• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Local and biglobal linear stability analysisof parallel shear flows

    2017-03-13 05:47:08SanjayMittalandAnubhavDwivedi

    Sanjay Mittal and Anubhav Dwivedi

    1 Introduction

    Thehydrodynamic stability of laminar flows has received significant attention and has been investigated by several researchers in the past[Schmid and Henningson(2001);Chandrasekhar(1981);Huerre and Monkewitz(1990);Huerre(2000);Chomaz(2005)].The linear stability of parallel shear flows can be analyzed via finding solution to the Orr-Sommerfeld (OS) equation [Orr (1907); Sommerfeld(1908)], with suitable boundary conditions. The disturbance fi eld is assumed to be a plane wave whose amplitude varies transverse to the flow and is periodic in the homogeneous directions. The analysis can be carried out in either a spatial or temporal framework [Boiko, Dovgal, Grek, and Kozlov (2012)]. The spatial analysis assumes that the disturbance field develops in s pace. The spatial growth rate is determined for different values of frequency and Reynolds number. In contrast, the temporal analysis assumes that the disturbance develops in time. As per the Squire’s theorem [Schmid and Henningson (2001)], the 2D disturbance is the most critical in terms of its growth rate. Therefore, it is suffi cient to consider twodimensional disturbances that have streamwise periodicity [Boiko, Dovgal, Grek,and Kozlov (2012)]. The analysis is carried out to determine temporal growth rate at various Re and for disturbances with different values of streamwise wavenumber. The spatial and temporal approaches for local analysis are related to each other[Huerre (2000)]. For example, Gaster (1962) proposed a transformation for that,approximately, relates the temporal and spatial growth. Several methods have been used to solve the OS equations. Davey and Drazin (1969) utilized Bessel functions to represent the disturbance fi eld and analyze the stability of pipe Poiseuille flow. Orszag (1971) used Chebyshev polynomials to solve the OS equation for the plane Poiseuille flow. Saraph, Vasudeva, and Panikar (1979) used Galerkin’s weighted residual method to carry out the stability analysis of plane Poiseuille flow and magneto-hydrodynamic flows. Garg and Rouleau (1972) used asymptotic analysis to carry out the linear stability analysis in pipe flow. The method has also been applied, in a local sense, to spatially developing flows [Pierrehumbert (1985); Yang and Zebib (1989); Monkewitz (1988); Chomaz, Huerre, and Redekopp (1988)]. In this approach, the flow profi les at different streamwise stations are analyzed by assuming that each profi le corresponds to an independent parallel flow. The local analysis, at each streamwise station of the flow, involves solving the OS equation,with suitable boundary conditions.

    Analternateapproach toinvestigatethelinear stability of fluid flowsisthe BiGlobal and TriGlobal stability analysis[Theofilis(2011);Swaminathan,Sahu,Sameen,and Govindrajan(2011)].Unlike in the local analysis,in this approach the disturbance fi eld is represented globally,including in the streamwise direction.The analysis results in global modes which,depending on the sign of the growth rate,may either grow or decay in the entire computational domain with time.The global analysisisusually muchmorecomputationally expensivethan thelocal one.Such an approach has been used to analyze the global linear stability properties of several non-parallel flows[Mittal(2004);Chomaz(2005);Schmid and Henningson(2001)].Swaminathan,Sahu,Sameen,and Govindrajan(2011)carried out a global linear stability analysis of a diverging channel flow using spectral collocation method.Mittal and Kumar(2003)used astabilized finite element method for the global LSA of stationary and rotating cylinder.Later,Verma and Mittal(2011)used asimilar approachfor carryingout global LSA to investigatetheexistenceand stability of secondary wake mode of a two-dimensional flow past a circular cylinder.Morerecently,Navrose,Meena,and Mittal(2015)carried out LSA of spinning cylinder in auniform flow and identifi ed several unstablethree-dimensional modes for variousrotation ratesof thespinning cylinder.

    In the present work,Linear Stability Analysis(LSA)of the plane Poiseuille flow is carried out.Local and global analyses are considered.The solutions to the OS equation for local analysis have been obtained in a temporal framework.A spectral collocation method based on Chebyshev polynomials[Schmid and Henningson(2001)]is used to solve the governing Orr-Sommerfeld(OS)equation.The global LSA of theplane Poiseuilleflow iscarried out using astabilized finiteelement formulation.The governing equationsarecast in theprimitivevariables:velocity and pressure.Equal-order finite-element interpolation functions are used for pressure and velocity disturbancefi elds.Four-noded quadrilateral elementswith bilinear interpolation isemployed.Thestreamline-upwind/Petrov-Galerkin(SUPG)[Brooks and Hughes(1982)]and pressure-stabilizing/Petrov-Galerkin(PSPG)stabilization techniques[Tezduyar,Mittal,Ray,and Shih(1992)]are employed to stabilize the computations against spurious numerical oscillations.The fi nite element formulation results in a generalized eigenvalue-vector problem which is solved using the subspace iteration method[Stewart(1975)].For carrying out the global analysis,we assume periodic boundary conditions at the inflow and the outflow for the disturbancefield.Thisallowsadirectcomparisonof theglobal LSA withthe OSequation.A comparison between the local and global analysis of the plane Poiseuille flow at Re=7000 is presented and is utilized to show the connection between the two analyses.

    2 Governing Equations

    2.1 Linearized Disturbance Equations

    Let,??Rnsdand(0,T)be the spatial and temporal domains respectively,where nsdis the number of space dimensions,and letΓ denote the boundary of?.The Navier-Stokesequationsgoverning incompressiblefluid flow are given as:

    Hereρ,u andσ are the density,velocity and the stress tensor,respectively.The stresstensor isrepresented asσ =?p I+μ((?u)+(?u)T),where p andμ arethe pressure and coeffi cient of dynamic viscosity,respectively.The boundary conditionsarespecified as:

    Here,ΓgandΓhare the complementary subsetsof the boundaryΓwhere Dirichlet and Neumann boundary conditionsarespecified,respectively.

    To understand the evolution of small disturbances,the unsteady solution is expressed asacombination of steady solution and disturbance:

    Here,U and P representthesteady statesolution whosestability isto bedetermined while u′and p′aretheperturbation fields.Substituting thedecomposition given by Eq.(3)in Eqs.(1)and subtracting from them,the equations for steady flow one obtains the evolution equations for the disturbance fields.Further,the perturbations,u′and p′,areassumed to besmall and thenon-linear termsaredropped.The linearized perturbation equationsaregiven as:

    Here,σ′is the stress tensor for the perturbed solution.Eq.(4)subjected to the initial condition,u′(x,0)=u′0describes the evolution of small disturbances in the domain,?.Theboundary conditionson u′arehomogeneousversionsof thoseused for calculating thebaseflow(Eq.(2)).

    2.2 Global Linear Stability Analysis

    To conduct a global Linear stability analysis we assume the following form of the disturbancefield,u′and p′

    Substituting Eqs.(5)in the linearized disturbanceequations(Eqs.(4))we obtain:

    Eqs.(6)representsa generalized eigenvalue problem withλas the eigenvalue and(?u,?p)as the corresponding eigenmode.The boundary conditions for(?u,?p)are homogeneous version of those used for calculating the base flow(U,P).In general,the eigenvalue λ = λr+iλiis complex.The growth rate is given by the real part,λrof the eigenvalue whereas the imaginary part,λiis related to the temporal frequency of the of the disturbance field.A positive value ofλrindicates an unstable mode.This method has been utilized by several researchers in the past to investigatetheglobal linear stability of varioussteady flow configurations[Jackson(1987);Morzynski and Thiele(1991);Morzynski,Afanasiev,and Thiele(1999);Swaminathan,Sahu,Sameen,and Govindrajan(2011)].Mittal and Kumar(2003)proposed a stabilized fi nite element formulation for solving these equations and employed it to study theglobal stability propertiesof theflow past astationary and rotating cylinder.

    2.3 Local Stability Analysis:Orr-Sommerfeld Equation

    The disturbance field is assumed to be periodic along the two homogeneous directions:x and z.The wavenumbers along the x and z directions areαandβ,respectively.Thus,the perturbation fi eld in thisscenario isgiven by:

    Similar expressions can bewritten forwhich represent the x and z component of the disturbance fi eld.Let,k=α?i+β?k represent the wavenumber vector in the x?z planewith itsmagnitudegiven by k=.Substituting,Eq.(8)in thelinearized disturbance equation described by Eq.(7),weobtain:

    We consider the case when the streamwise wavenumber,α,is real and the eigenvalueλ =λr+iλiiscomplex.Thereal part,λr,isthegrowthrateof thedisturbance whileλi,theimaginary part,isthetemporal frequency of the disturbance.The disturbance associated with the eigenvalue that has the largest real mode is of major interest as it represents the fastest growing mode.For 2?D disturbances we can rewrite Eq.(9)to obtain the Orr-Sommerfeld(OS)equation:

    The disturbance velocity,u′,v′must vanish on the far-fi eld and solid boundaries,Γ.For the periodic disturbance fi eld considered this requires?u,?v to vanish onΓ.Using the continuity equation,one can simplify thisto:

    3 Formulation

    3.1 The Stabilized Finite Element Formulation for Global Linear Stability Analysis

    Let??R2be the spatial domain for global linear stability analysis(Eq.(6)).Consider afi niteelement discretization of?into subdomains?e,e=1,2,3,...,nel,where nelis the number of elements.Based on this discretization we define fi nite element trial function spaces for velocity and pressure perturbation fi elds asand,respectively.The weighting function space areand,respectively.Thesefunction spacesareselected by taking thehomogeneous Dirichlet boundary conditions into account,assubsetsof[H1h(?)]2and H1h(?),where H1h(?)isthe finitedimensional function spaceover?.Thestabilized finiteelement formulation of Eq.(6),is as follows:Findu?h∈Suuuhandp?h∈such that?w?h∈Vuuuhand

    Here,Uhrepresents the base flow at the element nodes.In the variational formulation given by Eq.(13),the first three terms constitute the Galerkin formulation of the problem.The terms involving the element level integrals are the stabilization terms added to the basic Galerkin formulation to enhance its numerical stability.These terms stabilize the computations against node-to-node oscillations in advection dominated flows and allow the use of equal-in-order basis functions for velocity and pressure.The terms with coeffi cientsτSUPGand τPSPGare based on the SUPG(Streamline-Upwind/Petrov-Galerkin)[Brooks and Hughes(1982)]and PSPG(Pressure-stabilized/Petrov-Galerkin)[Tezduyar,Mittal,Ray,and Shih(1992)]stabilizations.The SUPGformulation for convection dominated flowswas introduced by Hughes and Brooks(1979)and Brooks and Hughes(1982).PSPG stabilization for enabling the use of equal-order interpolations for the velocity and pressureto fluid flowsat finite Reynoldsnumber wasintroduced by Tezduyar,Mittal,Ray,and Shih(1992).The term with coeffi cientτLSICis a stabilization term based on theleast squares of thedivergencefreecondition on the velocity field.It providesnumerical stability at high Reynoldsnumber.Here,thestabilization coefficients used in the finite element formulation of LSA(Eq.(13))are computed on the basis of the base flow at the element nodes,Uh.The stabilization parameters aredefi ned as[Tezduyar,Mittal,Ray,and Shih(1992)]:

    Here,heis the element length based on the minimum edge length of an element[Mittal(2000)]and Uhisthebase flow velocity at element nodes.

    Eq.(13)lead to a generalized non-symmetric eigenvalue problem of the form A X?λB X=0.For our case,theeigenvalueproblem isslightly morecomplicated asthecontinuity equation responsiblefor determining pressurecausesthematrix B to becomesingular.Hence,to avoid singularity,wesolvetheinverseproblem,i.e.,eigenvalues for B X?μA X=0 are computed.Here,λ =1/μ.To check the stability of the steady-state solution we look for the rightmost eigenvalue(eigenvalue with largest real part),using thesubspaceiteration method[Stewart(1975)].

    3.2 The Spectral Method for Local Linear Stability Analysis

    Thespectral collocation method based on Chebyshev polynomialsof thefi rstkind[Schmid and Henningson(2001)]isused to solvethe Eq.(11)for carrying out thelocal sta-

    bility analysis.The Chebyshev polynomial of the fi rst kind isdefi ned as:

    for all non-negativeintegers n∈[0,N]and y∈[?1,1].By using asuitabletransformation,it ispossibleto map any other rangeof y to the Chebyshev domain[?1,1].The Chebyshev polynomials areutilized as the basis functions to approximate the eigenfunction,?v(y)in Eq.(8):

    Thisapproximation of theeigenfunction issubstituted in the OSequation(Eq.(11).It resultsin the following equation:

    Thecollocation method isemployed to evaluatetheconstants anin theapproximation given by Eq.(17).The following Gauss-Lobatto collocation pointsareused:

    Eq.(18)leads to the generalized eigenvalue problem of the form A X?λB X=0.In the present work,the numerical solution to the same is obtained using LAPACK[Anderson,Bai,Bischof,Blackford,Demmel,Dongarra,Du Croz,Greenbaum,Hammarling,McKenney,and Sorensen(1999)]libraries.

    4 Problem Setup

    4.1 The Base Flow

    Thelocal and theglobal linear stability analysisarecarried outfor theplane Poiseuille flow.Figure(1)shows the schematic of the flow.The fluid occupies the channel formed by two stationary plates parallel to each other and separated by a distance 2H.Theplatesarealigned with the x?axis.Thevelocity profilefor thebaseflow

    Figure1:Schematic of theplane Poiseuilleflow.

    is shown in the fi gure.It is parabolic and symmetric about the channel centerline.The equation for the streamwise component of velocity isgiven as:

    Here,H denotes half the channel width and Ucis the centerline velocity.All the lengthsarenon-dimensionalized with H,and velocity with Uc.The Reynoldsnumber,Re,isdefined as:

    where,νdenotesthekinematic viscosity of thefluid.

    4.2 Local Linear Stability Analysis

    The local analysis of the plane Poiseuille flow iscarried out via the solution to OS(Eq.(11)).The domain across the channel width,[?H,H],is mapped to[?1,1].No-slip boundary conditions are applied to the disturbance fi eld at the channel walls.In thissituation,Eq.(12)can berewritten as:

    The OSequation(Eq.(11)),along withtheboundary conditions(Eq.(22),issolved in thetemporal point of view.The wavenumber,α,is assumed to bereal.The OS equation is solved for different values of values ofαand Re.The effect of the number of grid points,along y,on the accuracy of the solution is investigated.It is found that 200 collocation points provide adequate spatial resolution.All the resultspresented in thispaper for the OSanalysisarewith 200 points.

    4.3 Global Linear Stability Analysis

    The flow in a fi nite streamwise length of the channel(=L)is considered for carrying out theglobal analysis.Thebaseflow isthefully developed steady flow in the channel.The streamwise velocity for the same is given by Eq.(20).The boundary conditions for thedisturbance fi eld are as follows.The disturbance velocity is prescribed a zero value at the upper and lower walls.To enable comparison with the local analysis,the disturbance is assumed to be periodic in the streamwise direction.Therefore,periodic boundary conditionsareapplied on all thevariablesat the inflow and theoutflow boundaries.Thefi niteelementmesh consistsof 24 elements alongthestreamwiseand 150elementsinthecross-flow directions.Thegrid points are uniformly spaced along x but are clustered close to the wall in the y direction.A mesh convergence study is carried out for the Re=7000 plane Poiseuille flow and L/2H=1.A more refi ned grid with roughly twice the resolution in each direction leadsto lessthan onepercentdifferencein theresults,thereby reflecting the adequacy of theoriginal fi nite element mesh.

    5 Results:Linear Stability Analysisof the Plane Poiseuille Flow

    5.1 OSAnalysis

    Local analysis via solution to the OS equation(Eq.(11))is carried out for various values of Re andα.At each(Re,α)the eigenvalue with the largest real part is identified.Figure(2)shows the variation of the growth rate of the disturbance associated with the rightmost eigenvalue with Re andα.The fi gure shows the iso-contours for various values of growth rate in the Re?αplane.The contour corresponding to zero growth rateistheneutral curve.Thecritical Re for theonset of instability is the lowest value of the Re on the neutral curve,for any value of α.The critical Re for this flow is found to be 5773,approximately and is marked in Figure(2).The value is in excellent agreement with results from earlier studies[Schmid and Henningson(2001)].

    Theresultsfor theflow at Re=7000 arepresented inmoredetail in Figure(3).This fi gureshowsthevariation of thereal(λr)and imaginary(λi)partsof therightmost eigenvalue with wavenumber(α)at Re=7000.While λrdenotes the growth rate,λiis related to the temporal frequency of the disturbance.We observe that the Re=7000 flow is linearly unstable only to disturbances whose wavenumber lies in a specifi c interval.The maximum growth rate is0.0017,approximately forα=1.00.

    Figure 2:Orr-Sommerfeld analysis of the Plane Poiseuille flow:iso-contours of constant growth rate.The critical Re for the onset of the instability of the flow is Recr=5773 and ismarked with a vertical broken line.

    Figure 3:Orr-Sommerfeld Analysis of the Plane Poiseuille Flow at Re=7000:variation of real and imaginary partof theright-most eigenvaluewith wavenumber,α.

    Figure 4:Global linear stability analysis of the Plane Poiseuille flow for Re=7000 and L/2H=5.10:the v′field for the eigenmodes corresponding to the two rightmost eigenvalues.The upper row corresponds to one cell in the domain(n=1)and has a growth rate,λr=?0.017.The lower row is for n=2 with two cells in thedomain;the growth ratefor this mode isλr=?0.0097.

    5.2 Global Analysis

    In thelocal analysis,the OSequation(Eq.(11))can besolved by usingαasoneof the independent variables.However,the global analysis(Eq.(6))does not directly offerαas an independent variable.The analysis,of course,can be carried out for different streamwise extent(L)of the computational domain.We attempt to understand the relation between L(for the global analysis)andα(for the local analysis).We propose that for a spatially periodic disturbance,its wavenumber is related to thelength of thecomputational domain as:

    where,n is the number of waves along the stream wise direction in the domain.To demonstratethis,weconsider theglobal linear stability analysisfor Re=7000.Fig.(4)shows the eigen modes associated with the two right most eigenvalues for L/2H=5.1.While the first one is associated with one wave(n=1),the other houses two waves(n=2)in the computational domain.Thus,they both represent different wavenumbersand areassociated with their own growth rates,aslisted in the caption of the fi gure.The real and imaginary part of the eigenvalue obtained from the global analysis,and their comparison with the values obtained from the local analysis,arealso shown in Figures(5)and(6).Thedatapointscorresponding to the two eigenmodes lie on the vertical line segment marked in the two figures for L/2H=5.10.The values from the local and global analysis are in excellent agreement.

    Figures(5)and(6)show the variation of the growth rate and the imaginary part of the rightmost eigenvalue from the global analysis for plane Poiseuille flow at Re=7000.The data points from the global analysis are marked by solid circles.Also shown in thesamefigurearetheresultsfrom thelocal analysis.Thevariation is associated with a number of peaks and valleys.We attempt to understand this behavior.It isdemonstrated in Fig.(4)that thecomputational domain may accommodate multiple cells of the disturbance.We fi rst identify in Figs.(5)and(6)the cases that are associated with onecell only(n=1)in thestreamwise extent of the domain.A best fi t to these points is in excellent agreement with the results from the local analysis.These curves are marked as L=2π/α in the figures.These curvescan also beutilized to understand thevariation ofλrandλiwithα.Wenote that thegrowth rateand temporal frequency of an eigenmodeshould depend onα,but must beindependent of thenumber of cellsof the sameαin the computational domain.Usingthisidea,and thedataforλrandλiv/sα fromthelocal analysis,the variation ofλrand λiwith L/2H is generated for multiple cells by observing that L=2πn/α,where n is the number of cells.These curves are shown in Figs.(5)and(6)for various values of n.The outer envelope of these curves is shown in thicker solid line.These curves provide an estimate of the variation of the rightmost eigenvaluewiththelength of thecomputational domain.Excellentagreement is observed between the estimated rightmost eigenvalue and the actual value from global LSA computationsfor n≥2.Wenotethatasthelengthof thecomputational domain isincreased,thedependenceof the growth rateof themost unstableeigenmodeon L becomesweaker.In theasymptotic limit of thedomain being infinitely long,the fastest growing mode comprises of infi nite cells of the n=1 eigenmode whose wavenumber is associated with largestλr.We also note from Fig.(5)that in certain situations it might be diffi cult to track the eigenmodes corresponding to low values ofαfrom the global analysis.Low values ofα correspond to large L/2H.Asseen from Fig.(5),at large L/2H,n=1 modeisnot necessarily theone with rightmost eigenvalue.For example,at L/2H=15 the rightmost eigenvalue corresponds to the mode with five cells(n=5).The modes with four,three,two and onecell have lower growth rate,and in the sameorder.Therefore,tracking the modefor n=1 for thisvalueof L/2H is relatively morechallenging than theones for higher valuesof n.

    To further demonstrate that the growth rate and temporal frequency of an eigenmode must be independent of the number of streamwise cells in the global analysis,weconsider thecasewhereweseek therightmost eigenvalueforα=1.05.For n=1,thiscorrespondsto L/2H=3.0,approximately.Figure(7)showstheeigenmodesfromtheglobal analysisfor variousvaluesof L/2H for thesameα(=1.05).Thevariousvaluesof L arechosen by varying n in therelation L=2 nπ/α.A broken horizontal lineismarked in Figures(5)and(6)to show thereal and imaginary partof therightmosteigenvaluefor variousvaluesof L thatcorrespond toα=1.05.We observe that all these modes are associated with the same eigenvalue.In fact,theeigenmodesarealso of thesamefamily.They areshown in Figure(7)and have

    Figure 5:Variation of the growth rate of the leading eigenvalue with L/2H for the plane Poiseuilleflow for Re=7000:thesolid dotsrepresent thegrowth rateof the mostunstablemodeobtained atvariousvaluesof L/2H fromglobal LSA.Thesolid(red)curveisobtained from thelocal(Orr-Sommerfeld)analysis.It isin excellent agreement with the best fi t to the points corresponding to one streamwise wave(n=1)from global analysis asper the relation L=2π/α.The curve isreplicated for various n to show the predicted variation ofλr with L,for the global analysis using the relation L=n(2π/α),when the domain houses different number of cells.Theouter envelopeof thesecurves,showninthicker solid line,representsthe eigenmode associated with the rightmost eigenvalue for the corresponding length of thecomputational domain.

    the sameflow structure,albeit with different number of cells.

    6 Concluding Remarks

    Hydrodynamic stability of shear flows has been widely investigated in the past usinglocal and global Linear Stability Analysis(LSA).Inthiswork wehavereviewed thetwo approachesand attempted to highlightthedifferencebetween thetwo in the context of their application to parallel shear flows.Resultsfor thelinear stability of plane Poiseuille flow have been presented,using both approaches.The local analysisiscarried out by solving the Orr-Sommerfeld(OS)equation using thespectral collocation method based on Chebyshev polynomials.The analysis has been carried out for various wavenumbers,αof the streamwise periodic disturbance fi eld.The critical Re for the onset of linear instability for plane Poiseuille flow is found to be 5773,which is in good agreement with earlier results[Schmid and Henningson(2001)].The stability of the flow at Re=7000 has been presented in more detail.For example,the variation of the real and imaginary part of the least stable eigenvalue withαhas been presented.Unlike the local analysis which involves solution to an ordinary differential equation,the global analysis involves fi nding solution to a set of partial differential equations.The analysis has been carried out for atwo-dimensional disturbance fi eld that isassumed to bespatially periodic along the stream wise direction.A stabilized finite element method has been presented for carrying out the global LSA in primitive variables.Equal-in-order fi nite element functions are used for representing velocity and pressure.To suppress the numerical oscillationsthat might appear in thecomputations,the SUPGand PSPG,stabilizationsareadded tothe Galerkinfiniteelementformulation.Theformulation hasbeen used to carry out the linear stability analysisfor the plane Poiseuille flow at Re=7000.Computations are carried out for various values of the streamwise length,L,of thecomputational domain.

    Figure 6:Variation of the imaginary part of theleading eigenvalue with L/2H for theplane Poiseuilleflow for Re=7000:thesolid dotsrepresent theimaginary part of the most unstable mode obtained at various values of L/2H from global LSA.The solid(red)curve isobtained from the local(Orr-Sommerfeld)analysis.It isin excellent agreement with thebest fit to thepointscorresponding to onestreamwise wave(n=1)from global analysis as per the relation L=2π/α.The curve is replicated for various n to show the predicted variation ofλi with L,for the global analysisusingtherelation L=n(2π/α),when thedomainhousesdifferent number of cells.The curves shown in thicker solid line representsλi associated with the rightmost eigenvaluefor thecorresponding length of thecomputational domain.

    Figure 7:Eigenmodes of v′corresponding to the leading eigenvalue for various lengths of the domain obtained with the global LSA for the plane Poiseuille flow for Re=7000 for disturbancesthat areperiodic in thestreamwise direction.

    Unlike the local analysis, the global analysis can handle non-periodic disturbances and is applicable to non-parallel flows as well. However, the global analysis is signifi cantly more expensive than the local a nalysis. For the parallel flow and with spatially periodic disturbances the present work brings out a very interesting relationship between the wave number of the disturbance and the streamwise extent of the domain in the global analysis. When the eigenmode contains only once cell, the results from the local and global analysis are virtually identical; the wavenumber and streamwise extent of the domain are related as α = 2 π/L. However, when the eigenmode consists of n cells along the streamwise length of the domain the relationship is: α = (2 πn)/L. For a very large value of L, the global analysis results in an eigenmode with a large number of cells of the eigenmode whose α corresponds to the mode with largest growth rate. If one would like to use the global analysis to create the growth rate v/s α curve for the rightmost eigenvalue, as is done in the local analysis for a specific value of Re, the procedure is complicated by the number of cells that are housed in the domain. In the scenario when L is relatively large, to track an eigenmode for low α, the eigenmode associated with one cell might not be the most unstable mode. Therefore, one needs to examine the eigenmodes for the first few eigenvalues that are arranged in the descending order of their real part.The one that corresponds to α = 2 π/L is the eigenmode which consists of only one cell along the streamwise direction.

    Acknowledgement:The help from Mr.Hardik Parwana in carrying out some of thecomputationsisgratefully acknowledged.

    Anderson,E.;Bai,Z.;Bischof,C.;Blackford,S.;Demmel,J.;Dongarra,J.;Du Croz,J.;Greenbaum,A.;Hammarling,S.;McKenney,A.;Sorensen,D.(1999):LAPACKUsers’Guide.Society for Industrial and Applied Mathematics,Philadelphia,PA,third edition.

    Boiko,A.V.;Dovgal,A.V.;Grek,G.R.;Kozlov,V.V.(2012): Physics of Transitional Shear Flows.Springer-Verlag.

    Brooks,A.;Hughes,T.(1982):Streamlineupwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations.Computer Methods in Applied Mechanics and Engineering,vol.32,pp.199–259.

    Chandrasekhar,S.(1981): Hydrodynamic and hydromagnetic stability.Dover.

    Chomaz,J.-M.(2005): Global instabilities in spatially developing flows:nonnormality and nonlinearity.Annual Review of Fluid Mech.,vol.37,pp.357–392.

    Chomaz,J.M.;Huerre,P.;Redekopp,L.G.(1988):Bifurcations to local and global modes in spatially developing flows.Physical Review Letters,vol.60,pp.25–28.

    Davey,A.;Drazin,P.(1969):Thestability of poiseuilleflow in apipe.J.Fluid Mech.,vol.36,pp.209–218.

    Garg, V. K.; Rouleau, W. T. (1972): Linear spatial stability of pipe poiseuille flow. J. Fluid Mech., vol. 54, pp. 113–127.

    Gaster,M.(1962): A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability.J.Fluid Mech.,vol.14,pp.222–224.

    Huerre,P.(2000): Open shear flow instabilities.In Batchelor,G.;Moffatt,H.;Worster,M.(Eds):Perspectivesin Fluid Dynamics,pp.159–229.Cambridge.

    Huerre,P.;Monkewitz,P.(1990): Local and global instabilities in spatially developing flows.Annual Review of Fluid Mech.,vol.22,pp.473–537.

    Hughes,T.;Brooks,A.(1979): A multi-dimensional upwind scheme with no crosswind diffusion.Journal of Applied Mechanics,vol.34,pp.19–35.

    Jackson,C.(1987):A fi niteelement study of theonset of vortex shedding in flow past variously shaped bodies.J.Fluid Mech.,vol.182,pp.23.

    Mittal,S.(2000): On the performance of high aspect-ratio elements for incompressible flows.Computer Methods in Applied Mechanics and Engineering,vol.188,pp.269–287.

    Mittal,S.(2004):Three-dimensional instabilitiesin flow past a rotating cylinder.Journal of Applied Mechanics,vol.71,pp.89–95.

    Mittal,S.;Kumar,B.(2003): Flow past a rotating cylinder.Journal of Fluid Mechanics,vol.476,pp.303–334.

    Monkewitz,P.A.(1988): The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers.Physics of Fluids,vol.31,pp.999–1006.

    Morzynski, M.; Afanasiev, K.; Thiele, F. (1999): Solution of the eigenvalue problems resulting from global non-parallel flow s ta bility analysis.Comput. Meth-ods Appl. Mech. Eng., vol. 169, pp. 161.

    Morzynski,M.;Thiele,F.(1991):Numerical stability analysis of aflow about a cylinder.Z.Angew.Math.Mech.,vol.71,pp.T424.

    Navrose;Meena,J.;Mittal,S.(2015): Three-dimensional flow past a rotating cylinder.J.Fluid Mech.,vol.766,pp.28–53.

    Orr,W.M.(1907):The stability or instability of the steady motions of a perfect liquid and of a viscousliquid.Proc.R.Irish Acad.Sec.A,vol.27,pp.9–138.

    Orszag,S.A.(1971):Accurate solution of the orr-sommerfeld stability equation.J.Fluid Mech.,vol.50,pp.689–703.

    Pierrehumbert,R.T.(1985): Local and global baroclinic instability of zonally varying flow.Journal of the Atmospheric Sciences,vol.41,pp.2141–2162.

    Saraph,V.;Vasudeva,B.R.;Panikar,J.(1979):Stability of parallel flowsby the fi nite element method.Int.J.Numer.Methods Engineering,vol.17,pp.853–870.

    Schmid,P.J.;Henningson,D.S.(2001): Stability and Transition in Shear Flows.Springer-Verlag.

    Sommerfeld,A.(1908):Ein Beitrag zur hydrodynamischen Erkl?erung der turbulenten Flüessigkeitsbewegungen. Proc.Fourth Internat.Cong.Math.,Rome,vol.III,pp.116–128.

    Stewart,G.(1975):Methods of simultaneous iteration for calculating eigenvectors of matrices.In Miller,J.(Ed):Topics in Numerical Analysis II,pp.169–185.Academic Press:New York.

    Swaminathan,G.;Sahu,K.;Sameen,A.;Govindrajan,R.(2011): Global instabilities in diverging channel flows.Theor.Comput.Fluid Dyn.,vol.25,pp.53–64.

    Tezduyar,T.;Mittal,S.;Ray,S.;Shih,R.(1992):Incompressibleflow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements.Comput.Meth.Appl.Mech.Engrg,vol.95,pp.221.

    Theofilis,V.(2011):Global linear instability.Annual Review of Fluid Mech.,vol.43,pp.319–352.

    Verma,A.;Mittal,S.(2011): A new unstable mode in the wake of a circular cylinder.Phys.Fluids.,vol.23,pp.121701.

    Yang,X.;Zebib,A.(1989): Absolute and convective instability of a cylinder wake.Physicsof Fluids A,vol.1,pp.689–696.

    九九热线精品视视频播放| 一级毛片久久久久久久久女| 美女cb高潮喷水在线观看| 欧美中文日本在线观看视频| 精品一区二区三区av网在线观看| 久久精品国产亚洲av涩爱 | 精品国产三级普通话版| 嫩草影院新地址| 51国产日韩欧美| 中文字幕久久专区| 大型黄色视频在线免费观看| 久久精品综合一区二区三区| 在线看三级毛片| 青春草视频在线免费观看| 精品不卡国产一区二区三区| 日韩欧美一区二区三区在线观看| 久久久久九九精品影院| 国产成人a区在线观看| 伦理电影大哥的女人| 国产精品亚洲一级av第二区| 色在线成人网| 国产成年人精品一区二区| 综合色丁香网| 国产精品久久视频播放| 一个人观看的视频www高清免费观看| 久久韩国三级中文字幕| 最近手机中文字幕大全| 别揉我奶头~嗯~啊~动态视频| 色视频www国产| 又爽又黄a免费视频| 乱码一卡2卡4卡精品| 国产精品爽爽va在线观看网站| 91久久精品国产一区二区成人| 热99re8久久精品国产| 亚洲一区高清亚洲精品| 联通29元200g的流量卡| 伊人久久精品亚洲午夜| 国内精品美女久久久久久| 日韩av不卡免费在线播放| 日韩精品有码人妻一区| 亚洲熟妇中文字幕五十中出| 美女xxoo啪啪120秒动态图| 嫩草影院入口| 露出奶头的视频| 夜夜爽天天搞| 最近在线观看免费完整版| 国产视频内射| 亚洲在线观看片| 成人高潮视频无遮挡免费网站| 国产探花极品一区二区| 国产女主播在线喷水免费视频网站 | 精品久久国产蜜桃| 一级毛片久久久久久久久女| 免费观看的影片在线观看| 久久人人爽人人片av| 国内久久婷婷六月综合欲色啪| 欧美一级a爱片免费观看看| 精品久久久久久久人妻蜜臀av| 特级一级黄色大片| 亚洲电影在线观看av| 午夜福利在线在线| 日韩欧美一区二区三区在线观看| 成人特级av手机在线观看| 国产精品精品国产色婷婷| 美女内射精品一级片tv| 精品人妻一区二区三区麻豆 | 国产精品精品国产色婷婷| 日本撒尿小便嘘嘘汇集6| 亚洲欧美成人精品一区二区| 亚洲精品成人久久久久久| 九九热线精品视视频播放| 免费在线观看成人毛片| 日韩在线高清观看一区二区三区| 91av网一区二区| 一个人免费在线观看电影| 干丝袜人妻中文字幕| 久久精品国产亚洲av涩爱 | 欧美激情在线99| 晚上一个人看的免费电影| 亚洲最大成人中文| 少妇丰满av| 欧美在线一区亚洲| 国产色爽女视频免费观看| 成人特级黄色片久久久久久久| 在线免费观看的www视频| 男人的好看免费观看在线视频| 老师上课跳d突然被开到最大视频| 在线观看免费视频日本深夜| 哪里可以看免费的av片| 亚洲一区高清亚洲精品| 三级经典国产精品| 丰满人妻一区二区三区视频av| 亚洲av免费高清在线观看| 欧美一级a爱片免费观看看| 99久久久亚洲精品蜜臀av| 有码 亚洲区| 国产中年淑女户外野战色| 尾随美女入室| 亚洲欧美成人综合另类久久久 | 免费观看人在逋| 99在线人妻在线中文字幕| 国产人妻一区二区三区在| 午夜视频国产福利| 成人毛片a级毛片在线播放| 国产精品三级大全| 国产精品久久久久久久久免| 在线观看免费视频日本深夜| a级毛片免费高清观看在线播放| 少妇熟女欧美另类| 欧美绝顶高潮抽搐喷水| 国产精品免费一区二区三区在线| 中文字幕精品亚洲无线码一区| 尾随美女入室| 久久久久久伊人网av| 久久久色成人| 亚洲无线观看免费| 久久婷婷人人爽人人干人人爱| 一边摸一边抽搐一进一小说| 中文字幕av在线有码专区| 国产三级在线视频| 岛国在线免费视频观看| 欧美一级a爱片免费观看看| 国产乱人视频| 色播亚洲综合网| 精品久久久久久久久久久久久| 亚洲第一区二区三区不卡| 床上黄色一级片| 在线看三级毛片| 亚洲国产精品合色在线| 国产成人91sexporn| 好男人在线观看高清免费视频| 麻豆一二三区av精品| 国产一区二区三区av在线 | 免费黄网站久久成人精品| 国产亚洲精品久久久久久毛片| 久久精品影院6| 美女 人体艺术 gogo| 欧美绝顶高潮抽搐喷水| 亚洲国产欧洲综合997久久,| 女人被狂操c到高潮| 99久久九九国产精品国产免费| 日韩欧美一区二区三区在线观看| 少妇熟女欧美另类| 国产亚洲精品久久久久久毛片| 精品久久久久久久久av| 亚洲人成网站在线播| 全区人妻精品视频| 国产精品女同一区二区软件| 久久久久精品国产欧美久久久| av在线蜜桃| 俄罗斯特黄特色一大片| 国产在线精品亚洲第一网站| 精品人妻偷拍中文字幕| 久久天躁狠狠躁夜夜2o2o| 中文字幕免费在线视频6| 久久久久久久久久成人| 国产白丝娇喘喷水9色精品| 国产av一区在线观看免费| 免费无遮挡裸体视频| 国产男靠女视频免费网站| 观看美女的网站| 久久精品国产99精品国产亚洲性色| 久久亚洲国产成人精品v| 国产精品综合久久久久久久免费| 国产欧美日韩精品亚洲av| 综合色丁香网| 亚洲精品粉嫩美女一区| 欧美xxxx性猛交bbbb| 日本一本二区三区精品| 一级黄色大片毛片| 国产精品一及| 六月丁香七月| 久久久久性生活片| 欧美潮喷喷水| 在线观看66精品国产| 午夜福利在线在线| 97在线视频观看| 国产精华一区二区三区| 老司机福利观看| 搞女人的毛片| 午夜影院日韩av| 国产高清视频在线观看网站| 午夜福利视频1000在线观看| av在线老鸭窝| 日本-黄色视频高清免费观看| 久久中文看片网| 精品免费久久久久久久清纯| 五月伊人婷婷丁香| 床上黄色一级片| 欧美丝袜亚洲另类| 国内精品一区二区在线观看| 久久精品国产亚洲av香蕉五月| 欧美成人一区二区免费高清观看| 国产 一区 欧美 日韩| 中文亚洲av片在线观看爽| 波多野结衣高清作品| 毛片一级片免费看久久久久| 精品人妻一区二区三区麻豆 | 男女做爰动态图高潮gif福利片| 岛国在线免费视频观看| 国产aⅴ精品一区二区三区波| 22中文网久久字幕| 天美传媒精品一区二区| 蜜桃亚洲精品一区二区三区| 亚洲色图av天堂| 国产精品福利在线免费观看| 搡老妇女老女人老熟妇| 免费看av在线观看网站| 精品久久久久久久久久久久久| 国产极品精品免费视频能看的| 国产av不卡久久| 一进一出抽搐动态| 少妇熟女aⅴ在线视频| 一进一出好大好爽视频| 免费观看的影片在线观看| 亚洲av中文字字幕乱码综合| 国产精品亚洲一级av第二区| 国产成人精品久久久久久| 少妇丰满av| 少妇猛男粗大的猛烈进出视频 | 男女下面进入的视频免费午夜| 国产一区二区亚洲精品在线观看| 51国产日韩欧美| 国产伦在线观看视频一区| 男女做爰动态图高潮gif福利片| 一本一本综合久久| 国产精品不卡视频一区二区| 国产精品无大码| 欧美激情在线99| 欧洲精品卡2卡3卡4卡5卡区| .国产精品久久| 99久久中文字幕三级久久日本| 亚洲欧美日韩高清在线视频| 欧美三级亚洲精品| 久久精品国产亚洲av香蕉五月| 激情 狠狠 欧美| 毛片女人毛片| 观看免费一级毛片| 久久精品国产亚洲av涩爱 | 嫩草影视91久久| 麻豆国产97在线/欧美| 少妇熟女欧美另类| 人人妻人人看人人澡| 美女免费视频网站| 国产成人影院久久av| 国产成人a区在线观看| 又粗又爽又猛毛片免费看| 中国国产av一级| 国产精品一二三区在线看| 天天一区二区日本电影三级| 一进一出抽搐gif免费好疼| 亚洲av美国av| 国产亚洲av嫩草精品影院| 欧美一级a爱片免费观看看| 人妻夜夜爽99麻豆av| 久久人人爽人人爽人人片va| 国产成人aa在线观看| 少妇的逼水好多| 久久欧美精品欧美久久欧美| 久久亚洲精品不卡| 在线播放国产精品三级| 夜夜看夜夜爽夜夜摸| 亚洲av.av天堂| 午夜福利在线观看吧| 欧美极品一区二区三区四区| 国产伦一二天堂av在线观看| 大香蕉久久网| 亚洲激情五月婷婷啪啪| 国产成年人精品一区二区| 在线免费十八禁| 久久久久久久亚洲中文字幕| 成人永久免费在线观看视频| 日本免费一区二区三区高清不卡| 久久这里只有精品中国| 俺也久久电影网| 精品久久久久久久久久免费视频| 中国美白少妇内射xxxbb| 此物有八面人人有两片| 亚洲熟妇中文字幕五十中出| 色播亚洲综合网| 中文字幕精品亚洲无线码一区| 极品教师在线视频| 啦啦啦韩国在线观看视频| 久久鲁丝午夜福利片| 亚洲中文字幕一区二区三区有码在线看| 草草在线视频免费看| 十八禁网站免费在线| 一区二区三区免费毛片| 亚洲天堂国产精品一区在线| 亚洲国产高清在线一区二区三| 国产亚洲91精品色在线| 亚洲最大成人手机在线| 国产色婷婷99| 麻豆久久精品国产亚洲av| 97超视频在线观看视频| 插阴视频在线观看视频| 久久久精品大字幕| 嫩草影视91久久| 亚洲av第一区精品v没综合| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产高清在线一区二区三| 精品久久国产蜜桃| 国产69精品久久久久777片| 大香蕉久久网| 国产成年人精品一区二区| 中文字幕精品亚洲无线码一区| 大香蕉久久网| 色哟哟·www| 特大巨黑吊av在线直播| 久久久久久九九精品二区国产| 69人妻影院| 国产aⅴ精品一区二区三区波| 亚洲精品一区av在线观看| 亚洲va在线va天堂va国产| 色5月婷婷丁香| 色吧在线观看| 啦啦啦啦在线视频资源| 国产视频一区二区在线看| 美女黄网站色视频| 美女 人体艺术 gogo| 精品福利观看| 亚洲一级一片aⅴ在线观看| 91精品国产九色| 一级黄色大片毛片| 在线免费观看的www视频| 啦啦啦啦在线视频资源| 成人特级黄色片久久久久久久| 男女之事视频高清在线观看| 亚洲人成网站高清观看| 精品一区二区三区人妻视频| 一个人免费在线观看电影| 精品一区二区三区av网在线观看| 亚洲乱码一区二区免费版| 欧美在线一区亚洲| 老女人水多毛片| 男人舔奶头视频| 亚洲七黄色美女视频| 黄色欧美视频在线观看| 男人舔女人下体高潮全视频| 久久久国产成人免费| 日韩,欧美,国产一区二区三区 | 国产精品一二三区在线看| h日本视频在线播放| 成人综合一区亚洲| 国产亚洲精品久久久久久毛片| 日本免费a在线| 欧美潮喷喷水| av免费在线看不卡| 欧美极品一区二区三区四区| 天天躁夜夜躁狠狠久久av| 97热精品久久久久久| 久久精品国产亚洲av涩爱 | 综合色丁香网| av专区在线播放| 少妇被粗大猛烈的视频| 精品人妻熟女av久视频| 亚洲经典国产精华液单| 欧美性猛交黑人性爽| 亚洲第一电影网av| 99国产极品粉嫩在线观看| 最近中文字幕高清免费大全6| 亚洲精品乱码久久久v下载方式| ponron亚洲| 亚洲国产精品成人综合色| 国产精品人妻久久久久久| 精品国产三级普通话版| 国产精品久久久久久av不卡| 特级一级黄色大片| 国产欧美日韩精品亚洲av| 中文在线观看免费www的网站| 五月伊人婷婷丁香| 国产中年淑女户外野战色| 在线天堂最新版资源| 欧美激情在线99| 中文资源天堂在线| 国产成人福利小说| 99久久成人亚洲精品观看| 亚洲精品在线观看二区| 久久久久九九精品影院| 日本熟妇午夜| 十八禁网站免费在线| 亚洲国产精品久久男人天堂| 波多野结衣高清无吗| 久久天躁狠狠躁夜夜2o2o| 人人妻人人看人人澡| 精品一区二区免费观看| 欧美色欧美亚洲另类二区| 全区人妻精品视频| 一级毛片久久久久久久久女| 又黄又爽又刺激的免费视频.| 男人舔奶头视频| 最后的刺客免费高清国语| 中国美白少妇内射xxxbb| 床上黄色一级片| 国产乱人偷精品视频| 美女大奶头视频| 99在线视频只有这里精品首页| 小蜜桃在线观看免费完整版高清| 波多野结衣高清无吗| 午夜老司机福利剧场| 伊人久久精品亚洲午夜| 国国产精品蜜臀av免费| 成人亚洲精品av一区二区| 悠悠久久av| 久久久久国内视频| 国产精品国产高清国产av| 欧美性感艳星| a级一级毛片免费在线观看| 精品乱码久久久久久99久播| 欧美成人精品欧美一级黄| 99久久久亚洲精品蜜臀av| 一边摸一边抽搐一进一小说| 黄色配什么色好看| 长腿黑丝高跟| 在线播放国产精品三级| 国产精品无大码| 别揉我奶头~嗯~啊~动态视频| 亚洲丝袜综合中文字幕| 国产av麻豆久久久久久久| 99热网站在线观看| 色视频www国产| 91午夜精品亚洲一区二区三区| videossex国产| 91狼人影院| 日韩欧美三级三区| 国产精品永久免费网站| 一级a爱片免费观看的视频| 在线免费观看不下载黄p国产| 晚上一个人看的免费电影| 亚洲中文字幕日韩| 日日干狠狠操夜夜爽| 精品国内亚洲2022精品成人| 热99在线观看视频| 欧美色欧美亚洲另类二区| 日韩一本色道免费dvd| 国内精品宾馆在线| 在线观看免费视频日本深夜| 成年女人永久免费观看视频| 99久久无色码亚洲精品果冻| 可以在线观看毛片的网站| 日本 av在线| 欧美极品一区二区三区四区| 午夜福利高清视频| 国产高清有码在线观看视频| 国产成人a∨麻豆精品| 人妻丰满熟妇av一区二区三区| 搡老岳熟女国产| 日韩 亚洲 欧美在线| 欧美日韩一区二区视频在线观看视频在线 | 精品午夜福利在线看| 久久这里只有精品中国| 国产成人aa在线观看| 亚洲人成网站在线播放欧美日韩| 日本免费a在线| 亚洲人成网站在线观看播放| 波多野结衣高清作品| 中文在线观看免费www的网站| 欧美bdsm另类| 欧美3d第一页| 日韩av不卡免费在线播放| 日本一二三区视频观看| 黄色一级大片看看| 少妇裸体淫交视频免费看高清| 日韩欧美在线乱码| 亚洲熟妇熟女久久| 亚洲第一电影网av| 久久亚洲精品不卡| 久久人人爽人人片av| 国产av在哪里看| 欧美另类亚洲清纯唯美| 五月玫瑰六月丁香| 久久久久免费精品人妻一区二区| 夜夜爽天天搞| 国产成人精品久久久久久| 一级黄片播放器| 色噜噜av男人的天堂激情| 一本精品99久久精品77| 亚洲无线在线观看| 99久久九九国产精品国产免费| 免费观看的影片在线观看| 此物有八面人人有两片| 亚洲久久久久久中文字幕| 天堂动漫精品| 中文资源天堂在线| 97热精品久久久久久| 国内少妇人妻偷人精品xxx网站| 性欧美人与动物交配| 免费av毛片视频| 国产伦精品一区二区三区四那| 免费大片18禁| 你懂的网址亚洲精品在线观看 | 91久久精品国产一区二区三区| 日本熟妇午夜| 亚洲av免费高清在线观看| av在线观看视频网站免费| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av美国av| 欧美日韩国产亚洲二区| 插阴视频在线观看视频| 亚洲精品在线观看二区| 亚洲国产精品国产精品| 欧美性猛交黑人性爽| 少妇高潮的动态图| 精品欧美国产一区二区三| 人人妻人人澡欧美一区二区| 国内久久婷婷六月综合欲色啪| 九色成人免费人妻av| 搞女人的毛片| 99久国产av精品国产电影| 欧美又色又爽又黄视频| 国产精品永久免费网站| 国产色爽女视频免费观看| 亚洲精品色激情综合| 久久久a久久爽久久v久久| 久久中文看片网| 国产综合懂色| 久久中文看片网| av在线老鸭窝| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 免费不卡的大黄色大毛片视频在线观看 | 如何舔出高潮| av国产免费在线观看| 啦啦啦啦在线视频资源| 午夜福利18| 亚洲精品456在线播放app| 一级a爱片免费观看的视频| 精品日产1卡2卡| 午夜a级毛片| 精品久久久久久久久久久久久| 美女黄网站色视频| 黄色欧美视频在线观看| 亚洲内射少妇av| 波多野结衣巨乳人妻| 欧美性感艳星| 人妻制服诱惑在线中文字幕| 卡戴珊不雅视频在线播放| 变态另类成人亚洲欧美熟女| 最近手机中文字幕大全| 国产爱豆传媒在线观看| 欧美高清性xxxxhd video| 国产一区二区亚洲精品在线观看| 三级经典国产精品| 非洲黑人性xxxx精品又粗又长| 九九久久精品国产亚洲av麻豆| 亚洲人成网站在线观看播放| 婷婷精品国产亚洲av| 欧美又色又爽又黄视频| 老师上课跳d突然被开到最大视频| 十八禁网站免费在线| 日韩,欧美,国产一区二区三区 | 校园人妻丝袜中文字幕| 精品一区二区三区人妻视频| 午夜福利成人在线免费观看| 99在线人妻在线中文字幕| 少妇高潮的动态图| 热99re8久久精品国产| 亚洲美女视频黄频| 免费av观看视频| 最近手机中文字幕大全| 亚洲精品日韩av片在线观看| 午夜精品一区二区三区免费看| 91在线精品国自产拍蜜月| 成人av一区二区三区在线看| 蜜桃久久精品国产亚洲av| 欧美性猛交黑人性爽| 国产老妇女一区| 啦啦啦啦在线视频资源| 欧美精品国产亚洲| 亚洲av五月六月丁香网| 久久精品夜色国产| 久久精品国产清高在天天线| 欧美日韩国产亚洲二区| 亚洲欧美日韩高清专用| 日韩精品有码人妻一区| 国产精品人妻久久久久久| 男插女下体视频免费在线播放| 午夜影院日韩av| 日韩大尺度精品在线看网址| 欧美激情在线99| 欧美+亚洲+日韩+国产| 中文字幕人妻熟人妻熟丝袜美| 黄色视频,在线免费观看| 人人妻人人澡人人爽人人夜夜 | 国内精品美女久久久久久| 午夜福利成人在线免费观看| 成人特级av手机在线观看| 九九在线视频观看精品| 一级av片app| 变态另类丝袜制服| 少妇高潮的动态图| 麻豆乱淫一区二区| 亚洲国产欧洲综合997久久,| 成年版毛片免费区| 麻豆乱淫一区二区| 国产男人的电影天堂91| 老熟妇乱子伦视频在线观看| aaaaa片日本免费| 深夜精品福利| 看十八女毛片水多多多| 97超级碰碰碰精品色视频在线观看| 国产高清视频在线观看网站| 三级经典国产精品| 日本黄色片子视频| 亚洲内射少妇av| 欧美日韩综合久久久久久| 亚洲精品456在线播放app| 国国产精品蜜臀av免费| 在线天堂最新版资源| 色av中文字幕| 久久久久久大精品| 亚洲欧美精品自产自拍| 高清毛片免费看| 成人漫画全彩无遮挡| 亚洲欧美精品自产自拍|