• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetic and Microstructure of SiC Deposited from SiCl4-CH4-H2*

    2009-05-14 03:04:44YANGYan楊艷andZHANGWeigang張偉剛
    關(guān)鍵詞:楊艷

    YANG Yan (楊艷) and ZHANG Weigang (張偉剛)

    ?

    Kinetic and Microstructure of SiC Deposited from SiCl4-CH4-H2*

    YANG Yan (楊艷)1,2and ZHANG Weigang (張偉剛)1,**

    1State Key Lab of Multi-phase Complex Systems, Institute of Process Engineering, CAS, Beijing 100190, China2Graduate University of Chinese Academy of Sciences, Beijing 100049, China

    Silicon carbide was prepared from SiCl4-CH4-H2gaseous precursors by isothermal, isobaric chemical vapor deposition (CVD) at atmospheric pressure and temperatures ranging from 900°C to 1100°C. Kinetic studies showed that carbosilane of SiH2Cl2, SiHCl3and SiCl2formed from decomposition of SiCl4and CH4contributed to the deposition of hexangular facet and granular pebble structured SiC. An average apparent activation energy of 152 kJ·mol-1was determined. The overall CVD process was controlled not only by the surface reactions but also by complex gas phase reactions. The as-deposited thin film was characterized using scanning electron microscopy, X-ray diffraction and transmission electron microscopy, these analysis showed that the deposited thin film consisted of pure phase of the β-SiC, the growth morphology of β-SiC differs from hexangular facet to granular pebble structures, which varied with substrate length and CVD temperature.

    chemical vapor deposition, SiC, kinetics, microstructure

    1 INTRODUCTION

    Chemical vapor deposition (CVD) of silicon carbide is one of the most frequently investigated deposition processes not only because of the outstanding mechanical and physical properties of the materials prepared by this technique, but also because of this versatile process control on the kinetics and microstructure of the deposits with many variables such as temperature, pressure and dilution ratios [1-5]. Numerous studies differ with one another in either precursor, objective, or experimental procedure, but most of them were performed using methyltrichlorosilane (SiCH3Cl3, MTS) [6-10]. Deposition of SiC was studied in different aspects. Some authors were interested in the deposition rate [11]. In some papers the composition of the deposit was determined, additionally [1, 8, 12, 13]. Other papers are concerned with the gas phase chemistry [14]. Deposition rate and composition of the gas phase were simultaneously determined only in two studies [2]. However, no detailed study related to the deposition rate, gas phase composition as well as composition and structure of the deposit was available.

    CVD of SiC from the H2/MTS system has been studied previously in our lab, with a new chemical reaction model being proposed [15]. According to this model, SiC was not deposited from MTS or its primary decomposed radicals directly but from chlorocarbosilanes with higher molecular size formed in the gas phase, and this process was mainly controlled by surface area/volume ratio () of the reactor. Co-deposition of free Si with SiC occurred at temperature lower than 1050°C from the surface reactions of chlorosilanes and chlorocarbosilanes, depending also on substrate length and. Pure SiC could only be deposited from chlorocarbosilanes and polychlorocarbosilanes at temperatures above 1050°C, which were formed from the gas phase reactions between H2, SiCl4and CH4. In other words, deposition of pure SiC at high temperature above 1050°C depended strongly on the concentration of SiCl4and CH4, which were formed from those species of SiCl3, CH3, SiHCl3,. Therefore, SiCl4-CH4-H2systems should be an alternative and even better system compared to the SiCH3Cl3-H2system for the CVD of SiC without co-deposition of free silicon, which deteriorate the high temperature properties of SiC served as semi-conductor or hard coatings. However, CVD of SiC from the SiCl4-CH4-H2gaseous precursors was not studied systematically before. On the other hand, SiCl4is much more cheaper and easier for handling due to its lower volatility compared to mono-silanes or MTS.

    This study aimed to deposit pure SiC using SiCl4-CH4-H2system to confirm the previous conclusions concluded from the chemical reaction models [16, 17]. However, the more important purposes of this study are as follows: (1) to develop a CVD process using SiCl4-CH4-H2gaseous precursors, which are much more stable at high temperature compared to MTS and monosilanes and promote suppression of silicon co-deposition; (2) to investigate the correlations of the kinetics and microstructure of deposits with the process variables such as temperature and substrate length, aimed to an improvement of material quality of SiC.

    2 EXPERIMENTAL

    2.1 CVD apparatus

    whereo(Pa): the output pressure;r(g·min-1): mass flow rate of the reactant;c(g·min-1): mass flow rate of the carrier;r(Pa): vapor pressure of SiCl4.

    Figure 1 Scheme of the chemical vapor deposition reactor

    1—mass flow meters; 2—saturator of SiCl4; 3—three-way valve; 4—hot wall furnace; 5—vacuum pump; 6—thermocouple; 7—temperature controller

    Figure 2 The channel structured substrates and deposition reactor (Left, cross-section of a cordierite substrate; right, arrangement of 6 substrates in the graphite deposition space)

    2.2 Preparation of samples

    Eight substrates (each 5 mm in height) are stacked into the deposition space in all experiments. This procedure makes it possible to determine the deposition rate as a function of the length of the reactor or substrate. Two or three subsequent deposition experiments of about 2 h are performed under a given deposition condition. Steady-state deposition rates are determined from the linear mass increase as a function of deposition time. Before the SiC deposition, pores of the channel structures are filled or sealed by deposition of pyrolytic carbon using CH4as carbon source at 1100°C, a deposition time of about 24 h is sufficient for sealing the pores with a thickness of coating about 50 μm (Fig. 3). Accomplishment of pre-coating should be judged from a steady-state deposition rate of carbon. The pre-coated carbon exhibited similar thermal expansion coefficient (4.5×10-6K-1, 293-673 K) to SiC, which benefited a thick SiC coating formation without any cracks.

    2.3 Deposition procedure

    SiCl4-CH4was used as the source gas, hydrogen was not only the carrying gas to transport the reactants to the reactor, but also essential for chemical reactions to form SiC. Hydrogen was also necessary for removing organic contamination existed on the substrate surface immediately before the film deposition [18].

    Experiments were performed under the following conditions: the input gas mole ratio of SiCl4︰CH4︰H2was 1︰1︰8, with a total pressure of 101.3 kPa, temperature ranged from 900°C to 1100°C, the residence time of gas was kept constant of 1 s.

    Table 1 Some geometric properties of the channel structure of cordierite substrate (Mg2Al4Si5O18)

    ① Channels per square centimeter.

    ② Based on a stack of 5 substrates.

    According to the simulated results [16] of temperature distribution in the reactor using commercial Fluent 6.0 (Fluent Inc.), the substrates with a length of 4 cm for deposition were placed on the isothermal zone of the deposition space. The reactor was purged with pure argon during heating up to avoid oxidation of substrate. When the desired temperature was reached, the carrier gas was supplied to the saturator and the pressure was controlled by an automatically controlled pump. Constant deposition rates (only the deposition on the outer cylindrical surface of substrate being measured) were obtained after several runs of CVD process which was determined by the mass gain per hour of each slice of substrates. Experimentally, the steady-state deposition rates were determined from the linear mass increase as a function of deposition time.

    Figure 3 Cross-section micrograph of the porous substrate and the pre-coated carbon layer

    3 RESULTS AND DISCUSSION

    3.1 Thermodynamic calculations

    Calculation of chemical equilibrium composition is always necessary for the selection of specific CVD process. Thermodynamic analysis of the equilibrium gas composition can not only suggest the degree of variation of the chemical deposition conditions but also the thermodynamic yields and the formation of intermediate species [19].

    Figure 4 Equilibrium compositions of the gas phase from the reactions of SiCl4-CH4-H2as a function of temperature

    Figure 5 Equilibrium compositions of the solid phase as a function of temperature□?SiC; △?Si;○?C

    The equilibrium compositions of the solids corresponding to the gas phase composition of Fig. 4 are presented in Fig. 5, from which it can be concluded that the pure SiC can be deposited between 682°C and 1100°C if co-deposition of SiC and Si exists; SiC and carbon can be co-deposited if there is co-deposition of SiC, Si and C. The mole of SiC increases rapidly with the temperature while carbon is the opposite, which shows that more pure SiC can be obtained with the increase of temperature.

    3.2 Kinetics of deposition

    Deposition rate of SiC films strongly depends on chemical reaction kinetics, which additionally influences the formation of micro-structures. Among the parameters dominating the CVD process, temperature, substrate length and concentration of reactants (or supersaturation) play the most important roles.

    3.2.1

    Deposition rates as a function of substrate length are shown in Fig. 6. A substrate length of 40 mm corresponds to a residence time of 1.0 s for all the experiments. Deposition rates at 900 and 950°C are negligible, which are not included in the figures.

    Figure 6 Surface-related deposition rates as a function of substrate length at various temperatures□?1000°C;○?1050°C;△?1100°C

    Deposition rates at 1000 and 1050°C increase with substrate length, which means deposition of SiC is not only from the reactions between feeding gases of methane and silicon tetrachloride but also from their derived reactive species formed in the gas phase [17]. This conclusion is more prominent if the decreasing of the SiCl4/CH4concentrations with prolongation of substrate length is considered. Considering the very low deposition rate when the substrate length is extrapolated to zero even at a temperature as high as 1100°C, contribution of more reactive species progressively formed in the gas phase to the deposition rate is dominated. As the temperature is low (1000°C), deposition rate increases slowly with increasing of substrate length, but a dramatic increase of deposition rate is achieved with the substrate length above 3.5 cm. This phenomenon exists also in the cases of higher temperatures of 1050 and 1100°C, but the substrate lengths shift to lower values,.. about 1.5 cm at 1050°C, and 1 cm at 1100°C, respectively. This shift should be caused by an acceleration of reactive precursors formation in the gas phase. A maximum deposition rate is obtained at a substrate length of 3 cm with the temperature of 1100°C. Decreasing of the deposition rate afterward therefore is caused by a depletion of reactive species in the gas phase. Deposition rates obtained at 1050°C and 1100°C increase when the substrate length is above 1 cm or 1.5 cm, which clearly shows an overcoming of induction period for the formation of reactive precursors [5], such as SiH2Cl2, SiHCl3, or SiCl2,.

    3.2.2

    The total deposition rate as a function of temperature is shown in Fig. 7, which indicates a two-stage deposition process, low temperature (below 1000°C) and high temperature regimes (above 1000°C). By analyzing the results it can be concluded that decomposition of SiCl4mainly leads to the formation of small molecular or radical species, such as SiCl3, HSiCl3, SiCl2,(see Fig. 3).

    Decomposition of methane below 1000°C mainly forms CH3and C2species when the residence time is shorter than 1s, which results in the small deposition rate of SiC from these small species because of limitation of surface active sites [20]. However, decomposition of SiCl4and CH4at the high temperature regime leads to the formation of carbosilanes or high molecule of carbosilanes. Major reactions are as follows according to the model suggested by Zhang and Hüttinger [17]:

    Influence of temperature on the deposition rate are additionally analysed by plotting of a logarithmic deposition rate as a function of reciprocal temperature. Fig. 7 (b) shows the calculated results based on Fig. 7 (a) according to the well-known Arrhenius equation, which gives the dependence of the rate constantof chemical reactions on the temperature(in Kelvin) and activation energy, as shown below:

    whereis the pre-exponential factor or simply the prefactor andis the gas constant.

    The calculated result shows an apparent activation energy of 152 kJ·mol-1while temperature above 1050°C where the rate increases with temperature, which is close with MTS as precursor in the literature [2].

    According to the above kinetic results, chemical vapor deposition of SiC is therefore a result of strong interaction between homogeneous gas phase and heterogeneous surface reactions. Decomposition of precursors and their reactions in the gas phase are combined with surface nucleation or growth. The microstructure of such layer is therefore influenced strongly by the nucleation or growth of reactive species from the gas phase.

    Figure 7 Total surface-related deposition rates as a function of temperature

    3.3 Microstructure and morphologies of the deposits

    If decomposition of SiCl4and CH4is followed by a gas phase nucleation, the resulting product is a powder. If the reaction steps or nucleation occur on the surface of a substrate, surface layers therefore are formed. The structure-property relationship of such layers is best approached by considering the mechanism of nucleation and growth in condensation from the vapor phase. For a given substrate-vapor combination, the nucleation and growth kinetics are decided by two major factors [21]: the supersaturation (related to the concentration of adsorbed species on the surface) and the temperature (related to their mobility). Therefore, the CVD process of layer growth or surface nucleation can be understood by analysis of the microstructures of the deposits.

    3.3.1

    Figure 8 shows X-ray diffraction (XRD) results of the coatings deposited at 1050°C (a) and 1100°C (b). For two cases, pure SiC is obtained with good crystal types at all substrate lengths. Diffraction angles on 35.73°, 60.13°, 71.95° and 75.70° are attributed to cubic silicon carbide and correspond to the crystal planes of (111), (220), (311) and (222), respectively [Figs. 8 (a) and 8 (b)]. Therefore, the preferred deposition orientation in the SiC layer is (111) planes (planes distance is 0.25193 nm and the crystal lattice constant is 0.452 nm), which is aligned parallel to the substrate, and the preferred orientation is enhanced additionally by increasing the temperature from 1050 to 1100°C.

    Figure 8 XRD patterns of CVD SiC at 1050 and 1100°C

    Figure 9 SEM micrographs of CVD SiC at different temperatures

    3.3.2

    According to the mechanism of chemical vapor deposition, the microstructure of deposit is controlled by two processes [22]: the formation and the growth of the crystalline. The temperature of the reaction system and the supersaturation of the reactants are the driving forces during the process.

    3.3.2.1

    The scanning electron microscopy (SEM) morphologies of the films at various temperatures are shown in Fig. 9, which indicates formation of hexangular facet structure of SiC (1100 and 1050°C). Average size of these facet structures is about 200 nm, which maybe or may be not correspond to a real crystal size of SiC. A granular pebble structure is obtained at low temperatures (1000 and 900°C), with an average size of pebble structure between 30 and 50 μm.

    3.3.2.2

    The concentration of reactants changes with the substrate position, which results in the different morphology and crystal size of the deposits.

    Surface morphologies of SiC deposited at 1050°C with various substrate lengths are shown in Fig. 10. A ratio of carbon to silicon is 1.0034 detected with energy- dispersive X-ray (EDAX) elementary analysis indicates the pure silicon carbide (not shown). Surface morphology changes greatly with the substrate length. With increasing of substrate length more compact and smooth surface is obtained and formation of hexangular facet structure of SiC is promoted even with an increased deposition rate [see Fig. 7 (b)], which proves that the facet crystallinity can be improved with increasing of substrate length.

    According to the deposition rate, the granular pebble structure is from small species leading to formation of very fine nucleus. However, the facet structure of SiC are from more reactive gas phase species with much higher deposition rate, and the facet structure with crystallite sizes above 200 nm normally can only be observed at very high temperature CVD process.

    SiC crystal size is sensitive to concentration of SiCl4. The relation of supersaturation and the nucleus size by Gibbs-Thomson law [23] is

    From Eq. (7) it follows that increasing the supersaturation of reactants, the nucleus sizeincreases exponentially. When the concentration is low, high temperature liquid drop containing elements of Si, C, H and Cl can not be formed on the boundary layer over the substrate materials because of lower supersaturation. The controlling step of chemical vapor deposition is changed from liquid nucleation to solid nucleation. The gas phase diffuses rapidly in the boundary layer and formed the tiny SiC grain by the inorganic nucleation. The deposition rate decreases rapidly with the decrease of concentration, which results in the thinner layers of coating at the same temperature, pressure and time.

    Therefore, the induction of active species such as SiH2Cl2, SiHCl3and SiCl2formed from the decomposition of SiCl4influences not only the deposition rate but also the quality of formed film. Because the concentration of these reactive species increases as the gas flows down the reactor, an improved crystallization with larger size of SiC can be enhanced by a prolonged reactor length, or higher initial SiCl4partial pressure, which was not changed in the study.

    Figure 10 SEM micrographs (with lower and high magnifications) of thin film formed at various substrate lengths

    4 CONCLUSIONS

    Summarize the above results and discussions, some conclusions can be drawn as follows:

    (1) Deposition of SiC from the system of SiCl4-CH4-H2is a result of strong interaction between homogeneous gas phase and heterogeneous surface reactions, in which carbosilanes such as SiH2Cl2, SiHCl3, or SiCl2are formed from the decomposition of SiCl4and CH4. The apparent activation energy is about 152 kJ·mol-1.

    (2) The deposit film consists of pure β-SiC with the (111) plane as the preferred deposition orientation, with a surface morphology of hexangular facet structure and granular pebble.

    (3) Microstructures of the deposits are influenced strongly by the nucleation or growth of species from the gas phase, which is decided by the temperature and the supersaturation. Hexangular facet structure of SiC is the typical morphology of high temperature deposition, and granular pebble structure occurs at lower temperatures.

    1 Kim, H.S., Choi, D.J., “Effect of diluent gases on growth behavior and characteristics of chemically vapor deposited silicon carbide films”,...., 82, 331-337 (1999).

    2 Cagliostro, D.E., Riccitiello, S.R., “Model for the formation of silicon carbide from the pyrolysis of dichlorodimethylsilane in hydrogen (I) Silicon formation from chlorosilane”,...., 76 (1), 39-48 (1993).

    3 Cagliostro, D.E., Riccitiello, S.R., “Model for the formation of silicon carbide from the pyrolysis of dichlorodimethylsilane in hydrogen (II) Silicon carbide formation from silicon and methane”,...., 76 (1), 49-53 (1993).

    4 Cagliostro, D.E., Riccitiello, S.R., “Comparison of the pyrolysis products of dichlorodimethylsilane in the chemical vapor deposition of silicon carbide on silica in hydrogen or argon”,....,77 (10), 2721-2726 (1994).

    5 Takeuchi, T., Egashira, Y., Osawa, T., Komiyama, H., “A kinetic study of the chemical vapor deposition of silicon carbide from dichlorodimethylsilane precursors”,..., 145 (4), 1277-1284 (1998).

    6 Papasouliotis, G.D., Sotirchos, S.V., “On the homogeneous chemistry of the thermal decomposition of methyltrichlorosilane: Thermodynamic analysis and kinetic modeling”,..., 141 (6), 1599-1611 (1994).

    7 Besmann, T.M., Sheldon, B.W., Lowden, R.A., Stinton, D.P., “Vapor-phase fabrication and properties of continuous-filament ceramic composites”,, 253, 1104-1109 (1991).

    8 Sotirchos, S.V., Papasouliotis, G.D., “Experimental study of the atmospheric pressure chemical vapor deposition of silicon carbide from methyltrichlorosilane”,..., 14, 3397-3409 (1999).

    9 Loumagne, F., Langlais, F., Naslain, R., “Reactional mechanisms of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3/H2gas precursor”,.., 155, 205-213 (1995).

    10 Loumagne, F., Langlais, F., Naslain, R., “Reactional mechanisms of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3/H2gas precursor”,.., 155, 198-204 (1995).

    11 Sone, H., Kaneko, T., Miyakawa, N., “measurements and growth kinetics of silicon carbide chemical vapor deposition from methyltrichlorosilane”,.., 219, 245-252 (2000).

    12 Kaneko, T., Okuno, T., Yumoto, H., “Growth kinetics of silicon carbide CVD”,.., 91 (4), 599-604 (1988).

    13 Lu, Y.M., Leu, I.C., “Microstructural study of residual stress in chemically vapor deposited B-SiC”,., 124, 262-265 (2000).

    14 Vorobev, A.N., Karpov, S.Y., Zhmakin, A.I., Lovtsus, Y.N., “Effect of gas-phase nucleation on chemical vapor deposition of silicon carbide”,.., 211, 343-346 (2000).

    15 Reznik, B., Gerthsen, D., Zhang, W.G., Hüttinger, K.J., “Microstructure of SiC deposited from methyltrichlorosilane”,...., 23, 1499-1508 (2003).

    16 Zhang, W.G., Hüttinger, K.J., “CVD of SiC from methyltrichlorosilane. Deposition rates”,..., 7 (4), 167-172 (2001).

    17 Zhang, W.G., Hüttinger, K.J., “CVD of SiC from methyltrichlorosilane. Composition of the gas phase and the deposit”,..., 7 (4), 173-181 (2001)

    18 Habuka, H., Watanabe, M., Nishida, M., Sekiguchi, T., “Polycrystalline silicon carbide film deposition using monomethylsilane and hydrogen chloride gases”,., 201, 8961-8965 (2007).

    19 Jung, Y.G., Park, S.W., Choi, S.C., “Effect of CH4and H2on CVD of SiC and TiC possible fabrication of SiC/TiC/C FGM”,.., 30, 339-345 (1997).

    20 Hu, Z.J., Hüttinger, K.J., “Mechanisms of carbon deposition—A kinetic approach”,, 40 (4), 624-8 (2002).

    21 Zheng, C.Q., Ran, J.G., New Inorganic Materials, Science Press, Beijing, 87-89 (2003). (in Chinese)

    22 Zhang, W.G., “Chemical vapor deposition of carbon”, Chemical Vapor Deposition—From Hydrocarbon to Carbon, Science Press, Beijing, 44-51 (2007). (in Chinese)

    23 Givargizou, E.J., Current Topic in Materials Science, North-Holland, New York, 56 (1978).

    2008-07-05,

    2009-04-18.

    the One Hundred Talents Program of Chinese Academy of Sciences.

    ** To whom correspondence should be addressed. E-mail: wgzhang@home.ipe.ac.cn

    猜你喜歡
    楊艷
    不同清洗方法(2種)對供應(yīng)室器械的清洗效果觀察
    健康護理(2022年3期)2022-05-26 02:27:49
    頭韻的英漢翻譯在《學(xué)術(shù)英語》的實踐和研究
    核心素養(yǎng)導(dǎo)向下的影視英語教學(xué)策略及實踐
    新生兒護理中細節(jié)護理管理的應(yīng)用價值研究
    藏嬌的金屋翻了十倍,原配夫人歸國搶房了
    A Walk In The Forest
    我是寶貝
    曬曬我的語文作業(yè)
    Une scène de ménage
    這招最靈
    小小說月刊(2014年2期)2014-02-26 03:24:24
    亚洲九九香蕉| 在线视频色国产色| 国产精品爽爽va在线观看网站 | 欧美激情久久久久久爽电影 | 女性生殖器流出的白浆| 桃红色精品国产亚洲av| 高清在线国产一区| 精品福利观看| av欧美777| 日本免费a在线| 真人一进一出gif抽搐免费| 欧美成人免费av一区二区三区| 国产精品电影一区二区三区| 超碰97精品在线观看| 免费av毛片视频| 免费人成视频x8x8入口观看| 国产激情久久老熟女| 不卡av一区二区三区| 999久久久国产精品视频| 亚洲男人天堂网一区| 亚洲一区二区三区欧美精品| 欧美大码av| 91在线观看av| 一级a爱片免费观看的视频| 亚洲狠狠婷婷综合久久图片| 成人国语在线视频| 欧美乱色亚洲激情| 亚洲成人精品中文字幕电影 | 淫妇啪啪啪对白视频| 欧美成人午夜精品| 黄色女人牲交| 日韩大码丰满熟妇| 久久久久久久久免费视频了| ponron亚洲| 亚洲激情在线av| 99在线人妻在线中文字幕| 久久国产乱子伦精品免费另类| 国产熟女午夜一区二区三区| 国产成人精品久久二区二区91| 黄片小视频在线播放| av在线播放免费不卡| 新久久久久国产一级毛片| 欧美不卡视频在线免费观看 | 国产野战对白在线观看| 一边摸一边做爽爽视频免费| 欧美日韩av久久| 国产精品1区2区在线观看.| 成人特级黄色片久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 一区二区日韩欧美中文字幕| 久久精品影院6| 亚洲av第一区精品v没综合| 国产精品成人在线| 夜夜夜夜夜久久久久| 在线播放国产精品三级| 真人做人爱边吃奶动态| 欧美精品啪啪一区二区三区| 在线观看www视频免费| 在线观看一区二区三区激情| 美女高潮到喷水免费观看| 日韩免费高清中文字幕av| 丝袜在线中文字幕| 一级a爱片免费观看的视频| 一区二区日韩欧美中文字幕| 欧美激情极品国产一区二区三区| 亚洲熟妇熟女久久| 天天影视国产精品| 国产一区二区三区视频了| 热99国产精品久久久久久7| 看免费av毛片| 国产高清国产精品国产三级| 久久青草综合色| 欧美日韩瑟瑟在线播放| 妹子高潮喷水视频| 午夜影院日韩av| 美女高潮喷水抽搐中文字幕| 国内毛片毛片毛片毛片毛片| 国产精品日韩av在线免费观看 | 99国产精品一区二区三区| 欧美精品一区二区免费开放| 久久性视频一级片| 免费在线观看黄色视频的| 欧美中文综合在线视频| 国产1区2区3区精品| 老熟妇乱子伦视频在线观看| 纯流量卡能插随身wifi吗| 国产精品香港三级国产av潘金莲| 成年人免费黄色播放视频| 在线看a的网站| 欧美日韩福利视频一区二区| √禁漫天堂资源中文www| 丝袜美足系列| 999久久久精品免费观看国产| 日本 av在线| 叶爱在线成人免费视频播放| 午夜精品在线福利| 9191精品国产免费久久| 国产av在哪里看| 嫩草影视91久久| 亚洲少妇的诱惑av| 午夜免费成人在线视频| 日韩 欧美 亚洲 中文字幕| 国产精品影院久久| 嫩草影视91久久| 日韩精品免费视频一区二区三区| 久久久水蜜桃国产精品网| av网站免费在线观看视频| 日本wwww免费看| 伦理电影免费视频| 欧美性长视频在线观看| 嫩草影视91久久| 欧美黄色片欧美黄色片| 亚洲人成77777在线视频| 国产又爽黄色视频| 亚洲美女黄片视频| 大型黄色视频在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 国产xxxxx性猛交| 国产一区二区激情短视频| 一个人观看的视频www高清免费观看 | 最近最新中文字幕大全免费视频| 日韩有码中文字幕| 久久午夜综合久久蜜桃| 国产精品国产高清国产av| 好男人电影高清在线观看| 欧美激情 高清一区二区三区| 一个人观看的视频www高清免费观看 | 日韩精品青青久久久久久| 99精品欧美一区二区三区四区| 亚洲av第一区精品v没综合| 青草久久国产| 亚洲欧美激情综合另类| 色综合欧美亚洲国产小说| 人妻久久中文字幕网| 午夜久久久在线观看| www.熟女人妻精品国产| 久久影院123| 黄色丝袜av网址大全| 欧美乱码精品一区二区三区| 国产亚洲av高清不卡| 日本欧美视频一区| 国产精品自产拍在线观看55亚洲| 中文欧美无线码| 午夜久久久在线观看| 在线十欧美十亚洲十日本专区| 乱人伦中国视频| 99热只有精品国产| 国产亚洲精品久久久久5区| 亚洲一区二区三区欧美精品| 国产伦人伦偷精品视频| 在线看a的网站| 视频在线观看一区二区三区| 日韩视频一区二区在线观看| 亚洲五月天丁香| 性欧美人与动物交配| 在线观看免费高清a一片| 日韩中文字幕欧美一区二区| 日韩精品免费视频一区二区三区| 国内毛片毛片毛片毛片毛片| 黄色片一级片一级黄色片| 亚洲精品久久午夜乱码| 久热爱精品视频在线9| 啦啦啦免费观看视频1| 国产精品自产拍在线观看55亚洲| 视频区图区小说| 国产1区2区3区精品| 国产99白浆流出| av在线播放免费不卡| 亚洲男人天堂网一区| 国产成人精品在线电影| 国产有黄有色有爽视频| 久久99一区二区三区| 夜夜夜夜夜久久久久| 成人18禁高潮啪啪吃奶动态图| 99国产精品一区二区三区| 91字幕亚洲| 亚洲精品国产精品久久久不卡| 国产成人影院久久av| 丰满人妻熟妇乱又伦精品不卡| 美女国产高潮福利片在线看| 欧美av亚洲av综合av国产av| 国产一区二区三区在线臀色熟女 | 国产精品1区2区在线观看.| 日本 av在线| 69av精品久久久久久| 国产单亲对白刺激| 午夜福利影视在线免费观看| 久久久国产欧美日韩av| 久久久久久大精品| 色婷婷av一区二区三区视频| 日韩免费高清中文字幕av| 人人妻,人人澡人人爽秒播| 十八禁网站免费在线| 日本免费a在线| 国产亚洲精品久久久久5区| 18禁美女被吸乳视频| 交换朋友夫妻互换小说| 99久久国产精品久久久| 天堂影院成人在线观看| 又黄又爽又免费观看的视频| 亚洲国产精品sss在线观看 | 无人区码免费观看不卡| 一级毛片精品| ponron亚洲| 午夜福利免费观看在线| 国产精品美女特级片免费视频播放器 | 精品久久久久久久毛片微露脸| bbb黄色大片| 久久久久久久久中文| 99久久人妻综合| 欧美日韩乱码在线| 99久久精品国产亚洲精品| 看免费av毛片| 在线观看66精品国产| 日本免费一区二区三区高清不卡 | 中文字幕最新亚洲高清| 男男h啪啪无遮挡| 一边摸一边抽搐一进一出视频| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲综合一区二区三区_| 成人国语在线视频| 岛国在线观看网站| 国产精品香港三级国产av潘金莲| 久久99一区二区三区| av片东京热男人的天堂| 亚洲国产中文字幕在线视频| 人人妻人人添人人爽欧美一区卜| 午夜91福利影院| 国产精品亚洲一级av第二区| 男女下面进入的视频免费午夜 | 国产在线精品亚洲第一网站| 变态另类成人亚洲欧美熟女 | 男女床上黄色一级片免费看| 亚洲黑人精品在线| 18禁黄网站禁片午夜丰满| 亚洲在线自拍视频| 国产成人免费无遮挡视频| 每晚都被弄得嗷嗷叫到高潮| 美女高潮到喷水免费观看| 精品国产一区二区久久| 免费一级毛片在线播放高清视频 | 精品一区二区三区av网在线观看| 国产亚洲精品一区二区www| 午夜激情av网站| 久久亚洲精品不卡| 一级片免费观看大全| 久久草成人影院| 香蕉久久夜色| 国产真人三级小视频在线观看| 免费人成视频x8x8入口观看| 伦理电影免费视频| 日本黄色视频三级网站网址| 长腿黑丝高跟| x7x7x7水蜜桃| 欧美性长视频在线观看| 99精国产麻豆久久婷婷| 在线观看免费高清a一片| 久久精品国产清高在天天线| 欧美另类亚洲清纯唯美| 丁香欧美五月| 两人在一起打扑克的视频| 999久久久精品免费观看国产| 亚洲一码二码三码区别大吗| 国产成+人综合+亚洲专区| 亚洲精品一二三| 视频区图区小说| 国产成人精品久久二区二区免费| av中文乱码字幕在线| 日韩欧美三级三区| 亚洲第一青青草原| 国产成人精品在线电影| 国产黄a三级三级三级人| 欧美成狂野欧美在线观看| 国产人伦9x9x在线观看| 午夜激情av网站| a级片在线免费高清观看视频| 国产精品成人在线| 亚洲精品久久午夜乱码| 日本免费一区二区三区高清不卡 | 色哟哟哟哟哟哟| 丰满的人妻完整版| 久久人妻熟女aⅴ| 国产精品亚洲av一区麻豆| 欧美 亚洲 国产 日韩一| av在线播放免费不卡| 男人的好看免费观看在线视频 | 亚洲精品在线美女| 精品久久久久久久毛片微露脸| 精品午夜福利视频在线观看一区| 香蕉久久夜色| 一级a爱片免费观看的视频| 亚洲av日韩精品久久久久久密| 香蕉国产在线看| 亚洲男人的天堂狠狠| 免费在线观看视频国产中文字幕亚洲| 国产欧美日韩一区二区三区在线| 黄色视频不卡| 久久久国产成人精品二区 | 久久人妻福利社区极品人妻图片| 亚洲精品国产一区二区精华液| 国产亚洲精品久久久久久毛片| 19禁男女啪啪无遮挡网站| 成人影院久久| 久久精品国产清高在天天线| svipshipincom国产片| 村上凉子中文字幕在线| 欧美丝袜亚洲另类 | 欧美在线一区亚洲| 久久草成人影院| 久久久久久久久中文| www.自偷自拍.com| 亚洲狠狠婷婷综合久久图片| 十分钟在线观看高清视频www| 99国产精品一区二区三区| 另类亚洲欧美激情| 后天国语完整版免费观看| 亚洲av片天天在线观看| 一a级毛片在线观看| 国产精品美女特级片免费视频播放器 | 日本精品一区二区三区蜜桃| 18禁裸乳无遮挡免费网站照片 | 亚洲精品一卡2卡三卡4卡5卡| 在线观看一区二区三区激情| 亚洲七黄色美女视频| av网站在线播放免费| 曰老女人黄片| 男女床上黄色一级片免费看| 日本一区二区免费在线视频| 欧美精品啪啪一区二区三区| 宅男免费午夜| av片东京热男人的天堂| 亚洲五月色婷婷综合| 欧美日韩中文字幕国产精品一区二区三区 | 女性生殖器流出的白浆| 真人做人爱边吃奶动态| 两个人免费观看高清视频| 国产欧美日韩一区二区精品| 美女福利国产在线| 女人高潮潮喷娇喘18禁视频| 久久中文字幕一级| 大码成人一级视频| 国产精品98久久久久久宅男小说| 99re在线观看精品视频| 99国产精品一区二区蜜桃av| 国产精品 欧美亚洲| 老司机靠b影院| 俄罗斯特黄特色一大片| 国产精品永久免费网站| 成人国产一区最新在线观看| cao死你这个sao货| 男男h啪啪无遮挡| 欧美午夜高清在线| 18禁黄网站禁片午夜丰满| 老司机在亚洲福利影院| 日韩欧美三级三区| x7x7x7水蜜桃| 亚洲一区中文字幕在线| 日韩欧美三级三区| 中文欧美无线码| 啦啦啦在线免费观看视频4| 亚洲 欧美 日韩 在线 免费| 欧美激情 高清一区二区三区| 国产欧美日韩一区二区精品| 欧美日韩国产mv在线观看视频| av在线播放免费不卡| 国产精品美女特级片免费视频播放器 | 亚洲伊人色综图| 日韩欧美免费精品| av片东京热男人的天堂| 国产精品乱码一区二三区的特点 | 国产精品香港三级国产av潘金莲| 久久久国产成人免费| 手机成人av网站| а√天堂www在线а√下载| 国产精品乱码一区二三区的特点 | 人妻久久中文字幕网| 亚洲美女黄片视频| 麻豆国产av国片精品| 欧美 亚洲 国产 日韩一| 美女高潮喷水抽搐中文字幕| 国产麻豆69| 午夜91福利影院| 国产成人系列免费观看| 亚洲国产欧美一区二区综合| 脱女人内裤的视频| 巨乳人妻的诱惑在线观看| 午夜免费激情av| x7x7x7水蜜桃| 欧美日韩av久久| 精品福利永久在线观看| 老司机在亚洲福利影院| 十八禁人妻一区二区| 激情视频va一区二区三区| 久久久久九九精品影院| 老司机靠b影院| 免费在线观看黄色视频的| 午夜激情av网站| 精品久久久久久久毛片微露脸| 免费av中文字幕在线| 欧美日韩亚洲高清精品| 国产亚洲精品久久久久5区| 免费av中文字幕在线| 国产无遮挡羞羞视频在线观看| 日韩视频一区二区在线观看| 日韩欧美在线二视频| 悠悠久久av| 在线看a的网站| 黄片播放在线免费| 精品一区二区三卡| 视频区图区小说| 丰满饥渴人妻一区二区三| 中亚洲国语对白在线视频| 黑人巨大精品欧美一区二区mp4| 超色免费av| 欧美日韩黄片免| 在线观看免费午夜福利视频| 涩涩av久久男人的天堂| 精品久久久久久成人av| 99热只有精品国产| 免费一级毛片在线播放高清视频 | 亚洲精华国产精华精| 精品久久久精品久久久| 18禁国产床啪视频网站| 很黄的视频免费| 女性被躁到高潮视频| 亚洲男人天堂网一区| 午夜老司机福利片| 午夜激情av网站| 国产午夜精品久久久久久| 成年女人毛片免费观看观看9| 久久精品91蜜桃| 人成视频在线观看免费观看| 欧美日韩国产mv在线观看视频| 亚洲熟妇熟女久久| 在线观看免费高清a一片| 叶爱在线成人免费视频播放| 水蜜桃什么品种好| 日本免费一区二区三区高清不卡 | 国产精品久久久久久人妻精品电影| 99久久99久久久精品蜜桃| 国产蜜桃级精品一区二区三区| 三级毛片av免费| 黑人巨大精品欧美一区二区mp4| 免费高清在线观看日韩| 国产高清国产精品国产三级| 午夜免费成人在线视频| 99riav亚洲国产免费| 757午夜福利合集在线观看| 午夜福利在线免费观看网站| 日日夜夜操网爽| 99精国产麻豆久久婷婷| 亚洲一区中文字幕在线| 天堂中文最新版在线下载| 精品高清国产在线一区| 亚洲男人天堂网一区| 欧美一级毛片孕妇| 免费在线观看影片大全网站| 精品久久久久久久毛片微露脸| 精品第一国产精品| 日本五十路高清| 欧美精品一区二区免费开放| 在线观看66精品国产| 天天添夜夜摸| 午夜免费鲁丝| 久久精品国产清高在天天线| 99精品在免费线老司机午夜| 黄频高清免费视频| 成人特级黄色片久久久久久久| 18禁黄网站禁片午夜丰满| 亚洲国产毛片av蜜桃av| 91大片在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 成年人黄色毛片网站| 国产亚洲精品久久久久久毛片| 老鸭窝网址在线观看| 色综合婷婷激情| 在线免费观看的www视频| 日本撒尿小便嘘嘘汇集6| 少妇 在线观看| 国产精品成人在线| 日韩精品中文字幕看吧| 成在线人永久免费视频| 黄色怎么调成土黄色| 国产亚洲欧美在线一区二区| 又黄又爽又免费观看的视频| 亚洲一区二区三区欧美精品| 精品福利观看| 久久久久久久久久久久大奶| 岛国在线观看网站| 日韩欧美免费精品| 看片在线看免费视频| 久久亚洲精品不卡| 久久久久久亚洲精品国产蜜桃av| 久久婷婷成人综合色麻豆| 国产成人精品无人区| av电影中文网址| videosex国产| 久久久久久久久免费视频了| 国产免费av片在线观看野外av| 精品欧美一区二区三区在线| 精品人妻1区二区| 热99re8久久精品国产| 日本免费一区二区三区高清不卡 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品粉嫩美女一区| 欧美日韩瑟瑟在线播放| 69精品国产乱码久久久| 国产一区在线观看成人免费| 制服人妻中文乱码| 久久精品国产清高在天天线| 国产日韩一区二区三区精品不卡| 宅男免费午夜| 成人18禁高潮啪啪吃奶动态图| 久久精品国产亚洲av香蕉五月| 国产成人欧美在线观看| 伊人久久大香线蕉亚洲五| 成人黄色视频免费在线看| 一边摸一边做爽爽视频免费| 91av网站免费观看| 亚洲国产欧美网| 国产精品日韩av在线免费观看 | 黄色怎么调成土黄色| 久久精品人人爽人人爽视色| 国产精品1区2区在线观看.| 99热国产这里只有精品6| 久久国产精品男人的天堂亚洲| 高清在线国产一区| 日韩欧美三级三区| 亚洲在线自拍视频| 亚洲视频免费观看视频| 少妇的丰满在线观看| 亚洲少妇的诱惑av| 欧美日韩一级在线毛片| 欧美成人午夜精品| 午夜福利在线观看吧| 岛国在线观看网站| 69av精品久久久久久| 一边摸一边抽搐一进一出视频| 久久99一区二区三区| 老司机深夜福利视频在线观看| www日本在线高清视频| 亚洲av熟女| 久久久久久免费高清国产稀缺| 首页视频小说图片口味搜索| 国产成年人精品一区二区 | 久久99一区二区三区| 少妇粗大呻吟视频| 99久久国产精品久久久| 新久久久久国产一级毛片| 国产97色在线日韩免费| 韩国精品一区二区三区| 热99re8久久精品国产| 男人舔女人的私密视频| 成人黄色视频免费在线看| 999久久久精品免费观看国产| 18禁裸乳无遮挡免费网站照片 | 久久中文看片网| 国产日韩一区二区三区精品不卡| 18禁国产床啪视频网站| 黄片播放在线免费| 啦啦啦 在线观看视频| 亚洲色图av天堂| 久99久视频精品免费| 欧美黑人精品巨大| netflix在线观看网站| 这个男人来自地球电影免费观看| 人人妻,人人澡人人爽秒播| 91大片在线观看| 黄频高清免费视频| 成人av一区二区三区在线看| 日韩欧美在线二视频| 亚洲人成77777在线视频| 黄网站色视频无遮挡免费观看| 国产精品亚洲av一区麻豆| 18禁国产床啪视频网站| 日日爽夜夜爽网站| 国产精品自产拍在线观看55亚洲| 国产亚洲精品一区二区www| 久久人妻福利社区极品人妻图片| 黑人操中国人逼视频| 久久久久久久午夜电影 | 两个人免费观看高清视频| 正在播放国产对白刺激| 亚洲精品一二三| 脱女人内裤的视频| 亚洲中文av在线| 国产伦一二天堂av在线观看| cao死你这个sao货| 成人特级黄色片久久久久久久| 一区二区三区精品91| 18禁观看日本| 色婷婷av一区二区三区视频| 国产又爽黄色视频| 色尼玛亚洲综合影院| 美女高潮喷水抽搐中文字幕| 午夜91福利影院| 午夜精品在线福利| 久久精品aⅴ一区二区三区四区| 欧美日韩国产mv在线观看视频| 啪啪无遮挡十八禁网站| 成人特级黄色片久久久久久久| bbb黄色大片| 日本欧美视频一区| 99久久综合精品五月天人人| 美女午夜性视频免费| www.精华液| a级片在线免费高清观看视频| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区激情短视频| 国产亚洲精品一区二区www| 亚洲av第一区精品v没综合| 国产精品免费视频内射| 国产欧美日韩一区二区精品| 韩国精品一区二区三区| 久久久国产成人精品二区 |