Thirdly,calculate the correlative covariance matrix and the gain matrix respectively

    Finally,calculate the posterior mean and covariance respectively

    3.3 Bias sigma point propagation(k=0,…,N)

    Firstly predict the bias mean and the covariance matrix

    Then generate prediction observation sigma points as

    where

    4 Simulation results and analysis

    A typical small satellite considered in[15]is chosen in the simulation section.The satellite runs in a nearly circular low Earth orbit with an inclination of 82°and a height of 823 km,it is out of control and spinning with an initial rate of 2.0°/s.The real geomagnetic field vector is simulated using a 10-order international geomagnetic reference field model.The reference vector is simulated using an 8-order model.White and colored TAM measurement noise processes are considered.The white Gaussian noise of 60 nT(σ)is used in the simulations of subsections 4.1 and 4.2,and the colored noise is introduced to the simulations of subsection 4.3.The colored-noisemodel is described by a first-order Markov process driven by white noise[16].The‘time constant’of the Markov process has been chosen corresponding to an orbital arc length of 18°(about 300 s in this paper).The power spectral density of the white-noise driving term has been chosen,so that the magnitude of the colored noise will match the white Gaussian noise used in subsections 4.1 and 4.2.The measurements periodΔt of the TAM is 10s.The TAG output is contaminated with a measurement noise with two components:a white zero-mean Gaussian process with intensityand a drift bias modeled as an integrated Gaussian white noise with intensitys3.The true initial drift rate bias is set to 0.1°/h on each axis.The sampling periodΔh of the TAG is 1s.

    4.1 Effects of various particle numbers on performances of the modified DPF and the HF

    Various particle numbers are chosen to test the performances of the modified DPF and the HF.For convenience,let NP=NS.The initial bias mean estimate and the covariance estimate are given

    To evaluate thequaternion and the bias filtering errors,two indexes used in[10]are introduced.One is for the quaternion estimation error(in degrees)evaluation and is given

    whereδq4is the scalar component of the error quaternionδq.The other is the TAGbias estimation error norm(in°/h).

    The time histories of the quaternion estimation errors of four HF filters(NSP=120,NSP=300,NSP=600 and NSP=900)show the steady-state estimation errors are not more than 0.25°and the differences among them are slight.These HF filters converge from large initial errors(>150°)into the steady-state errors in about 10min.Similar results are obtained from the modified DPF.However the bias estimation errors of the modified DPF filters and those of the HF filters shown in Fig.1 are different.Fig.1a shows the bias errors of the HF filters always remaining in the neighborhood of some constant bias during the whole time interval.Fig.1b shows that the errors of the modified DPF filters first increasing and then remaining in the neighborhood of some constant bias.By far it is not difficult to find that the effects of particle numbers on the attitude and bias filtering performances of the two novel filters are not very crucial or clear when 900≥NS=NP≥120.Therefore,in the following simulations,NS=NP=120 are used.

    In addition,a large initial bias estimate is used to test the convergent performance of the HF,e.g.,

    Fig.1 Bias norm estimation errors of modified DPF and HF with various numbers of particle

    However,it takes the HF about 11h to reach the steady-state attitude estimation error of 0.25°,and the bias norm estimation error indeed decreases to a nearly constant rate.As shown in Fig.2,the slow rate does not mean the bias UKFis an inefficient filter in nature.The real reason,we suspect,is that the innovated information from the vector observations can not be directly fed back to the observation updating of the bias estimate.Unless mentioned,the initial bias estimate used in the simulations is better estimated as given in Eqs.(7)and(8).

    4.2 Effects of initial quaternion estimate on filtering performances

    The two novel filters have been compared to the MEKF and the USQUE.Different initial quaternion estimates have been considered for the MEKF and the USQUE,while the modified DPF and the HF generate the initial quaternion particles using the technique in Appendix B of[10].

    Fig.2 Bias norm estimation errors of HF with a bad initial bias estimate

    4.2.1 Constant initial quaternion of small estimation error

    In this example,an initial quaternion estimate whose norm attitude error is 50°has been chosen for the MEKF and the USQUE.A large initial attitude covariance matrix has been chosen for the MEKF and the USQUE.Though the large matrix might be physically meaningless,it can speed up the convergence.

    The results show that the four filters converge to the steady-state quaternion estimation errors at almost same rate and their quaternion estimation errors are of same level.However,the MEKF and the USQUE reach their bias estimation errors equivalent to HF in about 10000 s and the errors of all the three filters are lower than the modified DPF almost during the whole time interval,as shown in Fig.3.

    Obviously,the classical filters can achieve a better performance with much less calculation when the initial quaternion estimation error is small.If a good initialization is expectable,either the MEKFor the USQUE is a more promising filter.

    4.2.2 Constant initial quaternion of large estimation error

    Fig.3 Bias norm estimation errors of four filters with constant initial quaternion estimate(small-error case)

    In this example,a worse initial quaternion estimate whose norm attitudeerror is 160°has been chosen for the MEKF and the USQUE.Compared to those above results,the modified DPF and the HF keep almost same performances,whereas the performances of the other two classical filters sharply degenerate and are much worse than the two novel filters.Fig.4 shows that,the novel filters reach the quaternion estimation error of less than 0.25°in about 10 min,whereas the USQUE and the MEKF need about 17 h respectively to reach the errors of less than 0.5°and 1.5°.Obviously the modified DPF and the HF are more promising when the initial estimation error is large.Necessary to mention,thebetter performance of the USQUEwith respect to that of the MEKF is obtained by regulating the UT parameter(i.e.,α∈[0,1]).That is to say,the same USQUE does not guaranteed in any case to achieve a steady performance than the MEKF.In other words,the classical filters depend more on the regulating work than the novel filters do.

    Fig.4 Quaternion estimation errors of four filters with constant initial quaternion estimate(large-error case)

    4.2.3 Uncertain initial quaternion

    In this part,the initial quaternion estimates of the MEKF and the USQUE are ramdomly generated according to a uniform distribution on the unit hypersphere.The four filters are executed independently for 50 Monte Carlo runs.The maximum errors of the four filters during 30000 s to 62000 s are chosen for each run.The statistical distribution results of these maximum errors are given in Table 1.One can see that,the HF in 50 runs all reaches the quaternion estimation error of less than 0.5°.The convergent performance of the modified DPF is a little worse than HF but much better than the USQUE,The MEKF is the worst.

    In addition,the average runtimes of the four filters are also tested.The results can be regarded as an indirect evaluation of their average calculation amounts.The 50×4 runs are executed in the computers of same computing capacity.If denote the average runtime of the MEKF as 1,then the USQUE,the HF,and the modified DPF are 6,60,and 170 respectively.Surprisingly,the HF filter’s runtime is only 10 times as the USQUE filter’s.So the HFis a promising filter for onboard applications.

    Table 1 Statistical distribution results of quaternion estimation errors of four filters with uncertain initial quaternion estimates(50 runs)

    4.3 Effects of colored observation noise on filtering performances

    In this example,the performances of the four filters using colored TAM measurements have been tested.Use the third innovation(i.e.,residual)component processes of the MEKF,the USQUE,the modified DPF,and the HF respectively for the white noise and the colored noise,an exact evaluation is done by computing the time-averaged autocorrelation[17]

    whereυk,iis the ithcomponent of the innovation vector at timetk;ˉλis the correlative step;nυis the dimension of the innovation vector;Nυis the number of the considered observation data points.If the innovation process is zeromean white Gaussian,theˉρi(ˉλ)is zero mean with variance of 1/Nυfor Nυlarge enough.In this example,Nυ=4000and variousˉλare used.The mean and variance results ofˉρi(ˉλ)for the white noise and the colored noise are respectively given in Table 2and Table 3.For an optimal filter,the mean and the varianceofˉρi(ˉλ)should be 0 and 2.5×10-4respectively.Table 2 shows that the mean results for the four filters are comparable and close to zero,whereas thevarianceresults for themodified DPF and the HF are considerably close to the optimal values and thevarianceresults for the two classical filters are far from the optimal values.That is,the novel filters can process the vector observations with white noise much better than the classical filters do.Similar conclusions can be drawn from the results shown in Table.3.Comparing Table 3 to Table 2,one can see the variance values for the two novel filters which use thecolored observations have increased many times,while those for the classical filters appear no remarkable varieties.

    Table 2 Statistical results for time-averaged autocorrelation indexes of four filters’residuals(the third component)in the white-noise case

    Table 3 Statistical results for time-averaged autocorrelation indexes of four filters’residuals(the third component)in the colored-noise case

    5 Conclusions

    Two novel filters are proposed for the gyro-equipped spacecraft attitude determination from vector observations.They are modified DPF and HF respectively.Both filters consist of same quaternion particle filter but use a different gyro drift rate bias estimator.The modified DPF filter uses an auxiliary particle bias filter,while the HF filter uses a UKF bias filter.An extensive simulation study has been done to evaluate the performances of the two novel filters and tocompare them with two classical filters:the MEKF and the USQUE.

    Several important conclusions are drawn.The first is,none of the considered filters can always achieve a best estimation performance in any case.The classical filters can achieve better estimation accuracy with respect to the two proposed novel filters with much smaller computing amounts when a good initial quaternion estimate is expectable;otherwise their convergent performances are possibly reduced and even much worse than those of the novel filters,whereas the proposed filters are able to achieve the consistent estimation performances in various cases.Thesecond is,theeffect of the particle number on the estimation performance of the modified DPF or the HF is not very crucial when the number is large enough.Surprisingly,both the HF and the modified DPF can achieve a better convergent performance with only 120 particles.The HF is a promising filter for the real-time spacecraft attitude de-termination applications.The third is,the novel filters can process the vector observations much better than the classical filters do.All considered filters show some certain robustness for colored vector observations.At last,an advice that has been made by someone else is repeated again,that is,thecombined use of theclassical Kalman filter variants and the recently proposed particle attitude determination filters is likely to achieve a better estimation performance.For example,the HF is used as an initialization stage for the MEKF or the USQUE.

    [1] Lefferts E J,Markley F L,Shuster M D.Kalman filtering for spacecraft attitude estimation[J].Journal of Guidance,Control,and Dynamics,1982,5(5):417-429.

    [2] Markley F L,Crassidis JL,Cheng Y.Nonlinear attitude filtering methods[C].AIAA Guidance,Navigation,and Control Conf.and Exhibit,SA,California,USA,Aug.,2005.

    [3] Shuster M D.Constraint in attitude estimation part I:constrained estimation[J].The Journal of the Astronautical Sciences,2003,51(1):51-74.

    [4] Shuster M D.Constraint in attitude estimation part II:unconstrained estimation[J].The Journal of the Astronautical Sciences,2003,51(1):75-101.

    [5] Markley F L.Attitude estimation or quaternion estimation[J].The Journal of the Astronautical Sciences,2004,52(1-2):221-238.

    [6] Bar-Itzhack I Y,Oshman Y.Attitude determination from vector observations:quaternion estimation[J].IEEE Trans.on Aerospace and Electric Systems,1985,21(1):128-136.

    [7] Crassidis JL,Markley FL.Unscented filtering for spacecraft attitude estimation[J].Journal of Guidance,Control,and Dynamics,2003,26(4):536-542.

    [8] Arulampalam M S,Maskell S,Gordon N,Clapp T.A tutorial on particle filters for online nonliear/non-gaussian bayesian tracking[J].IEEE Trans.On Signal Processing,2002,52(2):174-188.

    [9] Cheng Y,Crassidis J L.Particle filtering for sequential spacecraft attitude estimation[C].AIAA Guidance,Navigation,and Control Conf.and Exhibit,Rhode Island,USA,Aug.,2004.

    [10] Oshman Y,Carmi A.Attitude estimation from vector observation using genetic-algorithm-embedded quaternion particle filter[J].Journal of Guidance,Control,and Dynamics,2006,29(4):879-891.

    [11] Jiang X Y,Ma G F.Spacecraft attitude estimation from vector measurements using particle filter[C].The 4th Intel.Conf.on Machine Learning and Cybernetics,Guangzhou,China,Aug.,2005.

    [12] Schaub H,Junkins JL.Stereographic orientation parameters for attitude dynamics:ageneralization of the rodrigues parameters[J].The Journal of the Astronautical Sciences,1996,44(1):1-19.

    [13] Jiang X Y,Ma G F.Satellite attitude estimation based on marginalized particle filter[J].Control and Decision,2007,22(1):39-44.

    [14] Pitt M,Shephard N.Filtering via simulation:auxiliary particle filters[J].J.Amer.Statist.Assoc.,1999,94(446):590-599.

    [15] Psiaki M L.Global magnetometer-based spacecraft attitude and rate estimation[J].Journal of Guidance,Control,and Dynamics,2004,27(2):240-250.

    [16] Alonso R,Shuster M D.TWOSTEP:a fast robust algorithm for attitude-independent magnetometer-bias determination[J].The Journal of the Astronautical Sciences,2002,50(4):433-451.[17] Bar-Shalom Y,Li X R,Kirubarajan T.Estimation with applications to Tracking and Navigation[M].New York:John Wiley&Sons,Inc.,2001.

    猜你喜歡
    工程系哈爾濱工業(yè)大學(xué)東方紅
    Entrevista ping-pong “Mi mayor logro es haber aprendido espa?ol”
    “東方紅”五號衛(wèi)星平臺
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡則
    東方紅20周年譜華章
    電子信息工程系
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡則
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡則
    機(jī)電工程系簡介
    哈爾濱工業(yè)大學(xué)設(shè)計(jì)學(xué)系
    穿行:服裝工程系畢業(yè)設(shè)計(jì)作品
    国产不卡av网站在线观看| 大码成人一级视频| 亚洲av熟女| 捣出白浆h1v1| 久久国产精品男人的天堂亚洲| 国产精品久久久久久精品古装| 亚洲成人手机| 高潮久久久久久久久久久不卡| 欧美精品av麻豆av| 亚洲综合色网址| 99精品久久久久人妻精品| 国产成人精品久久二区二区91| 国内毛片毛片毛片毛片毛片| 一个人免费在线观看的高清视频| 久久天堂一区二区三区四区| 老熟女久久久| 国产无遮挡羞羞视频在线观看| 人人妻人人添人人爽欧美一区卜| 午夜久久久在线观看| 国产高清videossex| 精品欧美一区二区三区在线| 欧美乱妇无乱码| 欧美一级毛片孕妇| 69精品国产乱码久久久| 在线看a的网站| 俄罗斯特黄特色一大片| 久久人妻福利社区极品人妻图片| 国产精品九九99| 丝瓜视频免费看黄片| 涩涩av久久男人的天堂| 欧美精品高潮呻吟av久久| 三上悠亚av全集在线观看| 亚洲色图av天堂| 岛国在线观看网站| 少妇 在线观看| 亚洲一区中文字幕在线| 99国产精品99久久久久| 色老头精品视频在线观看| 在线观看www视频免费| 少妇 在线观看| 777久久人妻少妇嫩草av网站| 制服人妻中文乱码| 国产精品秋霞免费鲁丝片| 麻豆av在线久日| 亚洲九九香蕉| 亚洲精品美女久久久久99蜜臀| 国产xxxxx性猛交| 精品亚洲成a人片在线观看| 999久久久国产精品视频| 丝袜在线中文字幕| 国产成人欧美| 免费少妇av软件| 午夜福利免费观看在线| 母亲3免费完整高清在线观看| 久久久国产成人免费| 99精国产麻豆久久婷婷| 热99久久久久精品小说推荐| 精品久久久久久电影网| av中文乱码字幕在线| 在线十欧美十亚洲十日本专区| 亚洲欧洲精品一区二区精品久久久| 欧美在线一区亚洲| 午夜福利,免费看| 色在线成人网| 久久国产精品影院| 少妇猛男粗大的猛烈进出视频| 婷婷丁香在线五月| 18禁裸乳无遮挡免费网站照片 | 91老司机精品| 视频区图区小说| 高清黄色对白视频在线免费看| 捣出白浆h1v1| 村上凉子中文字幕在线| 水蜜桃什么品种好| 啦啦啦在线免费观看视频4| x7x7x7水蜜桃| 亚洲黑人精品在线| 欧美激情极品国产一区二区三区| 天天影视国产精品| 久久久精品区二区三区| 王馨瑶露胸无遮挡在线观看| 少妇的丰满在线观看| 日韩大码丰满熟妇| 国产精品一区二区在线观看99| 国产成人系列免费观看| 999久久久精品免费观看国产| 女人爽到高潮嗷嗷叫在线视频| 制服人妻中文乱码| 美女 人体艺术 gogo| 一级,二级,三级黄色视频| 叶爱在线成人免费视频播放| 18禁国产床啪视频网站| 色婷婷久久久亚洲欧美| 黄片播放在线免费| 久久草成人影院| 欧美日韩视频精品一区| 国产亚洲精品久久久久5区| 亚洲第一av免费看| 一二三四在线观看免费中文在| 热re99久久国产66热| 两人在一起打扑克的视频| 日本a在线网址| 精品乱码久久久久久99久播| 久久国产乱子伦精品免费另类| 国产99白浆流出| 又黄又爽又免费观看的视频| 咕卡用的链子| 建设人人有责人人尽责人人享有的| 欧美人与性动交α欧美软件| 久久久久久久久免费视频了| 精品久久蜜臀av无| 精品熟女少妇八av免费久了| 视频在线观看一区二区三区| 久久中文字幕人妻熟女| 黄片小视频在线播放| 精品国产一区二区三区四区第35| 欧美日韩亚洲高清精品| 午夜两性在线视频| 啦啦啦免费观看视频1| 99精国产麻豆久久婷婷| 午夜老司机福利片| 最新美女视频免费是黄的| 超碰成人久久| 亚洲精品国产区一区二| 丝瓜视频免费看黄片| 亚洲精品一二三| 久久国产精品大桥未久av| 午夜精品在线福利| 欧美中文综合在线视频| 99久久99久久久精品蜜桃| 日韩中文字幕欧美一区二区| 丁香欧美五月| 91成年电影在线观看| 最近最新中文字幕大全免费视频| 免费观看a级毛片全部| 校园春色视频在线观看| 精品国产乱子伦一区二区三区| 亚洲欧美一区二区三区久久| 成年版毛片免费区| 村上凉子中文字幕在线| 大香蕉久久网| 女警被强在线播放| 91大片在线观看| 欧美性长视频在线观看| 妹子高潮喷水视频| 欧美午夜高清在线| 国产av精品麻豆| 无人区码免费观看不卡| 国产aⅴ精品一区二区三区波| 亚洲国产精品合色在线| 波多野结衣av一区二区av| videosex国产| 欧美日本中文国产一区发布| 视频在线观看一区二区三区| 老司机午夜十八禁免费视频| 免费一级毛片在线播放高清视频 | 午夜亚洲福利在线播放| 男人的好看免费观看在线视频 | 中亚洲国语对白在线视频| 人妻久久中文字幕网| 高潮久久久久久久久久久不卡| 欧美日韩av久久| tube8黄色片| 高清视频免费观看一区二区| 最近最新中文字幕大全免费视频| 可以免费在线观看a视频的电影网站| 久久 成人 亚洲| 国产高清视频在线播放一区| 精品一区二区三卡| 欧美日韩亚洲综合一区二区三区_| 后天国语完整版免费观看| 国产精品 欧美亚洲| 岛国在线观看网站| 国产高清激情床上av| 国产精品 国内视频| √禁漫天堂资源中文www| 9热在线视频观看99| 欧美午夜高清在线| 国产欧美日韩一区二区精品| 99精品在免费线老司机午夜| 女人高潮潮喷娇喘18禁视频| 亚洲av熟女| 国产片内射在线| 777久久人妻少妇嫩草av网站| 久久中文看片网| 一区在线观看完整版| 国产精品秋霞免费鲁丝片| 国产成+人综合+亚洲专区| 欧美av亚洲av综合av国产av| 大香蕉久久网| 国产麻豆69| 日日夜夜操网爽| 欧美成人午夜精品| 国产高清激情床上av| 亚洲一区二区三区欧美精品| 久久久久久久久免费视频了| 午夜视频精品福利| 涩涩av久久男人的天堂| 美女高潮到喷水免费观看| 久久久久久久精品吃奶| 国产成人一区二区三区免费视频网站| 国产精品欧美亚洲77777| 亚洲精品av麻豆狂野| 欧美激情久久久久久爽电影 | 亚洲aⅴ乱码一区二区在线播放 | 国产精品98久久久久久宅男小说| 午夜精品国产一区二区电影| 搡老岳熟女国产| 黄片小视频在线播放| 久久国产精品大桥未久av| 国产有黄有色有爽视频| 一级,二级,三级黄色视频| 精品国产一区二区久久| 自拍欧美九色日韩亚洲蝌蚪91| 高潮久久久久久久久久久不卡| 又黄又粗又硬又大视频| 日韩免费av在线播放| 国产高清激情床上av| 人人妻人人澡人人爽人人夜夜| 国产不卡av网站在线观看| 国产一区二区三区在线臀色熟女 | 精品电影一区二区在线| videos熟女内射| 1024香蕉在线观看| 久久国产精品大桥未久av| 最近最新免费中文字幕在线| 18禁黄网站禁片午夜丰满| 色综合欧美亚洲国产小说| 黄色怎么调成土黄色| 97人妻天天添夜夜摸| 国产深夜福利视频在线观看| 国产免费av片在线观看野外av| 欧美日韩中文字幕国产精品一区二区三区 | av天堂久久9| 免费在线观看视频国产中文字幕亚洲| 久久久久久人人人人人| 啦啦啦 在线观看视频| 欧美成狂野欧美在线观看| 中文字幕最新亚洲高清| 亚洲精品一卡2卡三卡4卡5卡| 国产91精品成人一区二区三区| av超薄肉色丝袜交足视频| 婷婷丁香在线五月| 777久久人妻少妇嫩草av网站| 国产高清激情床上av| 欧美在线一区亚洲| www.精华液| 美女国产高潮福利片在线看| videos熟女内射| 成在线人永久免费视频| 日本vs欧美在线观看视频| 国产激情欧美一区二区| 中文字幕制服av| 女性生殖器流出的白浆| 在线观看日韩欧美| 一区二区三区国产精品乱码| www.自偷自拍.com| 黄色视频不卡| 国产极品粉嫩免费观看在线| 男男h啪啪无遮挡| 国产深夜福利视频在线观看| 亚洲欧美日韩高清在线视频| 欧美亚洲日本最大视频资源| 午夜免费观看网址| 国产男女超爽视频在线观看| 精品久久蜜臀av无| 老熟妇乱子伦视频在线观看| 国产高清激情床上av| 嫁个100分男人电影在线观看| 国产高清videossex| 精品一区二区三区视频在线观看免费 | av一本久久久久| 建设人人有责人人尽责人人享有的| 捣出白浆h1v1| e午夜精品久久久久久久| 免费日韩欧美在线观看| 一区二区日韩欧美中文字幕| 久久精品亚洲av国产电影网| 免费观看精品视频网站| 成人av一区二区三区在线看| 国产av精品麻豆| 精品午夜福利视频在线观看一区| 亚洲欧美精品综合一区二区三区| 国产精品二区激情视频| 久99久视频精品免费| 好看av亚洲va欧美ⅴa在| 午夜影院日韩av| 欧美在线一区亚洲| 欧美久久黑人一区二区| 999久久久国产精品视频| 精品国产一区二区三区久久久樱花| 老司机午夜福利在线观看视频| 午夜激情av网站| 午夜福利,免费看| 一进一出抽搐动态| netflix在线观看网站| 国产日韩欧美亚洲二区| 交换朋友夫妻互换小说| 精品国产乱子伦一区二区三区| 村上凉子中文字幕在线| av网站免费在线观看视频| 国产高清videossex| 12—13女人毛片做爰片一| 精品久久久久久久毛片微露脸| 欧美日韩亚洲国产一区二区在线观看 | 一边摸一边抽搐一进一出视频| 久热这里只有精品99| 久9热在线精品视频| 黑人操中国人逼视频| 国产真人三级小视频在线观看| 91国产中文字幕| 欧美日韩国产mv在线观看视频| 国产又色又爽无遮挡免费看| 91国产中文字幕| 91精品国产国语对白视频| 亚洲国产毛片av蜜桃av| 中国美女看黄片| 好看av亚洲va欧美ⅴa在| 少妇被粗大的猛进出69影院| 日本wwww免费看| 免费日韩欧美在线观看| 亚洲精品一二三| 亚洲欧美激情综合另类| 亚洲一区中文字幕在线| 亚洲精品美女久久久久99蜜臀| 国产区一区二久久| 国产精品亚洲一级av第二区| 日韩三级视频一区二区三区| 成熟少妇高潮喷水视频| 久久久精品区二区三区| 叶爱在线成人免费视频播放| 欧美精品av麻豆av| 亚洲美女黄片视频| 在线观看免费日韩欧美大片| 午夜福利影视在线免费观看| 午夜福利一区二区在线看| 很黄的视频免费| 精品少妇一区二区三区视频日本电影| 欧美激情极品国产一区二区三区| 免费在线观看黄色视频的| 免费在线观看视频国产中文字幕亚洲| 黄片小视频在线播放| 久久久国产成人精品二区 | 国产精品电影一区二区三区 | 这个男人来自地球电影免费观看| 99久久99久久久精品蜜桃| 一区二区日韩欧美中文字幕| 久99久视频精品免费| 国产精品99久久99久久久不卡| 亚洲av日韩精品久久久久久密| 成人国语在线视频| 不卡一级毛片| 国产一区二区三区在线臀色熟女 | 国产高清videossex| 丝瓜视频免费看黄片| 天天操日日干夜夜撸| 国产精品永久免费网站| 婷婷成人精品国产| 亚洲成国产人片在线观看| 久久久久精品国产欧美久久久| 天天躁夜夜躁狠狠躁躁| 久久中文字幕人妻熟女| 久久久久视频综合| 国产亚洲一区二区精品| 丝袜美腿诱惑在线| 欧美大码av| 欧美av亚洲av综合av国产av| 久久精品亚洲av国产电影网| 午夜日韩欧美国产| a级片在线免费高清观看视频| 免费在线观看黄色视频的| 国产精品乱码一区二三区的特点 | 亚洲成人手机| 亚洲精品久久成人aⅴ小说| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美网| 黄片小视频在线播放| 国产区一区二久久| 99国产精品一区二区三区| 一进一出好大好爽视频| 日韩人妻精品一区2区三区| 成人精品一区二区免费| 国产不卡一卡二| 中文字幕人妻熟女乱码| 一二三四在线观看免费中文在| 亚洲精品国产精品久久久不卡| 欧美中文综合在线视频| ponron亚洲| 大型av网站在线播放| 精品国产乱子伦一区二区三区| 天天躁夜夜躁狠狠躁躁| 狠狠狠狠99中文字幕| 看免费av毛片| 午夜福利欧美成人| 欧美精品一区二区免费开放| 丝袜美足系列| 久久久国产欧美日韩av| 国产成人精品无人区| 精品第一国产精品| 亚洲av成人不卡在线观看播放网| 男女免费视频国产| 免费在线观看日本一区| 国产高清激情床上av| 国产麻豆69| 欧美精品亚洲一区二区| 岛国毛片在线播放| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩另类电影网站| 天堂√8在线中文| 免费在线观看亚洲国产| 亚洲欧美日韩另类电影网站| 午夜福利免费观看在线| 成人18禁在线播放| 亚洲美女黄片视频| 最新的欧美精品一区二区| 亚洲av片天天在线观看| 丰满的人妻完整版| 日本wwww免费看| 黄色成人免费大全| 久久久久久久午夜电影 | 狂野欧美激情性xxxx| 欧美成人午夜精品| 国产精品一区二区在线观看99| 欧美日韩亚洲国产一区二区在线观看 | 午夜激情av网站| 欧美午夜高清在线| 两人在一起打扑克的视频| 激情视频va一区二区三区| 中文字幕人妻丝袜制服| 久久热在线av| 丁香欧美五月| 午夜老司机福利片| 国产淫语在线视频| 丁香欧美五月| 大香蕉久久成人网| 久久人人爽av亚洲精品天堂| 欧美+亚洲+日韩+国产| 51午夜福利影视在线观看| 丰满迷人的少妇在线观看| 久久久久久人人人人人| 亚洲av欧美aⅴ国产| 黑人欧美特级aaaaaa片| 纯流量卡能插随身wifi吗| 久久人妻福利社区极品人妻图片| 国产精品久久电影中文字幕 | 99re在线观看精品视频| 亚洲色图 男人天堂 中文字幕| 黑人操中国人逼视频| 国产一区在线观看成人免费| 18禁裸乳无遮挡免费网站照片 | 99热网站在线观看| 麻豆乱淫一区二区| 国产一区二区激情短视频| 在线播放国产精品三级| 久久精品熟女亚洲av麻豆精品| 免费在线观看亚洲国产| 国产精品久久久久久精品古装| 欧美日韩亚洲综合一区二区三区_| 淫妇啪啪啪对白视频| 欧美黑人精品巨大| 亚洲熟女精品中文字幕| 又黄又爽又免费观看的视频| 精品人妻在线不人妻| 日本撒尿小便嘘嘘汇集6| 免费在线观看视频国产中文字幕亚洲| 久久中文看片网| 成人国语在线视频| 精品国产亚洲在线| 18禁美女被吸乳视频| 亚洲在线自拍视频| videos熟女内射| 午夜精品在线福利| 亚洲一区中文字幕在线| 岛国毛片在线播放| 国产成人啪精品午夜网站| 久久久久久人人人人人| 最近最新中文字幕大全免费视频| 亚洲欧美日韩高清在线视频| 国产不卡一卡二| bbb黄色大片| 女同久久另类99精品国产91| 午夜福利在线免费观看网站| www.熟女人妻精品国产| 欧美+亚洲+日韩+国产| 午夜福利在线观看吧| 午夜福利影视在线免费观看| 国产欧美日韩精品亚洲av| 国产亚洲欧美精品永久| 99久久人妻综合| 一边摸一边抽搐一进一小说 | 99热只有精品国产| 精品国产一区二区久久| 午夜两性在线视频| 日本a在线网址| 少妇猛男粗大的猛烈进出视频| 热99久久久久精品小说推荐| 中出人妻视频一区二区| 国产深夜福利视频在线观看| 免费观看a级毛片全部| 变态另类成人亚洲欧美熟女 | 亚洲国产欧美网| 五月开心婷婷网| 久久国产亚洲av麻豆专区| 午夜福利在线免费观看网站| 99久久99久久久精品蜜桃| 久久国产精品大桥未久av| 欧美乱色亚洲激情| 丝袜美腿诱惑在线| 热99国产精品久久久久久7| 久久精品国产亚洲av高清一级| 9热在线视频观看99| 国产精品久久久久久人妻精品电影| 又黄又爽又免费观看的视频| 色94色欧美一区二区| 丰满人妻熟妇乱又伦精品不卡| 伊人久久大香线蕉亚洲五| 免费看十八禁软件| 欧美人与性动交α欧美软件| 国产免费现黄频在线看| 中文字幕精品免费在线观看视频| 国产欧美日韩精品亚洲av| www.熟女人妻精品国产| 亚洲成人免费av在线播放| 桃红色精品国产亚洲av| 午夜日韩欧美国产| 日本精品一区二区三区蜜桃| 免费在线观看亚洲国产| 一边摸一边做爽爽视频免费| 亚洲中文av在线| 国产精品免费大片| 亚洲精品在线观看二区| 一进一出抽搐动态| 不卡一级毛片| 在线观看午夜福利视频| www日本在线高清视频| 90打野战视频偷拍视频| 亚洲精品av麻豆狂野| 亚洲精品久久成人aⅴ小说| 男人操女人黄网站| 麻豆成人av在线观看| 亚洲aⅴ乱码一区二区在线播放 | 久久精品国产亚洲av高清一级| 中文字幕高清在线视频| 国产一区二区激情短视频| 最近最新中文字幕大全电影3 | 丰满饥渴人妻一区二区三| 最近最新中文字幕大全免费视频| 精品久久久精品久久久| 国产精品九九99| 国产激情欧美一区二区| 欧美黄色片欧美黄色片| 国产成人啪精品午夜网站| 国产精品香港三级国产av潘金莲| 国产成人欧美在线观看 | 别揉我奶头~嗯~啊~动态视频| 中文亚洲av片在线观看爽 | 亚洲成人手机| 精品人妻熟女毛片av久久网站| 91大片在线观看| 亚洲精品久久成人aⅴ小说| 在线av久久热| 少妇粗大呻吟视频| 亚洲黑人精品在线| 国产成人精品久久二区二区免费| 久久久久久久午夜电影 | 91精品国产国语对白视频| 香蕉丝袜av| 美女国产高潮福利片在线看| 亚洲av熟女| 国产精品乱码一区二三区的特点 | 好看av亚洲va欧美ⅴa在| 成人免费观看视频高清| 日日摸夜夜添夜夜添小说| 国产三级黄色录像| 脱女人内裤的视频| 人妻一区二区av| 精品少妇久久久久久888优播| 久久天堂一区二区三区四区| 国内久久婷婷六月综合欲色啪| 国产av一区二区精品久久| 大码成人一级视频| 日韩 欧美 亚洲 中文字幕| 国产精品欧美亚洲77777| 国产精品免费一区二区三区在线 | 美女国产高潮福利片在线看| 狠狠狠狠99中文字幕| 黑人操中国人逼视频| 另类亚洲欧美激情| 国产欧美日韩综合在线一区二区| 妹子高潮喷水视频| 欧美日韩乱码在线| xxxhd国产人妻xxx| 久久中文看片网| 亚洲精品久久午夜乱码| 男女床上黄色一级片免费看| 欧美精品av麻豆av| 国产高清激情床上av| 精品久久蜜臀av无| 精品亚洲成a人片在线观看| 99久久精品国产亚洲精品| 大型黄色视频在线免费观看| 操出白浆在线播放| 国产高清视频在线播放一区| 久久久国产成人免费| 亚洲精品中文字幕在线视频| 亚洲人成电影免费在线| 黄色 视频免费看| 后天国语完整版免费观看| 亚洲精品国产区一区二| 亚洲精品自拍成人| 亚洲专区国产一区二区| 在线观看免费日韩欧美大片| 纯流量卡能插随身wifi吗| 在线观看日韩欧美| 一级a爱视频在线免费观看|