• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Systematic Method of Quality Monitoring and Prediction Based on FDA and Kernel Regression*

    2009-05-14 03:04:44ZHANGXi張曦MASile馬思樂YANWeiwu閻威武ZHAOXu趙旭andSHAOHuihe邵惠鶴
    關(guān)鍵詞:威武

    ZHANG Xi (張曦), MA Sile (馬思樂), YAN Weiwu (閻威武), ZHAO Xu (趙旭) and SHAO Huihe (邵惠鶴)

    ?

    A Novel Systematic Method of Quality Monitoring and Prediction Based on FDA and Kernel Regression*

    ZHANG Xi (張曦)1,2, MA Sile (馬思樂)3,**, YAN Weiwu (閻威武)2, ZHAO Xu (趙旭)2and SHAO Huihe (邵惠鶴)2

    1Guangdong Electric Power Research Institute, Guangzhou 510600, China2Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China3School of Control Science and Engineering, Shandong University, Jinan 250061, China

    A novel systematic quality monitoring and prediction method based on Fisher discriminant analysis (FDA) and kernel regression is proposed. The FDA method is first used for quality monitoring. If the process is under normal condition, then kernel regression is further used for quality prediction and estimation. If faults have occurred, the contribution plot in the fault feature direction is used for fault diagnosis. The proposed method can effectively detect the fault and has better ability to predict the response variables than principle component regression (PCR) and partial least squares (PLS). Application results to the industrial fluid catalytic cracking unit (FCCU) show the effectiveness of the proposed method.

    quality monitoring, quality prediction, Fisher discriminant analysis, kernel regression, fluid catalytic cracking unit

    1 Introduction

    It is difficult to measure online some important variables in chemical or biological process due to the limitation of the techniques. These variables are normally determined by offline analyses and calculation or online quality analyzer. Mostly, analysis and online analyzer suffer from long measurement delays or high investment and maintenance. Online estimation (soft sensing) techniques, which are developed recently, are now widely used. It predicts the product quality using the online measurable variables, which are correlated to the primary variable.

    Early work on online estimation assumed that a process model was available. Joseph and Brosilow [1]reported an inferential model developed using a Kalmanfilter [2]. In case the process mechanisms were not well understood, empirical models, such as neural network [3, 4], and multivariate statistical methods, such as principal component analysis (PCA) and partial least squares (PLS), were used to derive a regression model [2, 5-7]. In particular, PLS and its variations have been used to solve many practical regression problems in chemical engineering [6, 8]. Other methods include regression based on model [9] and hybrid methods also have been developed [10, 11]. Clustering has also been used for estimating a variable for which there is no online measurement in a distillation column [12].

    However, online process measurements are often contaminated with data points that deviate significantly from the true values due to instrument failure or changes in operating conditions. So, gross error detection is important in quality estimation. Several statistical methods have been presented, such as Global Test (GT) [13], the Nodal Test (NT) [13, 14], the Measurement Test (MT) [15], and the Generalized Likelihood Ratio (GLR) test to detect gross errors. The above-mentioned methods for errors detection must know the mathematical model of process and make necessary statistical assumption. For complex industrial processes, it is difficult to achieve an accurate mathematical model. These limit application of methods based on statistical test. Fisher discriminant analysis (FDA)-related methods are dimensional reduction techniques that have been widely used in the field of pattern classification [16]. They also have been introduced for fault detection and process monitoring in chemical industry [17-22]. Gross error is equal to faultsin systems. So, FDA is introduced for gross error detection in quality estimation and has a good performance.

    In this article, a systematic method of quality monitoring and prediction based on FDA and kernel regression has been proposed. FDA is first used for fault detection. If the process runs under normal condition, kernel regression method is then performed for quality prediction. Otherwise, the contribution plot of weights in fault feature direction is further used for fault diagnosis. Application results of the industrial fluid catalytic cracking unit (FCCU) show that the integrated method can effectively detect the happening faults and perform quality prediction and estimation.

    2 Preliminary principles of FDA and kernel regression

    2.1 Fisher discriminant analysis

    Fisher discriminant analysis (FDA) is a linear dimensional reduction technique widely used in the field of pattern classification [16]. Chiang. [20] used it first to diagnose faults in chemical process. The aim of FDA is to find the optimal Fisher discriminant vector such that the Fisher criterion function is maximized. The data in high-dimensional feature space then can be projected onto the obtained optimal discriminant vectors for constructing a lower-dimensional feature space [21]. The different class data can be separated mostly in the lower-dimensional Fisher space.

    The between-class-scatter matrix is defined as

    wherenis the number of observations in class. It can be concluded that the total-scatter matrix is equal to the sum of the between-class-scatter matrix and within-class-scatter matrix,

    The optimal discriminant vector can be found by maximizing the Fisher criterion function as follows:

    wherebandware the between-class scatter matrix and within-class scatter matrix. It is equipollent to solve the generalized feature equation as follows:

    2.2 Kernel principle component analysis

    Kernel principle component analysis (KPCA) is a nonlinear extension of PCA in kernel feature subspace. Consider a nonlinear mapping [23]:

    then the PC vectors can be denoted as follows.

    where

    2.3 Kernel principle component regression

    Consider the standard regression model in the feature space,

    then,

    Whereis an diagonal matrix of {1,2,···,λ},is an orthogonal matrix. So the linear regression model can be expressed further as,

    where

    is the new regressor in terms of kernel principal component and it satisfies that

    So the least square estimator of coefficientcan be expressed as

    From the above estimator expression, we can see that it is difficult to finddirectly. Below we show how to findusing the kernel function.

    Denotethe-th component ofandthe-th component of; from the linear regression model, we obtain

    So,

    where

    From above, we know that

    where

    From the definition of matrix,

    We can see that

    So

    3 Quality monitoring and prediction based on FDA and kernel regression

    3.1 The relationship among FDA, KPCA, and KPCR in quality monitoring and estimation

    Kernel principle component regression (KPCR) is the extension of KPCA. KPCA is used for feature selection. Then the extracted features can be used as preprocessing step for least square regression in the feature space. The framework of quality monitoring and estimation is shown in Fig. 1.

    It can be seen from the figure that data are first normalized using the mean and standard deviation of each variable. Then FDA is performed for gross error and fault detection. If the system runs under normal condition, KPCR is further used for quality estimation and prediction. Otherwise, contribution plot of weights in fault feature direction is used for fault diagnosis.

    FDA-related methods have been used for pattern matching and process monitoring. But it is introduced for the first time for gross error detection in quality estimation.

    3.2 The construction of detecting index and control limit

    Figure 1 Flow chart of quality monitoring and estimation

    For online quality monitoring, the distance of projection vectors in low-dimensional Fisher space,newcompares with the control limit*to determine whether a fault has occurred. The distance between feature vectors is defined as:

    A Quality monitoring based on FDA

    (3) Determine the control limit*from the normal data. The control limit is set to allow 99% of the total distances under the threshold.

    (6) Compare the distancenewwith the control limit*. Ifnewis less than the predefined threshold*, the current process feature is considered to represent the normal operating condition. Then use procedures B and C to perform quality prediction and estimation; if the fault has occurred, use step (7) for fault diagnosis.

    B Develop normal quality prediction and estimation model

    (1) Acquire the training data and normalize it using mean and standard deviation of each variable.

    where

    (4) Calculate the transformed regressor matrixas follows:

    (6) Calculate the predictions of training data as follows:

    C Online estimation and prediction procedure

    (1) Obtain new data and scale it with the mean and variance of each variable.

    (3) Mean centering of the test kernel matrix is as follows

    (4) Calculate the transformed regressor matrixas follows:

    4 Application studies and discussion

    4.1 Application results of the FCCU process

    Fluid catalytic cracking unit (FCCU) is the core unit of the oil secondary operation. Its operation conditions strongly affect the yield of light oil in petroleum refining. In general, FCCU consists of reactor- regenerator subsystem, fractionator subsystem, absorber-stabilizer subsystem and gas sweetening subsystem. The main aim of fractionator subsystem is to split reaction-cracked oil-gas according to a fractional distillation process. Prime products of fractionator subsystem include crude gasoline, light diesel oil, and slurry [7]. To control the product quality, the yield rate of gasoline is calculated offline every 8 hours. Significant delay (often several hours) will incur such that the measured values cannot be used as feedback signals for quality control systems. So it is necessary to estimate it online. However, when using online estimation, the results are often contaminated with data points that deviate significantly from the true values due to instrument failure or changes in operating conditions. So, it is essential to perform quality monitoring and avoiding wrong operations.

    The proposed method is applied to the quality monitoring and prediction of the yield rate of gasoline. The training and testing samples are collected from data of the distributed control system (DCS) and the corresponding daily laboratory analysis of Shijiazhuang Oil Refinery Factory, China. The input variables for quality monitoring and prediction are selected according to the principle that the variables which affected response variable most are selected first. Based on analysis to the process, it is found that the main variables which contribute to the yield rate of gasoline are flow rate of fresh oil, flow rate of reflux oil, temperature of catalytic reaction, overhead temperature of the main fractionating tower, the extraction temperature of light diesel oil, and bottom temperature of stabilizer column. Hence, these six variables are used as inputs for quality monitoring and prediction. Yield rate is used as the output of estimation model.

    We first collect two data sets and each includes 100 normal samples. They are used as training and testing data. The monitoring result using FDA is given in Fig. 2. We can see that no samples exceed the control limit when the system is normal. The monitoring results using PCA is shown in Fig. 3, it can be seen from the figure that there are a few samples exceed the 99% limit although the process is normal. The monitoring performance of FDA is better than PCA.

    Figure 2 Quality monitoring plot of normal data using FDA

    Figure 3 Quality monitoring plot of normal data using PCA

    Figure 4 Estimation results by KPCR (Normal data)

    Figure 6 Quality monitoring plot of fault data using FDA

    When the process is under normal condition, quality estimation can be further performed and appropriate kernel must be first chosen. The radial basis function (RBF) kernel is used as the selected kernel function andis 5.0 in this case.

    The prediction results using kernel regression are shown in Figs. 4 and 5. The upper part of Fig. 4 shows the actual and predicted values of training and testing data and the lower part shows the absolute error between actual and predicted values. Fig. 5 shows the predicted results by another method. In such plots, the data will fall on the diagonal (predicted values equal to actual values) if the model fits the data perfectly. It also shows the residual values of training and testing data. We can see from Fig. 4 that the KPCR model predicts the actual value with a relatively good accuracy. The absolute error is small. The same results can be seen in Fig. 5, in which the predicted values are plotted against observed data and the data shifts to a compact diagonal distribution on the plot. The prediction residuals are close to zero and have no significant outliers.

    The estimation performance can also be evaluated in terms of the root-mean-square-error (RMSE) criterion. The RMSE values for training and testing data of KPCR method in this case are 0.5112 and 0.5843, respectively. It also shows relatively good estimation results.

    Remark The RMSE index is defined as [28]:

    Figure 7 Contribution plot of weights in the feature direction

    Figure 8 Quality monitoring plot of fault data using PCA

    Figure 9 Estimation results by KPCR (Fault data)

    We then select a test data set of 100 samples including a fault of 10% decrease in the flow rate of fresh oil. The fault is introduced in sample 50 and persists to the end of the process. The PCA monitoring chart for the fault is shown in Fig. 8. It indicates that the square predicted error (SPE) statistic has a response to the fault happening; only a few samples delay. But it is not very clear. The corresponding FDA monitoring chart is shown in Fig. 6. In contrast to Fig. 8, we can see that the statistic distance increases drastically when the fault occurs at sample 50 and exceeds the 99% control limit. It also has better performance than PCA.

    After a fault has occurred, fault diagnosis is performed to identify the root cause. Fig. 7 is the contribution plot in the fault feature direction. It displays that variable 1 is primarily responsible for the fault deviation. Variable 1 corresponds to the flow rate of fresh oil. So the diagnosis result is right. The early detection and determination of the fault’s root cause will guide the operator to take correct action promptly, which could maintain the final product well.

    The prediction results of yield rate based on kernel regression are shown in Figs. 9 and 10. From Fig. 9, we can see that before the fault occurs, KPCR has good prediction results. But after that, the prediction results become worse. The absolute error is large and the prediction values far derivate from the actual values. The same results can be seen in Fig. 10. Before the fault is introduced, the data distribution is compactly towards the diagonal and the residual is low. But the test data distribution is scattered and the residuals are large after the fault happens. The total RMSE for the test data is 1.9824. If the faulty values are used as feedback signals in the control system, it will lead to wrong operations. So, quality monitoring is very important and necessary to guarantee the prediction results well.

    4.2 Further discussion

    The performance of the estimation method based on KPCR is influenced by many factors. We will use thesamples used in Section 4.1 to discuss them extensively.

    I Performance comparison of different methods

    To demonstrate the predominance of the proposed method, PCR and PLS are further applied, followed by a comparison with the KPCR prediction method. The estimation results using PCR and PLS are shown in Figs. 11-14.

    Figure 11 Estimation results by PCR

    Figure 13 Estimation results by PLS

    Figure 15 Estimation results with linear kernel

    From the figures, we can see that, compared with PCR and PLS, KPCR (shown in Figs. 4 and 5) has better estimation performance.

    Because KPCR is nonlinear modeling method, it has better prediction results. So it has a better ability to deal with nonlinear data. In this study, there are complex nonlinear relationships among input and response variables. So, projecting nonlinear input data onto a linear subspace by PCR or PLS cannot model the nonlinear relationships properly. In contrast, KPCR tries to model such nonlinear relationships preferably by a nonlinear kernel mapping into a feature space.

    II Performance influence of different kernels in KPCR

    When we estimate quality variables by KPCR, the choice of kernel is important. Different kernels have different influence on the performance of prediction. We use the linear kernel, polynomial kernel, and radial basis kernel for comparison, which are listed below.

    The KPCR model estimation results using linear and polynomial kernel (the parameteris chosen as 5.0)are shown in Figs. 15-18. It can be seen from the figures that using linear and polynomial kernels cannot obtain good estimation results compared to using radial basis kernel (shown in Figs. 4 and 5).

    The reason for this is that the input variables of the data set used are nonlinear correlated with each other and with the response variable. When linear and polynomial kernels are used, they cannot model the nonlinear correlation structure properly due to the risk of including noise in the model while trying to account nonlinearity. From our experience, radial basis kernel is more suitable for modeling such nonlinear relationships compared to other kernel functions by selecting appropriate parameter.

    III Performance influence of parameterin the RBF kernel

    Figures 19 and 20 present the estimation results of response variables for training and testing data with parameterequals to 0.01, 0.05, 0.5, 5, and 20. It can be seen from the figures that for training and testing data, whenis larger or smaller over a specific threshold, the estimation performance becomes worse. Therefore, to get good prediction results, the appropriate choice of parameteris important. In this case, whenis equal to 5.0, good estimation performance can be achieved. The same results can be obtained from the RMSE values of different c (shown in Table 1). Whenis equal to 5.0, the RMSE values are 0.5112 and 0.5843. They are the smallest among all the training and testing data.

    Figure 16 Estimation parity plot with linear kernel

    Figure 17 Estimation results with polynomial kernel

    Table 1 RMSE of different parameter c in kernel principal component regression (RBF kernel)

    5 Conclusions

    In this article, a systemic quality monitoring and prediction method based on FDA and kernel regression is proposed. The FDA monitoring method is first performed to detect process condition. If the process is normal, kernel regression is further used to do quality prediction and estimation. If fault has occurred, contribution plot of the weights in the feature direction is used for fault diagnosis. The improvement in prediction performance observed, from PCR, PLS to KPCR, suggests that nonlinear correlation structures should not be modeled using linear approaches due to the risk of including noise in the model while trying to account the nonlinearity. The application results of the industrial fluid catalytic cracking unit (FCCU) show the effectiveness of the proposed method.

    However, when the proposed method is used, how to choose kernel function and identify the kernel parameter is still an open problem. At present, we only solve this with our experience. How to settle this using a systematic approach is still a challenging issue. We believe that for the problem to be further solved, the proposed method will give more promising results.

    AcknowledgEments

    ..

    1 Joseph, B., Brosilow, C.B., “Inferential control of processes (1) Steady state analysis and design”,., 124, 485-508 (1978).

    2 Lin, B., Recke, B., Knudsen, J.K.H., J?rgensen, S.B, “A systematic approach for soft sensor development”,..., 31, 419-425 (2007).

    3 Qin, S.J., McAvoy, T.J., “Nonlinear PLS modeling using neural networks”,..., 16, 379-391 (1992).

    4 Radhakrishnan, V.R., Mohamed, A.R., “Neural networks for the identification and control of blast furnace hot metal quality”,., 10, 509-524 (2000).

    5 Kresta, J.V., Marlin, T.E., MacGregor, J.F., “Development of inferential process models using PLS”,..., 18, 597-611 (1994).

    6 Park, S., Han, C., “A nonlinear soft sensor based on multivariate smoothing procedure for quality estimation in distillation columns”,..., 24, 871-877 (2000).

    7 Yan, W., Shao, H., Wang, X., “Soft sensing modeling based on support vector machine and Bayesian model selection”,..., 28, 1489-1498 (2004).

    8 Skagerberg, B., MacGrgor, J.F., Kiprissides, C., “Multivariate data analysis applied to low-density polyethylene reactors”,...., 14, 341-356 (1992).

    9 Chen, S., Billings, S.A., Cowan, C.T.F., Grant, P.M., “Practical identification of NARMAX models using radial basis functions”,.., 52, 1327-1350 (1990).

    10 Ljung, L., System Identification: Theory for the User (Information and System Science Series), Prentice-Hall, New Jersey (1987).

    11 Wang, X., Luo, R., Shao, H., “Designing a soft sensor for a distillation column with the fuzzy distributed radial basis function neural network”, In: Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan (1996).

    12 Espinoza, P. A., Gonzalez, G. D., Casali, A., Ardiles, C., “Design of soft sensors using cluster techniques”, In: Proceedings of International Mineral Processing Congress, San Francisco, USA (1995).

    13 Reilly, P., Carpani, R., “Application of statistical theory of adjustments to material Balances”, In: 13th Canadian Chemical Engineering Conference, Montreal, Canada (1963).

    14 Mah, R.S.H., Stanley, G., Downing, D., “Reconciliation and rectification of process flow and inventory data”,....., 15, 175-183 (1976).

    15 Mah, R.S.H., Tamhane, A.C., “Detection of gross errors in process data”,., 28, 828-830 (1982).

    16 Duda, R.O., Hart, P.E., Stork, D.G., “Pattern classification”, 2nd ed., Wiley, New York (2001).

    17 Cho, H.W., “Identification of contributing variables using kernel-based discriminant modeling and reconstruction”,.., 33, 274-285 (2007).

    18 Jemwa, G.T., Aldrich, C., “Kernel-based fault diagnosis on mineral processing plants”,.., 19, 1149-1162 (2006).

    19 Zhang, X., Zhao, X., Yan, W.W., Shao, H.H., “Nonlinear biological batch process monitoring and fault identification based on kernel fisher discriminant analysis”,., 42, 1200-1210 (2007).

    20 Chiang, L.H., Russell, E.L., Braatz, R.D., “Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis”,...., 50, 243-252 (2000).

    21 He, Q.P., Qin, S.J., “A new fault diagnosis method using fault directions in fisher discriminant analysis”,., 51, 555-571 (2005).

    22 Zhao, X., Yan, W., Shao, H., “Monitoring and fault diagnosis for batch process based on feature extract in Fisher subspace”,...., 14, 759-764 (2006).

    23 Sch?lkopf, B., Smola, A., Müller, K.R., “Nonlinear component analysis as a kernel eigenvalue problem”,., 10, 1299-1319 (1998).

    24 Lee, J.M., Yoo, C., Choi, S.W., Vanrolleghem, P.A., Lee, I.B., “Nonlinear process monitoring using kernel principal component analysis”,..., 59, 223-234 (2004).

    25 Rosipal, R., Girolami, M., Trejo, L. J., Cichocki, A., “Kernel PCA for feature extraction and de-noising in nonlinear regression”,.., 10, 231-243 (2001).

    26 Dachapak, C., Kanae, S., Yang, Z.J., Wada, K., “Kernel principal component regression in reproducing Hilbert space”,(.....), 34, 213-218 (2002).

    27 Chiang, L.H., Russell, E.L., Braatz, R.D., Fault Detection and Diagnosis in Industrial Systems, Springer, Hong Kong (2001).

    28 Lee, D.S., Lee, M.W., Woo, S.H., Kim, Y.J., Park, J.M., “Multivariate online monitoring of a full-scale biological anaerobic filter process using kernel-based algorithms”,...., 45, 4335-4344 (2006).

    29 Kim, K., Lee, J. M., Lee, I. B., “A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction”,...., 79, 22-30 (2005).

    30 Wold, S., “Cross-validatory estimation of components in factor and principal components models”,, 20, 397-405 (1978).

    2008-01-27,

    2008-11-05.

    the National Natural Science Foundation of China (60504033) and the Open Project of State Key Laboratory of Industrial Control Technology in Zhejiang University (0708004).

    ** To whom correspondence should be addressed. E-mail: masile@sdu.edu.cn

    猜你喜歡
    威武
    高傲的大公雞
    威武遼寧艦(一)
    山東艦,威武入列
    威武老槍56半
    威武的獅子
    幼兒畫刊(2018年4期)2018-04-11 03:58:56
    萌寵樂園
    威武大角羊
    威武蝦將軍
    小蝦威武
    威武的甲蟲
    在线观看美女被高潮喷水网站| 国产av精品麻豆| 丝袜喷水一区| 亚洲欧美精品自产自拍| 视频区图区小说| 高清av免费在线| 国产1区2区3区精品| √禁漫天堂资源中文www| 中文字幕最新亚洲高清| 日日爽夜夜爽网站| 一边摸一边做爽爽视频免费| 久久久国产欧美日韩av| 亚洲国产日韩一区二区| 日本-黄色视频高清免费观看| 精品福利永久在线观看| 一区二区av电影网| 男女国产视频网站| 毛片一级片免费看久久久久| 少妇熟女欧美另类| 国产成人精品一,二区| 亚洲,欧美精品.| 精品人妻熟女毛片av久久网站| 波野结衣二区三区在线| 免费高清在线观看视频在线观看| 日韩不卡一区二区三区视频在线| 啦啦啦在线观看免费高清www| 欧美精品av麻豆av| 丝袜美足系列| 三级国产精品片| 观看av在线不卡| 久久精品国产自在天天线| av又黄又爽大尺度在线免费看| 久久热在线av| 免费日韩欧美在线观看| 亚洲精品中文字幕在线视频| 秋霞伦理黄片| 熟女电影av网| 久久精品亚洲av国产电影网| 爱豆传媒免费全集在线观看| 国产成人a∨麻豆精品| 成年人午夜在线观看视频| 久久久久久免费高清国产稀缺| 涩涩av久久男人的天堂| 99re6热这里在线精品视频| 99国产综合亚洲精品| 日产精品乱码卡一卡2卡三| 亚洲av.av天堂| 久久久久久久久免费视频了| 国产成人aa在线观看| 乱人伦中国视频| kizo精华| 美女大奶头黄色视频| 国产极品粉嫩免费观看在线| 国产亚洲午夜精品一区二区久久| 久久午夜福利片| 韩国av在线不卡| 新久久久久国产一级毛片| 高清视频免费观看一区二区| 亚洲av中文av极速乱| 桃花免费在线播放| 精品少妇内射三级| 少妇熟女欧美另类| 欧美97在线视频| 在线天堂中文资源库| 免费观看av网站的网址| 哪个播放器可以免费观看大片| 亚洲精品国产一区二区精华液| 色视频在线一区二区三区| 在线 av 中文字幕| 久久久久久久亚洲中文字幕| 精品国产乱码久久久久久男人| 欧美日韩视频精品一区| 精品一区在线观看国产| 国产精品久久久久成人av| 91成人精品电影| 99国产精品免费福利视频| 满18在线观看网站| 色哟哟·www| 美国免费a级毛片| 毛片一级片免费看久久久久| 午夜老司机福利剧场| 蜜桃国产av成人99| 秋霞伦理黄片| 电影成人av| 日韩不卡一区二区三区视频在线| 最近中文字幕高清免费大全6| 亚洲国产精品成人久久小说| 超碰97精品在线观看| 狠狠精品人妻久久久久久综合| 熟妇人妻不卡中文字幕| 国产精品蜜桃在线观看| 黄色 视频免费看| 婷婷成人精品国产| 一级黄片播放器| 夜夜骑夜夜射夜夜干| 日韩成人av中文字幕在线观看| 成人影院久久| 最新中文字幕久久久久| 成人国产麻豆网| 免费在线观看黄色视频的| 波多野结衣一区麻豆| 大香蕉久久成人网| 免费观看在线日韩| 18在线观看网站| av天堂久久9| 黄网站色视频无遮挡免费观看| 亚洲精品美女久久久久99蜜臀 | 亚洲第一青青草原| 久久精品久久久久久噜噜老黄| 久久韩国三级中文字幕| 日韩视频在线欧美| 黄片无遮挡物在线观看| 丰满少妇做爰视频| 80岁老熟妇乱子伦牲交| 26uuu在线亚洲综合色| 久久韩国三级中文字幕| 久久这里有精品视频免费| 丝袜人妻中文字幕| 久久久久久久久免费视频了| 丁香六月天网| freevideosex欧美| 日韩欧美精品免费久久| 国产精品国产av在线观看| 精品福利永久在线观看| 免费观看无遮挡的男女| 久久久国产欧美日韩av| 国产精品成人在线| 大片免费播放器 马上看| av在线老鸭窝| 青草久久国产| 午夜老司机福利剧场| 青春草视频在线免费观看| 国产极品天堂在线| 在线观看免费高清a一片| 新久久久久国产一级毛片| 交换朋友夫妻互换小说| 亚洲精品久久午夜乱码| 午夜影院在线不卡| 五月伊人婷婷丁香| www日本在线高清视频| 精品人妻在线不人妻| 亚洲精品,欧美精品| 一二三四中文在线观看免费高清| 久久精品熟女亚洲av麻豆精品| 亚洲av中文av极速乱| 免费观看性生交大片5| 久久精品国产亚洲av天美| 国产成人精品久久久久久| 多毛熟女@视频| 韩国高清视频一区二区三区| 美女脱内裤让男人舔精品视频| 国产亚洲午夜精品一区二区久久| 国产深夜福利视频在线观看| 日韩av在线免费看完整版不卡| 观看av在线不卡| 亚洲婷婷狠狠爱综合网| 蜜桃在线观看..| 欧美人与性动交α欧美精品济南到 | 亚洲成国产人片在线观看| 曰老女人黄片| av有码第一页| 国产激情久久老熟女| 天堂俺去俺来也www色官网| 欧美激情极品国产一区二区三区| 日韩av免费高清视频| 麻豆精品久久久久久蜜桃| 五月开心婷婷网| 国产精品亚洲av一区麻豆 | 一级爰片在线观看| 波多野结衣一区麻豆| 亚洲综合精品二区| 91精品三级在线观看| 免费观看a级毛片全部| 搡老乐熟女国产| 午夜91福利影院| 国产乱人偷精品视频| 一级片免费观看大全| 日韩成人av中文字幕在线观看| 亚洲少妇的诱惑av| 欧美精品一区二区免费开放| 色婷婷久久久亚洲欧美| 亚洲男人天堂网一区| 菩萨蛮人人尽说江南好唐韦庄| 97人妻天天添夜夜摸| 宅男免费午夜| 高清黄色对白视频在线免费看| 欧美精品国产亚洲| 最近的中文字幕免费完整| av有码第一页| 久久久久人妻精品一区果冻| 国产一区有黄有色的免费视频| 91国产中文字幕| 午夜91福利影院| av视频免费观看在线观看| 欧美日韩精品成人综合77777| 亚洲精品国产av成人精品| 蜜桃在线观看..| 菩萨蛮人人尽说江南好唐韦庄| 九色亚洲精品在线播放| 人体艺术视频欧美日本| 啦啦啦中文免费视频观看日本| tube8黄色片| 欧美亚洲 丝袜 人妻 在线| 久久韩国三级中文字幕| 久久久精品免费免费高清| 国产熟女午夜一区二区三区| 在线 av 中文字幕| 伦理电影大哥的女人| 又粗又硬又长又爽又黄的视频| 国产精品一二三区在线看| 成人亚洲精品一区在线观看| 男女高潮啪啪啪动态图| 女人高潮潮喷娇喘18禁视频| 日本av免费视频播放| 日韩欧美精品免费久久| 久久鲁丝午夜福利片| 成人国语在线视频| 老汉色∧v一级毛片| 男女免费视频国产| 啦啦啦在线免费观看视频4| 国产xxxxx性猛交| 最黄视频免费看| 美国免费a级毛片| 欧美黄色片欧美黄色片| 午夜激情久久久久久久| 亚洲图色成人| 欧美日韩视频精品一区| 久久久久精品性色| 成人亚洲精品一区在线观看| 国产亚洲最大av| 精品亚洲乱码少妇综合久久| 欧美日韩精品成人综合77777| av女优亚洲男人天堂| 九草在线视频观看| 久久综合国产亚洲精品| 久久这里有精品视频免费| 国产麻豆69| 免费黄色在线免费观看| 男女下面插进去视频免费观看| 亚洲色图综合在线观看| 亚洲人成网站在线观看播放| 日韩三级伦理在线观看| 熟妇人妻不卡中文字幕| 午夜日本视频在线| 免费日韩欧美在线观看| 90打野战视频偷拍视频| 成人18禁高潮啪啪吃奶动态图| 涩涩av久久男人的天堂| 日韩伦理黄色片| a级毛片黄视频| 在线天堂中文资源库| 国产激情久久老熟女| 成年av动漫网址| 亚洲一区二区三区欧美精品| 老司机亚洲免费影院| 亚洲精品美女久久av网站| 成年女人毛片免费观看观看9 | 黄片播放在线免费| 秋霞伦理黄片| 又粗又硬又长又爽又黄的视频| 九九爱精品视频在线观看| 亚洲人成电影观看| 久久国内精品自在自线图片| 最近中文字幕2019免费版| 国产综合精华液| 成年女人在线观看亚洲视频| 日韩三级伦理在线观看| 国产野战对白在线观看| 菩萨蛮人人尽说江南好唐韦庄| 精品国产超薄肉色丝袜足j| 制服丝袜香蕉在线| 夜夜骑夜夜射夜夜干| 黄色一级大片看看| 欧美日韩视频高清一区二区三区二| 国产精品香港三级国产av潘金莲 | 观看av在线不卡| 在线免费观看不下载黄p国产| 精品国产露脸久久av麻豆| 天堂8中文在线网| 一区福利在线观看| 七月丁香在线播放| 亚洲国产精品国产精品| 哪个播放器可以免费观看大片| 老司机亚洲免费影院| 看十八女毛片水多多多| 最近中文字幕高清免费大全6| 久久精品aⅴ一区二区三区四区 | 久久精品国产a三级三级三级| 丝袜人妻中文字幕| 在现免费观看毛片| 美女脱内裤让男人舔精品视频| 亚洲精品乱久久久久久| 免费黄色在线免费观看| 日韩av不卡免费在线播放| 久久综合国产亚洲精品| tube8黄色片| 久久久精品国产亚洲av高清涩受| 熟妇人妻不卡中文字幕| 日韩精品有码人妻一区| 精品国产超薄肉色丝袜足j| 久久久久久久久久久久大奶| 国产精品嫩草影院av在线观看| 高清视频免费观看一区二区| 青青草视频在线视频观看| 两个人免费观看高清视频| 色吧在线观看| 亚洲少妇的诱惑av| 亚洲av男天堂| 久久精品国产亚洲av天美| 国产一区二区三区av在线| 狂野欧美激情性bbbbbb| 女人精品久久久久毛片| 国产成人欧美| 香蕉国产在线看| 狂野欧美激情性bbbbbb| av网站免费在线观看视频| 久久 成人 亚洲| 高清视频免费观看一区二区| 激情五月婷婷亚洲| 一区二区日韩欧美中文字幕| 亚洲成国产人片在线观看| av线在线观看网站| av免费观看日本| 久久人人爽人人片av| 成人毛片60女人毛片免费| 午夜福利影视在线免费观看| 99精国产麻豆久久婷婷| 高清不卡的av网站| 不卡视频在线观看欧美| 亚洲 欧美一区二区三区| 1024香蕉在线观看| 黑人猛操日本美女一级片| 免费少妇av软件| 亚洲av男天堂| 国产一区有黄有色的免费视频| 成人国产麻豆网| 亚洲av综合色区一区| 免费人妻精品一区二区三区视频| 欧美成人午夜精品| 2022亚洲国产成人精品| 99热全是精品| 这个男人来自地球电影免费观看 | 在线观看www视频免费| 国产男女超爽视频在线观看| 亚洲av福利一区| 国产日韩欧美视频二区| 亚洲国产日韩一区二区| 日本vs欧美在线观看视频| 亚洲欧美一区二区三区久久| 新久久久久国产一级毛片| 日韩av在线免费看完整版不卡| 色视频在线一区二区三区| 日韩 亚洲 欧美在线| 亚洲精品美女久久久久99蜜臀 | 久久亚洲国产成人精品v| 亚洲熟女精品中文字幕| 9191精品国产免费久久| 亚洲精品久久成人aⅴ小说| 美女主播在线视频| 99久国产av精品国产电影| 国产一区二区三区综合在线观看| 桃花免费在线播放| 久久精品久久久久久久性| 1024视频免费在线观看| 九色亚洲精品在线播放| 国产黄色免费在线视频| 国产精品免费视频内射| av网站免费在线观看视频| 女性被躁到高潮视频| 成年美女黄网站色视频大全免费| 不卡av一区二区三区| 国产精品av久久久久免费| 91精品国产国语对白视频| 国产精品.久久久| 国产av国产精品国产| 欧美日本中文国产一区发布| 久久韩国三级中文字幕| 精品国产露脸久久av麻豆| 一本久久精品| 午夜福利网站1000一区二区三区| 777久久人妻少妇嫩草av网站| 美女大奶头黄色视频| 成年人午夜在线观看视频| 天堂中文最新版在线下载| 亚洲欧美清纯卡通| 国产福利在线免费观看视频| av女优亚洲男人天堂| 天天躁夜夜躁狠狠久久av| 九色亚洲精品在线播放| 国产精品国产三级专区第一集| 亚洲精品第二区| 丝袜人妻中文字幕| 丝袜在线中文字幕| 亚洲欧美成人综合另类久久久| 熟妇人妻不卡中文字幕| 亚洲一级一片aⅴ在线观看| 国产亚洲av片在线观看秒播厂| 一级毛片 在线播放| 精品亚洲成a人片在线观看| 女人精品久久久久毛片| 日韩电影二区| 久久久久人妻精品一区果冻| 久久鲁丝午夜福利片| 在线观看免费高清a一片| 国产成人精品在线电影| 不卡av一区二区三区| 边亲边吃奶的免费视频| 亚洲五月色婷婷综合| freevideosex欧美| 国产精品久久久久久久久免| 亚洲伊人久久精品综合| 国产精品麻豆人妻色哟哟久久| 啦啦啦在线观看免费高清www| 久久精品aⅴ一区二区三区四区 | 精品视频人人做人人爽| 多毛熟女@视频| 亚洲第一青青草原| 久久 成人 亚洲| 欧美日韩综合久久久久久| 国产免费一区二区三区四区乱码| 狠狠婷婷综合久久久久久88av| 超碰成人久久| 日韩人妻精品一区2区三区| 久久人人爽人人片av| 亚洲激情五月婷婷啪啪| 香蕉精品网在线| 看非洲黑人一级黄片| 狠狠精品人妻久久久久久综合| 色婷婷av一区二区三区视频| 日韩视频在线欧美| 有码 亚洲区| 另类亚洲欧美激情| 午夜免费鲁丝| 国产成人精品在线电影| 国产老妇伦熟女老妇高清| 麻豆av在线久日| 婷婷色av中文字幕| 搡女人真爽免费视频火全软件| 男女午夜视频在线观看| 夫妻午夜视频| 人人妻人人爽人人添夜夜欢视频| 一二三四中文在线观看免费高清| 在线天堂最新版资源| 国产老妇伦熟女老妇高清| 午夜日本视频在线| 三上悠亚av全集在线观看| 日日撸夜夜添| 80岁老熟妇乱子伦牲交| 亚洲 欧美一区二区三区| 色网站视频免费| 亚洲四区av| 亚洲av欧美aⅴ国产| 天堂俺去俺来也www色官网| 免费观看a级毛片全部| 亚洲av在线观看美女高潮| 中文精品一卡2卡3卡4更新| 午夜免费观看性视频| 亚洲国产精品一区三区| 久久久国产精品麻豆| 亚洲精品国产av成人精品| 一级片免费观看大全| 成人二区视频| 少妇人妻久久综合中文| av女优亚洲男人天堂| 欧美精品一区二区大全| 999精品在线视频| 人人妻人人澡人人看| tube8黄色片| 有码 亚洲区| 在线精品无人区一区二区三| videossex国产| 男女免费视频国产| 激情视频va一区二区三区| 日本午夜av视频| av线在线观看网站| av网站在线播放免费| 亚洲欧美成人精品一区二区| 久久国产亚洲av麻豆专区| 精品国产一区二区三区久久久樱花| av女优亚洲男人天堂| 日本av免费视频播放| 女人高潮潮喷娇喘18禁视频| 一级毛片电影观看| 美女高潮到喷水免费观看| 性色avwww在线观看| 男女边摸边吃奶| 欧美亚洲日本最大视频资源| 七月丁香在线播放| kizo精华| 国产成人a∨麻豆精品| 国产福利在线免费观看视频| 欧美亚洲日本最大视频资源| 爱豆传媒免费全集在线观看| 午夜福利,免费看| 大片免费播放器 马上看| 交换朋友夫妻互换小说| 久久久久久人人人人人| 中文字幕色久视频| 亚洲第一青青草原| 人妻人人澡人人爽人人| 国产精品国产三级专区第一集| 自线自在国产av| 大片电影免费在线观看免费| 99国产精品免费福利视频| 性色avwww在线观看| 亚洲av国产av综合av卡| 国产爽快片一区二区三区| 777米奇影视久久| 国产精品国产av在线观看| 91精品伊人久久大香线蕉| 天天操日日干夜夜撸| 另类精品久久| 一级毛片 在线播放| 老汉色av国产亚洲站长工具| 国产精品女同一区二区软件| 最近中文字幕2019免费版| 一本大道久久a久久精品| 亚洲一区二区三区欧美精品| 欧美成人午夜免费资源| 久久久精品94久久精品| 女人久久www免费人成看片| 热99国产精品久久久久久7| 国产精品偷伦视频观看了| videos熟女内射| 久久ye,这里只有精品| 夫妻性生交免费视频一级片| 精品少妇一区二区三区视频日本电影| 很黄的视频免费| 另类亚洲欧美激情| netflix在线观看网站| 亚洲一区二区三区欧美精品| 精品电影一区二区在线| √禁漫天堂资源中文www| 欧美日本中文国产一区发布| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区精品| 国产一区在线观看成人免费| 可以在线观看毛片的网站| 满18在线观看网站| 欧美一区二区精品小视频在线| 熟女少妇亚洲综合色aaa.| 亚洲av成人av| 激情在线观看视频在线高清| 国产欧美日韩综合在线一区二区| 精品一品国产午夜福利视频| 一级毛片女人18水好多| 亚洲七黄色美女视频| 欧美日韩黄片免| 婷婷丁香在线五月| 国产一区二区激情短视频| 日韩精品中文字幕看吧| 一进一出抽搐动态| 在线永久观看黄色视频| 搡老熟女国产l中国老女人| 这个男人来自地球电影免费观看| 最好的美女福利视频网| 亚洲在线自拍视频| 久久99一区二区三区| 三上悠亚av全集在线观看| 夫妻午夜视频| 亚洲性夜色夜夜综合| 一边摸一边做爽爽视频免费| 首页视频小说图片口味搜索| 长腿黑丝高跟| 777久久人妻少妇嫩草av网站| 国产精品秋霞免费鲁丝片| 国产av一区二区精品久久| 午夜91福利影院| 青草久久国产| 成人三级黄色视频| 日日爽夜夜爽网站| 1024视频免费在线观看| 国产精品影院久久| 欧美久久黑人一区二区| 日本免费a在线| 女人被躁到高潮嗷嗷叫费观| 一级片'在线观看视频| 国产一区二区激情短视频| 在线观看66精品国产| 久久久久久亚洲精品国产蜜桃av| www.999成人在线观看| 老司机亚洲免费影院| bbb黄色大片| 他把我摸到了高潮在线观看| 好看av亚洲va欧美ⅴa在| 在线观看免费日韩欧美大片| 一级a爱片免费观看的视频| 窝窝影院91人妻| 视频在线观看一区二区三区| 久久国产乱子伦精品免费另类| 精品国产乱子伦一区二区三区| 亚洲精品中文字幕一二三四区| 日本免费一区二区三区高清不卡 | 亚洲欧美精品综合一区二区三区| 极品人妻少妇av视频| 亚洲成av片中文字幕在线观看| 亚洲国产精品合色在线| 人人妻人人澡人人看| 在线免费观看的www视频| 岛国在线观看网站| 日本wwww免费看| 18禁国产床啪视频网站| 高清欧美精品videossex| 国产欧美日韩综合在线一区二区| 亚洲视频免费观看视频| 欧美精品啪啪一区二区三区| 精品国产一区二区久久| 国产91精品成人一区二区三区| 免费日韩欧美在线观看| 日本wwww免费看| 国产精品一区二区三区四区久久 | 午夜久久久在线观看| 精品久久久久久久毛片微露脸| 不卡一级毛片| 男女高潮啪啪啪动态图|