• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Control of Nonlinear Discrete-time Systems Based on Compound Neural Networks*

    2009-05-14 03:04:30ZHANGYan張燕LIANGXiuxia梁秀霞YANGPeng楊鵬CHENZengqiang陳增強(qiáng)andYUANZhuzhi袁著祉
    關(guān)鍵詞:張燕楊鵬

    ZHANG Yan (張燕), LIANG Xiuxia (梁秀霞), YANG Peng (楊鵬), CHEN Zengqiang (陳增強(qiáng)) and YUAN Zhuzhi (袁著祉)

    ?

    Modeling and Control of Nonlinear Discrete-time Systems Based on Compound Neural Networks*

    ZHANG Yan (張燕)1,**, LIANG Xiuxia (梁秀霞)1, YANG Peng (楊鵬)1, CHEN Zengqiang (陳增強(qiáng))2and YUAN Zhuzhi (袁著祉)2

    1Department of Automation, Hebei University of Technology, Tianjin 300130, China2Department of Automation, Nankai University, Tianjin 300071, China

    An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.

    adaptive inverse control, compound neural network, process control, reaction engineering, multi-input multi-output nonlinear system

    1 INTRODUCTION

    The other approach is by using a linear state observer and an error compensator to approximate the error between the linear model and the process based on NN. The nonlinear dynamics are inverted directly [14]. The extension of output feedback employing a high-gain observer is given [15]. An error observer approach with-modification and a filter with nonlinearly parameterized NN and modification are introduced to decrease oscillation. A linear dynamic compensator is designed to stabilize the linearized system [16]. A temperature controller with Takagi- Sugeno-Kang-type recurrent fuzzy network (TRFN) designed by direct inverse modeling approach is proposed [17]. The recurrent property of TRFN enables it to be directly applied to a dynamic plant control without a priori knowledge of the plant order. An application of neural networks based additive nonlinear autoregressive exogenous (NNANARX) structure for modeling of nonlinear MIMO systems is presented [18]. Then, the problem of the inverse function calculation in the control algorithm is solved and applied to control nonlinear MIMO systems. Most of these approaches are limited to system in strict-feedback form, and accuracy of the plant model is critical when an inverse is used.

    Motivated by this, a novel NN based adaptive inverse control approach is proposed for both SISO and MIMO nonlinear nonaffine discrete systems in this paper. A compound neural network (CNN) is constructed to model the system and an adaptive inverse control strategy is presented. Simulation results can demonstrate the effectiveness and advantages.

    2 SYSTEM DESCRIPTION AND PRELIMINARIES

    2.1 System representation and identification

    The following SISO nonaffine nonlinear discrete- time system is considered [16]:

    For convenience of analysis, the future output is determined by a number of past observations of the inputs and outputs. An equivalent input-output representation can be written as the nonlinear auto regressive moving average with exogenous inputs (NARMAX) system:

    Classically this controlled system can be realized by the NN-based model at moment:

    2.2 Compound neural network

    To identify the system shown in Eq. (2), many kinds of NNs can be used. Here, in order to get an inverse controller directly and avoid using another control neural network, a compound neural network (CNN) is proposed. Its structure is shown in Fig. 1. It is composed of two parts: a two-layer linear feedforward neural network (LFNN) and a recurrent neural network (RNN). The output of the identifier can be expressed as:

    Figure 1 The structure of compound neural network

    The identifier output is rewritten as follows:

    In the approximation process, suppose() is the weight matrix of the whole CNN. It is trained by minimizing the following index function.

    2.3 Error correction

    3 Adaptive inverse controller

    Unlike the general NARMAX model, this compound structure can be easily controlled by the dynamic feedback theory. If the model is given by Eq. (2), the control signal is calculated by the following equation:

    From Eq. (11), the desired output feedback is given by

    Figure 2 Control system architecture

    Step 1 Initialize the structure of the compound neural network. Select the relative coefficient: the learning rate, the initial weight vector of CNN, and the error proportional coefficient.

    Step 3 Put the trained CNN into the closed loop control, and then, the control signal at timecan be calculate by Eq. (13).

    Step 4 Update the CNN weight vector by Eq. (9).

    4 MIMO system inverse controller

    The controlled nonlinear MIMO system withinputs andoutputs is considered. The controlled system can be represented by the NARMAX model as follows:

    Similarly as SISO nonlinear system, a compound neural network can be used to approximate the MIMO NARMAX model. The input vector of the LFNN and RNN are defined as:

    The output of CNN can be written as follows:

    In the approximation process,() is supposed to be the weight matrix of the whole CNN. The gradient decent method is used to train().

    In the control process, as SISO system, the error at timeis introduced to predict the output of the system. The predictive output can be written as:

    Because the current control signal() is one part of the input vector of LFNN in the CNN, the control law for the MIMO case can be determined straightforwardly under the inverse control thought:

    5 SIMULATION RESULTS

    Example 1 A liquid level system is described by the following equations [16]:

    The NARMAX model of the process should be written as:

    Figure 3 CNN training error

    From Fig. 3, it can be seen that the CNN has the accurate identification capability. The nonlinear model of the plant was placed into the inverse control loop. The initial conditions of the plant are set to random variables. Here, the parameters of the CNN used in the inverse control are the same as in the CNN training. The error proportional coefficientis set as 0.7. Fig. 4 presents the control results and the control signal in the process obtained by the proposed inverse control method for tracking square signal. It shows a good tracking result.

    Example 2 Isothermal reactor [20]

    The following reaction occurs in an ideal stirred tank reactor:

    where A is in excess. The reaction rate equation is given by the following equation:

    The cross-sectional area of the tank is 1.0 m2and the sampling time is 1.0 min. After simplification, the model becomes:

    In the process of the model for the MIMO nonlinear system, 12 nodes are chosen in the hidden layer of RNN for the CNN identifier. First, the following input signals are used to approximate the MIMO nonlinear discrete systems:

    In this case, the learning rateis selected as 0.2. From Fig. 5, it can be seen that the CNN model can describethe MIMO nonlinear system with high accuracy.

    Figure 5 Identification results of Example 2

    Second, the trained CNN is put into the closed-loop inverse control. The control results are illustrated in Fig. 6. It shows that the system can track the reference signals with acceptable approximation errors. The proposed CNN inverse control method shows good trackingperformance for the MIMO nonlinear chemical system.

    6 CONCLUSIONS

    An adaptive inverse control scheme has been proposed in this paper. To use inverse theory directly, a new compound neural network is proposed. The linear feed-forward neural network is used to approximate the nonlinear controlled process. The recurrent neural network is used to minimize the error between the LFNN and the real nonlinear process. Based on this kind of neural network to approximate the controlled process, an adaptive inverse control scheme can be directly implemented. During this process, an error correction method is proposed to reduce the predictive error. The less computation work is needed since no further training task is required for the neural inverse controller in the I/O domain. This scheme can be used to control both nonlinear dynamic discrete-time SISO and MIMO systems in real time. Simulation results exploit that the proposed scheme is effective and practical.

    Figure 6 Tracking performance of Example 2

    NOMENCLATURE

    the error proportional coefficient

    Bconcentration of B in the reactor example

    error between the system output and the identifier

    a smooth nonlinear function vector

    a smooth nonlinear function

    Ea smooth linear function vector

    Na smooth nonlinear function vector

    La smooth linear function

    Na smooth nonlinear function

    a sigmodal activation function

    Lthe input vector of the LFNN in CNN

    Nthe input vector of the RNN in CNN

    the number of layers of RNN

    the degree of system input

    the degree of system output

    a smooth nonlinear function

    the system input

    weight matrix of CNN

    the system output

    Lthe LFNN’s output

    Nthe RNN’s output

    the learning rate for the weight vector

    Subscripts

    B the tank B

    L the LFNN in the CNN

    N the RNN in the CNN

    1 Fu, Y., Chai, T.Y., “Nonlinear multivariable adaptive control using multiple models and neural Networks”,, 43, 1101-1110 (2007).

    2 Zhang, Y., Chen, Z.Q., Yang, P., Yuan, Z.Z., “Multivariable nonlinear proportional-integral-derivative decoupling control based on recurrent neural net works”,...., 12 (5), 677-681 (2004).

    3 Wang, Z., Chen, Z.Z., Sun, Q.L., Yuan, Z.Z., “Multivariable decoupling predictive control based on QFT theory and application in CSTR chemical process”,...., 14 (6), 765-769 (2006).

    4 Zhang, Q., Li, S., “Performance monitoring and diagnosis of multivariable model predictive control using statistical analysis”,...., 14 (2), 207-215 (2006).

    5 Su, B.L, Chen, Z.Z., Yuan, Z.Z., “Multivariable decoupling predictive control with input constraints and its application on chemical process”,...., 14 (2), 216-222 (2006).

    6 Widrow, B., W alach, E., Adaptive Inverse Control, Prentice Hall, New Jersey, US (1986).

    7 Alolinwi, B., Khalil, H.k., “Robust adaptive output feedback control of nonlinear systems without persistence of excitation condition”,, 33, 2025-2032 ( 1997).

    8 Tong, S.C., Chai, T.Y., “Direct adaptive fuzzy output feedback control for uncertain nonlinear systems”,, 19 (3), 257-261 (2004).

    9 Ge, S.S., Li, Y., Lee, T.H., “daptive NN control for a class of strict-feedback discrete-time nonlinear systems”, 39 (5), 807-819 (2003).

    10 Miguel, A.B., Ton, J.J., Van, D.B., “Predictive control based on neural network model with I/O feedback linearization”,.., 72 (17), 1358-1554 (1999).

    11 Song, Y., Chen, Z.Q., Yuan, Z.Z., “Neural network nonlinear predictive control based on tent-map chaos optimization”,...., 15 (4), 539-544 (2007).

    12 Deng, H., Li, H.X., “A novel neural Approximate inverse control for unknown nonlinear discrete dynamical Systems”,.,,:, 35 (1), 115-123 (2005).

    13 He, P., Jagannathan, S., “Reinforcement learning-based output feedback control of nonlinear systems with input constraints”,.,,, 35 (1), 150-154 (2005).

    14 Hovakimyan, N., Nardi, F., Calise, A.J., “A novel error observer-based adaptive output feedback approach for control of uncertain systems”,., 47 (8), 1310-1314 (2002).

    15 Kim, N., Calise, A.J., “Several extensions in methods for adaptive output feedback control”,., 18 (2), 482-494 (2007).

    16 Zhai, L.F., Chai, T.Y., Ge, S.S., “Stable adaptive neural network control of nonaffine nonlinear discrete-time systems and application”, In: 22th IEEE International Symposium on Intelligent Control, Singapore, 602-607 (2007).

    17 Juang, C.F., Chen, J.S., “A recurrent fuzzy-network-based inverse modelling method for a temperature system control”,.,,, 37 (3), 410-417 (2007).

    18 Petlenkov, E., “NN-ANARX structure based dynamic output feedback linearization for control of nonlinear MIMO systems”, In: Mediterranean Conference on Control and Automation, Athens, Greece, T22-009 (2007).

    19 Delgado, A., “Dynamic recurrent neural networks for system identification and control”,, 142 (4), 307-314 (1995).

    20 Li, W.C., Biegler, L.T., “Process control strategies for constrained nonlinear system”,...., 27, 1611-1622 (1988).

    2008-06-24,

    2009-03-20.

    the National Natural Science Foundation of China (60575009, 60574036).

    ** To whom correspondence should be addressed. E-mail: yzhangzz@yahoo.com.cn

    猜你喜歡
    張燕楊鵬
    張燕副教授
    呼喚生命
    THE QUASI-BOUNDARY VALUE METHOD FOR IDENTIFYING THE INITIAL VALUE OF THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION ?
    稱呼
    名字
    決策探索(2018年1期)2018-11-19 13:51:16
    FuzzinessinEnglishAdvertisingTranslation
    Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target
    搶紅包
    故事會(huì)(2017年1期)2017-01-05 16:13:03
    海邊的少年
    海峽影藝(2014年4期)2014-12-04 03:01:46
    丟了名字
    xxx96com| 日韩精品免费视频一区二区三区| 日韩欧美在线二视频| 很黄的视频免费| 最近在线观看免费完整版| av在线天堂中文字幕| 国产av不卡久久| 色综合亚洲欧美另类图片| 精品人妻1区二区| 亚洲成人免费电影在线观看| 日日夜夜操网爽| 中文在线观看免费www的网站 | 亚洲久久久国产精品| 日韩欧美国产一区二区入口| 国语自产精品视频在线第100页| 国产成人一区二区三区免费视频网站| 国产精品自产拍在线观看55亚洲| 黄片小视频在线播放| 欧美一区二区精品小视频在线| 久久久久久九九精品二区国产 | 亚洲色图av天堂| 成人18禁高潮啪啪吃奶动态图| 人妻久久中文字幕网| 97超级碰碰碰精品色视频在线观看| 久99久视频精品免费| 又大又爽又粗| www.www免费av| 俺也久久电影网| 黑丝袜美女国产一区| 黄色视频不卡| 18禁国产床啪视频网站| 啦啦啦免费观看视频1| 国产精品免费一区二区三区在线| 黄片小视频在线播放| 人人妻人人澡欧美一区二区| 国产99白浆流出| 国产一级毛片七仙女欲春2 | 午夜福利在线观看吧| 亚洲精华国产精华精| 啪啪无遮挡十八禁网站| 久久精品国产亚洲av高清一级| 久久亚洲真实| 成人午夜高清在线视频 | 亚洲精品av麻豆狂野| 亚洲 欧美一区二区三区| 夜夜躁狠狠躁天天躁| 看免费av毛片| 亚洲 欧美一区二区三区| 久久国产精品人妻蜜桃| 日本在线视频免费播放| 国产日本99.免费观看| 很黄的视频免费| 人人妻人人澡人人看| 后天国语完整版免费观看| 欧美在线一区亚洲| 亚洲无线在线观看| 久久久久久久午夜电影| 老汉色av国产亚洲站长工具| 国产成人系列免费观看| 亚洲成人久久性| 白带黄色成豆腐渣| 色综合婷婷激情| 精品国产乱子伦一区二区三区| 国产av一区在线观看免费| 99热这里只有精品一区 | 可以免费在线观看a视频的电影网站| 很黄的视频免费| 国产精华一区二区三区| 黄色视频,在线免费观看| 亚洲全国av大片| 精品高清国产在线一区| 日本一区二区免费在线视频| 夜夜夜夜夜久久久久| 亚洲欧美激情综合另类| 男女视频在线观看网站免费 | 久久久久久国产a免费观看| 亚洲欧美一区二区三区黑人| 国产精品98久久久久久宅男小说| www日本在线高清视频| 国产熟女xx| 女人爽到高潮嗷嗷叫在线视频| 可以在线观看毛片的网站| 桃色一区二区三区在线观看| 给我免费播放毛片高清在线观看| 精品免费久久久久久久清纯| 久久久国产精品麻豆| 久久天堂一区二区三区四区| 国产不卡一卡二| 最好的美女福利视频网| 国产精品久久久av美女十八| 亚洲国产精品sss在线观看| 美女大奶头视频| 国产亚洲精品第一综合不卡| 一区二区三区高清视频在线| 亚洲国产精品合色在线| 窝窝影院91人妻| 国产99久久九九免费精品| 精品高清国产在线一区| 国产又黄又爽又无遮挡在线| 国内精品久久久久久久电影| 十分钟在线观看高清视频www| tocl精华| 三级毛片av免费| 亚洲成a人片在线一区二区| 国产日本99.免费观看| 在线观看免费午夜福利视频| 麻豆国产av国片精品| 国产国语露脸激情在线看| 免费在线观看亚洲国产| 国产区一区二久久| 少妇的丰满在线观看| 欧美成人免费av一区二区三区| 日本在线视频免费播放| 国产aⅴ精品一区二区三区波| 久久久久国产一级毛片高清牌| 国产视频内射| 中文字幕精品亚洲无线码一区 | 男人的好看免费观看在线视频 | 精品久久久久久久毛片微露脸| 色在线成人网| 国产成人系列免费观看| 欧美亚洲日本最大视频资源| 国内精品久久久久精免费| 可以在线观看毛片的网站| 99国产精品99久久久久| 在线观看舔阴道视频| 99国产精品99久久久久| 国产精品亚洲美女久久久| 熟妇人妻久久中文字幕3abv| 亚洲一区中文字幕在线| 日韩中文字幕欧美一区二区| 又紧又爽又黄一区二区| 一区二区三区高清视频在线| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲av香蕉五月| 久久国产精品男人的天堂亚洲| 久久精品夜夜夜夜夜久久蜜豆 | 一本大道久久a久久精品| 日韩国内少妇激情av| 一级黄色大片毛片| 动漫黄色视频在线观看| 免费看a级黄色片| 少妇被粗大的猛进出69影院| 国产又爽黄色视频| 手机成人av网站| 色综合欧美亚洲国产小说| 日本 av在线| 国产精品永久免费网站| 中文字幕精品免费在线观看视频| 99精品在免费线老司机午夜| 一级毛片精品| 欧美日韩精品网址| 午夜视频精品福利| 女人高潮潮喷娇喘18禁视频| 国产精品久久久人人做人人爽| 亚洲人成77777在线视频| 麻豆av在线久日| 精品一区二区三区四区五区乱码| 欧美中文综合在线视频| 日日爽夜夜爽网站| av免费在线观看网站| 999精品在线视频| 久久欧美精品欧美久久欧美| 国产一卡二卡三卡精品| 琪琪午夜伦伦电影理论片6080| 欧美zozozo另类| 91成年电影在线观看| 亚洲精品一区av在线观看| 国产免费av片在线观看野外av| 亚洲,欧美精品.| av有码第一页| 久久人妻福利社区极品人妻图片| 1024视频免费在线观看| 久久精品91无色码中文字幕| 精品一区二区三区四区五区乱码| 国产精品98久久久久久宅男小说| 欧美一区二区精品小视频在线| av在线播放免费不卡| 日本精品一区二区三区蜜桃| 香蕉丝袜av| 男人操女人黄网站| 久久精品国产99精品国产亚洲性色| 国产激情欧美一区二区| 亚洲自偷自拍图片 自拍| 99久久久亚洲精品蜜臀av| 少妇被粗大的猛进出69影院| 叶爱在线成人免费视频播放| 长腿黑丝高跟| 欧美性猛交╳xxx乱大交人| 午夜亚洲福利在线播放| 1024视频免费在线观看| 午夜精品久久久久久毛片777| 99久久综合精品五月天人人| 日韩欧美在线二视频| 欧美乱码精品一区二区三区| 国产精品98久久久久久宅男小说| ponron亚洲| 白带黄色成豆腐渣| 国产一区二区三区视频了| 丝袜在线中文字幕| 中文字幕人成人乱码亚洲影| 在线天堂中文资源库| 黄频高清免费视频| 一进一出抽搐动态| 午夜久久久在线观看| 中文字幕av电影在线播放| 亚洲色图av天堂| 婷婷精品国产亚洲av在线| 一a级毛片在线观看| 亚洲av日韩精品久久久久久密| 亚洲精华国产精华精| 久久精品国产99精品国产亚洲性色| 淫妇啪啪啪对白视频| 不卡av一区二区三区| 91字幕亚洲| 99在线人妻在线中文字幕| 啪啪无遮挡十八禁网站| 一级作爱视频免费观看| 亚洲精品国产一区二区精华液| 免费观看精品视频网站| 激情在线观看视频在线高清| 人人妻人人澡欧美一区二区| 亚洲精品国产精品久久久不卡| 亚洲一码二码三码区别大吗| 欧美人与性动交α欧美精品济南到| 亚洲一区高清亚洲精品| 免费在线观看日本一区| 在线观看舔阴道视频| 国产乱人伦免费视频| 精品人妻1区二区| 亚洲精品美女久久久久99蜜臀| 国产成人啪精品午夜网站| bbb黄色大片| 精品第一国产精品| 欧美乱码精品一区二区三区| 日韩欧美 国产精品| 免费在线观看完整版高清| 欧美成人性av电影在线观看| 久久香蕉激情| 首页视频小说图片口味搜索| 国产aⅴ精品一区二区三区波| 不卡av一区二区三区| 人人妻,人人澡人人爽秒播| 老汉色av国产亚洲站长工具| 免费搜索国产男女视频| 亚洲欧美激情综合另类| 中文字幕久久专区| 久久国产精品影院| 午夜福利欧美成人| 91成年电影在线观看| 国产真实乱freesex| 高清在线国产一区| 在线十欧美十亚洲十日本专区| 亚洲一区二区三区色噜噜| 男女做爰动态图高潮gif福利片| 国产黄a三级三级三级人| www.www免费av| 中出人妻视频一区二区| 99久久99久久久精品蜜桃| 黄网站色视频无遮挡免费观看| 午夜a级毛片| 欧美zozozo另类| 成年免费大片在线观看| 男男h啪啪无遮挡| 一区二区三区高清视频在线| 哪里可以看免费的av片| 俺也久久电影网| 丰满人妻熟妇乱又伦精品不卡| 免费无遮挡裸体视频| 2021天堂中文幕一二区在线观 | 欧美激情高清一区二区三区| 国产精品美女特级片免费视频播放器 | 成人国语在线视频| 一区二区三区国产精品乱码| 亚洲人成网站在线播放欧美日韩| 欧美黑人精品巨大| 亚洲欧美一区二区三区黑人| 欧美一级毛片孕妇| 又黄又粗又硬又大视频| 国产高清视频在线播放一区| 在线免费观看的www视频| 俺也久久电影网| 精品久久久久久久久久久久久 | 午夜福利高清视频| 日本精品一区二区三区蜜桃| tocl精华| 国产精品电影一区二区三区| 亚洲全国av大片| 国产黄a三级三级三级人| 桃红色精品国产亚洲av| 国产人伦9x9x在线观看| 亚洲va日本ⅴa欧美va伊人久久| 日本五十路高清| 国产精品av久久久久免费| 麻豆成人午夜福利视频| 99精品在免费线老司机午夜| 亚洲 国产 在线| 欧美日韩中文字幕国产精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久青草综合色| 悠悠久久av| 亚洲av美国av| 99在线视频只有这里精品首页| 午夜免费鲁丝| 欧美亚洲日本最大视频资源| 亚洲国产欧洲综合997久久, | 黄网站色视频无遮挡免费观看| 深夜精品福利| 国产欧美日韩一区二区精品| 热re99久久国产66热| 日韩精品青青久久久久久| 成人亚洲精品一区在线观看| 欧美色欧美亚洲另类二区| 在线观看舔阴道视频| 国产野战对白在线观看| 一夜夜www| 亚洲国产中文字幕在线视频| 麻豆成人av在线观看| 国产成年人精品一区二区| 欧美乱妇无乱码| 欧美最黄视频在线播放免费| 国产爱豆传媒在线观看 | 黄色视频,在线免费观看| 别揉我奶头~嗯~啊~动态视频| 午夜免费鲁丝| www.自偷自拍.com| 一个人免费在线观看的高清视频| 91麻豆av在线| 日韩精品中文字幕看吧| 97人妻精品一区二区三区麻豆 | 免费看日本二区| 777久久人妻少妇嫩草av网站| 宅男免费午夜| 欧美日韩福利视频一区二区| 中文字幕久久专区| 欧美又色又爽又黄视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美另类亚洲清纯唯美| 成人国产综合亚洲| 少妇被粗大的猛进出69影院| 欧美乱妇无乱码| 人人妻人人看人人澡| 丁香欧美五月| 欧美成人性av电影在线观看| svipshipincom国产片| 在线观看免费视频日本深夜| 久久婷婷人人爽人人干人人爱| 桃红色精品国产亚洲av| 亚洲av成人一区二区三| 国产一区在线观看成人免费| 成年人黄色毛片网站| 99riav亚洲国产免费| 国产亚洲欧美精品永久| 777久久人妻少妇嫩草av网站| 国产精品,欧美在线| 特大巨黑吊av在线直播 | 欧美成人性av电影在线观看| 日日夜夜操网爽| 午夜福利一区二区在线看| 十分钟在线观看高清视频www| 99久久久亚洲精品蜜臀av| 人成视频在线观看免费观看| 91在线观看av| 欧美激情 高清一区二区三区| 婷婷丁香在线五月| 欧美一区二区精品小视频在线| av视频在线观看入口| 真人做人爱边吃奶动态| 日韩 欧美 亚洲 中文字幕| av福利片在线| 欧美精品啪啪一区二区三区| 在线免费观看的www视频| x7x7x7水蜜桃| 999精品在线视频| 中国美女看黄片| 在线十欧美十亚洲十日本专区| 中文字幕人妻丝袜一区二区| 国产成人一区二区三区免费视频网站| 女警被强在线播放| 老司机午夜福利在线观看视频| 免费无遮挡裸体视频| 久久久久久久久久黄片| 黄色片一级片一级黄色片| 国产精品野战在线观看| 日韩成人在线观看一区二区三区| 亚洲av熟女| 精品久久久久久久久久免费视频| 男人舔奶头视频| 99久久无色码亚洲精品果冻| 日本一本二区三区精品| av天堂在线播放| 亚洲精华国产精华精| 50天的宝宝边吃奶边哭怎么回事| 男人舔奶头视频| 国产成人精品无人区| 两个人看的免费小视频| 免费看a级黄色片| 18禁裸乳无遮挡免费网站照片 | 久久热在线av| 精品一区二区三区视频在线观看免费| 久久久久久久午夜电影| 特大巨黑吊av在线直播 | 久久精品成人免费网站| 色综合婷婷激情| 国产三级在线视频| 麻豆av在线久日| 黑人操中国人逼视频| 久久99热这里只有精品18| 日本一区二区免费在线视频| 国产乱人伦免费视频| 国产黄a三级三级三级人| 久久久国产成人精品二区| 欧美三级亚洲精品| 国产伦人伦偷精品视频| 亚洲在线自拍视频| 亚洲欧美日韩无卡精品| 欧美乱妇无乱码| 超碰成人久久| 亚洲国产欧洲综合997久久, | 少妇粗大呻吟视频| 久久久久久久精品吃奶| 久久国产亚洲av麻豆专区| 嫩草影视91久久| 亚洲精品中文字幕一二三四区| www.精华液| 91字幕亚洲| 真人一进一出gif抽搐免费| 免费观看精品视频网站| 国产又爽黄色视频| 久久性视频一级片| 欧美日本视频| 宅男免费午夜| 日韩一卡2卡3卡4卡2021年| 欧美日韩精品网址| 国产成年人精品一区二区| 两人在一起打扑克的视频| 亚洲精品在线美女| 一个人免费在线观看的高清视频| 免费看日本二区| 老汉色∧v一级毛片| 性色av乱码一区二区三区2| 日韩大尺度精品在线看网址| 97人妻精品一区二区三区麻豆 | 欧美成人免费av一区二区三区| avwww免费| 亚洲aⅴ乱码一区二区在线播放 | 首页视频小说图片口味搜索| 大型黄色视频在线免费观看| 1024手机看黄色片| 亚洲人成网站在线播放欧美日韩| 欧美成人性av电影在线观看| 国产亚洲精品综合一区在线观看 | 特大巨黑吊av在线直播 | 午夜福利在线观看吧| 亚洲一区二区三区不卡视频| 十八禁网站免费在线| 日本在线视频免费播放| 欧美日本亚洲视频在线播放| 精品熟女少妇八av免费久了| 久热爱精品视频在线9| 性色av乱码一区二区三区2| 一级毛片高清免费大全| 精品乱码久久久久久99久播| 亚洲一区高清亚洲精品| 精品国产超薄肉色丝袜足j| 啪啪无遮挡十八禁网站| 欧美乱色亚洲激情| 在线天堂中文资源库| 伦理电影免费视频| 波多野结衣av一区二区av| 亚洲一卡2卡3卡4卡5卡精品中文| 18禁黄网站禁片免费观看直播| 丝袜美腿诱惑在线| 国产成人av激情在线播放| 国产又色又爽无遮挡免费看| 亚洲免费av在线视频| 老熟妇仑乱视频hdxx| 99精品久久久久人妻精品| 国产99白浆流出| 老鸭窝网址在线观看| 欧美日本视频| 露出奶头的视频| 日本一本二区三区精品| 巨乳人妻的诱惑在线观看| 美女 人体艺术 gogo| 亚洲精品在线美女| 免费看十八禁软件| 成人国产综合亚洲| av在线天堂中文字幕| 真人做人爱边吃奶动态| 香蕉av资源在线| 成人亚洲精品av一区二区| 国产男靠女视频免费网站| 操出白浆在线播放| 亚洲精品国产区一区二| 这个男人来自地球电影免费观看| 欧美性长视频在线观看| 欧美性猛交╳xxx乱大交人| 黑人操中国人逼视频| 久久久国产精品麻豆| 可以在线观看毛片的网站| 深夜精品福利| 欧美久久黑人一区二区| av欧美777| 国产精品亚洲av一区麻豆| 免费看a级黄色片| 国产国语露脸激情在线看| 国产99白浆流出| 午夜免费激情av| 一级黄色大片毛片| 最近最新中文字幕大全免费视频| 成人永久免费在线观看视频| 久久久国产精品麻豆| 成人一区二区视频在线观看| 中文字幕人妻丝袜一区二区| 精品久久久久久久久久久久久 | 国产精品av久久久久免费| 人人妻人人看人人澡| 国产精品九九99| 淫妇啪啪啪对白视频| 88av欧美| 精品第一国产精品| 午夜福利一区二区在线看| 亚洲av电影不卡..在线观看| 午夜影院日韩av| 成年免费大片在线观看| 亚洲av成人不卡在线观看播放网| 午夜精品久久久久久毛片777| 999精品在线视频| 男人操女人黄网站| 一区二区三区激情视频| www.www免费av| 亚洲 欧美 日韩 在线 免费| 99riav亚洲国产免费| 一边摸一边做爽爽视频免费| 免费人成视频x8x8入口观看| 韩国av一区二区三区四区| or卡值多少钱| 国产亚洲精品综合一区在线观看 | 日韩欧美一区视频在线观看| 国产日本99.免费观看| 久久久久久九九精品二区国产 | 一本一本综合久久| 精品国产亚洲在线| 一本久久中文字幕| 午夜两性在线视频| 在线观看午夜福利视频| 亚洲欧美精品综合一区二区三区| 夜夜爽天天搞| 欧美精品啪啪一区二区三区| 国产亚洲精品久久久久5区| 女人爽到高潮嗷嗷叫在线视频| 成人免费观看视频高清| 真人做人爱边吃奶动态| 美女高潮到喷水免费观看| 男男h啪啪无遮挡| 一个人免费在线观看的高清视频| 男男h啪啪无遮挡| 国产精品av久久久久免费| 成人欧美大片| 88av欧美| 法律面前人人平等表现在哪些方面| 国产精品久久久久久亚洲av鲁大| 中文字幕人妻熟女乱码| 亚洲国产欧美日韩在线播放| 久久久久国内视频| 一级a爱视频在线免费观看| 色播亚洲综合网| 岛国在线观看网站| 国产精品 国内视频| 午夜激情av网站| 国产精品久久视频播放| 一二三四在线观看免费中文在| 欧美黑人巨大hd| 婷婷亚洲欧美| 久久亚洲真实| 一区二区三区激情视频| 1024手机看黄色片| 日韩精品青青久久久久久| 97超级碰碰碰精品色视频在线观看| 2021天堂中文幕一二区在线观 | 99久久久亚洲精品蜜臀av| 国产亚洲av嫩草精品影院| 亚洲国产高清在线一区二区三 | 我的亚洲天堂| АⅤ资源中文在线天堂| 可以在线观看毛片的网站| 一个人免费在线观看的高清视频| 一本综合久久免费| 亚洲一码二码三码区别大吗| 久久国产精品影院| 制服诱惑二区| 国产爱豆传媒在线观看 | 在线av久久热| 在线观看一区二区三区| 国内久久婷婷六月综合欲色啪| 免费电影在线观看免费观看| 人妻丰满熟妇av一区二区三区| 亚洲熟妇中文字幕五十中出| 亚洲av成人一区二区三| 男女之事视频高清在线观看| 黄色成人免费大全| 91国产中文字幕| 91字幕亚洲| 久久草成人影院| 草草在线视频免费看| 最近最新中文字幕大全电影3 | 精品欧美国产一区二区三| 一区二区三区高清视频在线| 国产视频内射| 男人舔女人下体高潮全视频| 久久国产精品人妻蜜桃| 久久久久久国产a免费观看| 超碰成人久久| a在线观看视频网站|