• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Effect of Hydrophobic Modification of Zeolites on CO2 Absorption Enhancement*

    2009-05-14 08:24:34LUSumin盧素敏MAYouguang馬友光ZHUChunying朱春英SHENShuhua沈樹華andHEQing何清

    LU Sumin (盧素敏), MA Youguang (馬友光)**, ZHU Chunying (朱春英) SHEN Shuhua (沈樹華) and HE Qing (何清)

    ?

    The Effect of Hydrophobic Modification of Zeolites on CO2Absorption Enhancement*

    LU Sumin (盧素敏)1, MA Youguang (馬友光)2,**, ZHU Chunying (朱春英)2, SHEN Shuhua (沈樹華)2and HE Qing (何清)1

    1Department of Material and Chemical, Tianjin Polytechnic University, Tianjin 300160, China2School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China

    Two methods of the modification of zeolite were employed: framework element modification and surface coating, and the influence of the zeolites before and after modification on the CO2absorption was investigated. It was found that although hydrophobicity of zeolite could be obtained by means of the surficial organic coating in the method of surface coating modification, partial channel of zeolite would be plugged, as a result, leading to the surface area reducing greatly. Distinctively, the framework element modification method could maintain not only complete lattice structure and adsorption capability of zeolite, but would also obtain a good hydrophobic property. Consequently, significant enhancement on gas absorption by this modified zeolite was achieved and up to a maximum enhancement factor of 2.62. This shows that the solid particles with good enhancement role to gas absorption need not only good adsorptive capability but also certain hydrophobicity. An unsteady heterogeneous model was employed to predict enhancement factor and the calculated results agree well with the experimental data.

    zeolite, modification, enhancement of gas absorption, hydrophobicity

    1 INTRODUCTION

    Many researches [1-3] have reported that mass transfer rate may be enhanced significantly by the presence of certain fine solid particles. Various mechanisms and models were developed to explain the effect. According to Demmink. [4] and Wimmer. [5, 6], the solid particles with enhancement effect to gas absorption should be hydrophobic and tend to adhere themselves to the gas-liquid interface. The hydrophobic solid particle commonly used is activated carbon [7, 8], which requires to be pretreated before usage due to the strong adsorption to organic molecules, and accordingly its application is limited. Zeolite is also an adsorbent available commercially and easy to get with a high adsorption affinity to many gases. Undesirably, little enhancement of gas absorption was observed in aqueous solutions due to its strong hydrophilicy. Recently, hydrophobic zeolites have gained much attention due to their ability to selectively remove organic pollutants from the air stream [9]. However, study on their absorption enhancement effect has not been reported. In this study, hydrophobic modification of zeolite was carried out by different methods, and the influence of zeolite before and after modification on gas absorption was investigated experimentally. An unsteady heterogeneous model was employed to predict the enhancement factors.

    2 ExperimentAL

    2.1 Modification of zeolite

    Two modification methods were employed. (1) Framework element modification by which the hydrophobicity was improved through changing the silica- alumina ratio in the skeleton in two ways: (a) acid treatment, the slurry of zeolite with suitable water added was boiled, then fitting HCl (concentration varied from 1mol·L-1to 8 mol·L-1) was dripped gradually and refluxed for 3 h at 100°C, followed by filtrating, washing, drying, and finally calcining for 5 h at 550°C; (b) hydrothermal synthesis combined with acid treatment, zeolite was treated with steam at 550°C in a fixed-bed reactor to dealuminate from the structural skeleton and then dissolving the aluminum residues in the micropores with HCl. The product obtained was then filtrated, dried, and calcinated for 5 h at 500°C to give modified zeolites. (2) Surface coating method, the surface of zeolite was coated by organic molecules without changing silica-alumina ratio. A certain amount of raw zeolite was put into cyclohexane solution with ethyl orthosilicate (PDMS) of a certain concentration, and then impregnated for 18 h at room temperature under electromagnetic stirring. The resulting sample was filtrated and dried at 110°C for 3 h to finally obtain the modified zeolite.

    The silica-alumina ratios were measured by GENESIS EDS from EDAX Corp. of US. The specific surface area was determined using a Gemini V 2380 instrument from Micrometitics Instrument Corp. X-ray diffraction patterns(XRD) were recorded in DISCOVER diffractometer with Cu Karadiation.

    2.2 Gas absorption experiment

    CO2/water(distilled water) was selected as the experimental material and the zeolite particles (particle size: 1-10mm) were introduced to enhance CO2(>99.5% mass fraction) absorption. The absorption experiments were carried out in a thermostatic vessel (Fig. 1). Four symmetrical baffles were mounted to prevent the formation of a horizontal vortex. Two stirrers were employed to mix the gas phase and liquid phase respectively. A cooling coil in the vessel was connected to the thermostatic bath to maintain a constant reaction temperature (298 K±0.1 K).

    Figure 1 Experimental set-up for gas absorption

    1—air inlet valve; 2—junction valve; 3—balance tank; 4—pressure transmitter; 5—pressure difference transmitter (connected with the computer); 6—temperature sensor; 7—magnetic stirrer; 8—cooling coil; 9—gas outlet valve; 10—vacuum value; 11—gas stirrer; 12—liquid stirrer; 13—baffles; 14—stainless steel top; 15—stainless steel vessel; 16—thermostatic bath

    Before each experiment, the vessel was filled with the slurry. Then the liquid was degassed by opening valve 10 until the slurry was equilibrated under the vapor pressure of water, then valve 10 was closed. Open valves 1 and 2 and CO2was fed into cell 3 and vessel 15 up to a fixed pressure. Valves 1 and 2 were then closed rapidly. Turning on the motor of the magnetic stirrer 7, the absorption was started. The absorption processes began with an initial pressure of 0.1MPa. Vessel 3 was a reference cell, a pressure difference transducer was connected between cell 3 and vessel 15. The transducer signal was transmitted to the computer and recorded online. With the value of the recorded pressure difference, the absorption rate could be calculated. Determining the absorption rate of CO2in slurry and pure water respectively, the enhancement factor was obtained.

    3 Theoretical Model

    Figure 2 Sketch map of mass transfer in the slurry

    According to the assumptions, the unsteady-state species balance for the solute can be derived respectively in the two zones.

    3.1 Zone I

    A species balance for the solute in the liquid phase is given by:

    with the following conditions:

    3.2 Zone II

    In the continuous phase of this zone, the balance of the solute can be written as:

    The relevant conditions of Eq. (3) are given by

    In the liquid film wrapping the particles,

    The necessary initial and boundary conditions are:

    wherepis the surface area of the particles, m-1.

    And the boundary condition can be given by

    Sin Eq. (8) is the adsorbed amount of A on solid per unit volume of particle, mol·m-3, andis the average particle-to-interface distance related to the solute concentration. Assuming a uniform distribution of the particle at the gas-liquid interface, thencan be calculated as follows [12]

    The balance for the accumulation of the solute within or on a single particle can be written as:

    with the following initial condition:

    3.3 Absorption rate

    Based on the Higbie penetration model, the absorption rate can be written:

    Ifis the residence time of liquid element, the time-averaged flux follows from:

    3.4 Enhancement factor

    The enhancement factor is defined as

    Assuming that the coverage of the gas-liquid interface can be described by Langmuir-type adhesion isotherm [6, 10]:

    Then the enhancement factors can be written as:

    where the subscript 0 and D are average gas absorption rate in uncovered and covered zone respectively.

    The above equations are solved numerically by gPROMs modeling software (Process System Enterprise Ltd.).

    4 Results and Discussion

    4.1 A comparison of particle properties obtained by different modification methods

    After pressing modified and unmodified zeolite powder into disks, the liquid-solid contact angle was determined with JY-82 angle measuring instrument, and the results are shown in Table 1. From the results, good hydrophobicity can be obtained by both of the two modification methods. Contrarily, when putting a drop of water on the surface of unmodified zeolite, water can spread completely and permeate into the particle quickly, indicating the strong hydrophilicity of unmodified zeolite.

    Table 1 Liquid-solid contact angle by different treatments

    The surface modification method did not change the silica alumina ratio of zeolite and the hydrophobicity of zeolite obtained was mainly dependent on the property of the organic coating. However, the hydrophobicity of zeolite modified by skeleton modification was obtained by changing the silica alumina ratio of the zeolite skeleton.

    The zeolite crystalline consists of structural units of silicon-oxygen tetrahedrons and alumina-oxygen tetrahedrons. The silicon-oxygen tetrahedrons in which one silica atom bonds to four oxygen atoms meet the valence desire of silica (+4), whereas, an electronegativity is present in Al-O tetrahedrons due to the structure of one trivalent aluminum atom bonding to four oxygen molecules. This imbalance of electrical charges needs to be compensated by some cations which result in the hydrophilicity of zeolites [13]. Thus in order to improve the hydrophobicity of zeolite, the content of aluminum in the crystalline should be decreased [9, 14, 15]. The higher the ratio of silica to aluminum, the stronger the hydrophobicity. The experimental Si/Al ratios are shown in Table 2.

    Table 2 Silica-alumina ratios by different treatments

    X-ray analyses were made for zeolite modified by framework element modification and the XRD patterns show that perfect framework structure and lattice structure of zeolites were maintained and no skeleton collapse was observed in the range of acid concentration discussed (Fig. 3). Furthermore, the experimental results of surface area also indicated that compared with unmodified zeolite, the specific surface area was somewhat increased because some impurities in the channel of zeolite were removed by acid used. However, surface area of zeolite by surface coating modification was reduced greatly because partial channel was covered with organic molecules.

    Figure 3 XRD patterns of modified and unmodified zeolites

    4.2 Influence of modified zeolite on gas absorption

    4.2.1

    Introducing modified zeolite particles to CO2gas absorption system, the enhancement factors of gas absorption as a function of solid concentration (s) are shown in Fig. 4. From the results, significant enhancement of gas absorption rate was obtained by modified zeolites, and the higher the silicon to aluminum ratio, the greater the enhancement factors. The highest enhancement factor was found to be 2.62 at a silicon-aluminum ratio of 123.

    Figure 4 The influence of modified zeolitesby framework element modification method on gas absorption

    SiO2/Al2O3(exp.):■?63;●?86;▲?128

    Due to good hydrophobicity obtained, modified zeolite particles by framework element modification are preferably situated at the gas-liquid interface, resulting in higher concentration of particles near gas-liquid interface than in the bulk [16]. Near the interface, the adsorptive particles are loaded with solute and the concentration gradient of the solute in the mass transfer layer will be increased. After spending a certain time in the interfacial layer, the particles return to the bulk of the liquid where the solute is desorbed and the particles regenerated. With this so-called “shuttle” [16, 17] between the interface and the bulk, gas absorption rate can be enhanced.

    4.2.2

    The results of CO2absorption experiments in suspensions of unmodified and modified zeolite by surface modification are given in Fig. 5. No enhancement of gas absorption rate was found for both the zeolite particles.

    Figure 5 The influence of unmodified and modified zeolites by surface coating on gas absorption

    ■?unmodified zeolite;●?modified zeolite

    Unmodified zeolites with low Si/Al ratio show high affinity to water molecules. When in aqueous solution, most of the surface active sites of zeolites will be covered by water molecules, resulting in the loss of adsorption capability to the solute. On the other hand, although a good hydrophobicity of the modified zeolite by surface method was observed (Table 1), no beneficial effects on gas absorption were obtained. On the contrary, the CO2absorption rate decreased with the solid concentrations(Fig. 5). This phenomenon is due to the fact that the coating layer of ethyl orthosilicate formed on the surface of zeolite disabled its adsorption capability of CO2. When in aqueous solution, a layer of inertial attaching particles will cover part of the gas-liquid interface, leading to the drop of gas absorption rate.

    5 Conclusions

    Two methods of zeolite modification were employed: framework element modification and surface coating, and the influence of the zeolites before and after modification on the CO2absorption was studied. According to the results from both experiment and prediction by present model, the authors could draw out conclusions as follows:

    (1) By means of the surficial organic coating, hydrophobicity was obtained for modified zeolite by surface modification, but meanwhile, the partial particle channel was plugged. As a result, specific surface area of zeolite was decreased greatly.

    (2) The framework element modification method could maintain not only complete lattice structure and adsorption capability of zeolite, a good hydrophobic property could also be obtained. Consequently, significant enhancement on gas absorption by this modified zeolite was achieved and up to a maximum enhancement factor of 2.62, which shows that zeolite particles by framework element modification would be a promising material for the future application.

    (3) Solid particles with good enhancement role to gas absorption need not only adsorptive capability but also certain hydrophobicity.

    (4) An unsteady heterogeneous model was employed to predict enhancement factor and the calculated results agree well with the experimental data.

    NOMENCLATURE

    psolid-liquid interfacial area, m2×m-3

    Asolute concentration, mol×m-3

    A0solute concentration at the interface, mol×m-3

    Dsolute concentration in particle covered zone, mol×m-3

    Sadsorbed amount of A on solid per unit volume of particle, mol×m-3

    Adiffusion coefficient, m2×s-1

    pparticle diameter, m

    enhancement factor

    mass transfer rate, mol×m-2×s-1

    pliquid-side mass transfer coefficient, m×s-1

    sparticle adhesion coefficient, m3×kg-1

    particle-to-interface distance, m

    partition coefficient of the solute between the solid and the liquid

    sparticle concentration, kg×m-3

    diameter of particle, m

    distance to the center of the particle, m

    time, s

    distance to the interface, m

    fraction of the interface covered by particles

    maxmaximum coverage

    penetration depth, m

    pliquid film thickness around the particle, m

    pparticle density, kg×m-3

    residence time, s

    particle volume concentration

    1 Kaya, A., Schumpe, A., “Surfactant adsorption rather than ‘shuttle effect’?”,, 60 (22), 6504-6510 (2005).

    2 Ruthiya, K.C., Kuster, B.F.M., Schouten, J.C., “Gas-liquid mass transfer enhancement in a surface aeration stirred slurry reactors”,., 81 (5), 632-639 (2003).

    3 Ruthiya, K.C., van der Schaaf, J., Kuster, B.F.M., Schouten, J.C., “Mechanisms of physical and reaction enhancement of mass transfer in a gas inducing stirred slurry reactor”,..., 96 (1-3), 55-69 (2003).

    4 Demmink, J.F., Mehra, A., Beenackers, A.A.C.M., “Gas absorption in the presence of particles showing interfacial affinity: case of fine sulfur precipitates”,.., 53 (16), 2885-2902 (1998).

    5 Wimmers, O.J., Fortuin, J.M.H., “The use of adhesion of catalyst particles to gas bubbles to achieve enhancement of gas absorption in slurry reactors- (II) Determination of the enhancement in a bubbles containing slurry reactor”,., 43 (2), 313-319 (1988).

    6 Wimmers, O.J., de Sauvage Nolting, H.J.J., Fortuin, J.M.H., “The effect of the size of catalyst particles adhering to bubbles on the enhancement of gas absorption in slurry reactors”,..., 43 (8), 2155-2159 (1988).

    7 Kluytmans, J.H.J., van Wachem, B.G.M., Kuster, B.F.M., Schouten, J.C., “Mass transfer in sparged and stirred reactors: Influence of carbon particles and electrolyte”,., 58 (21), 4719-4728 (2003).

    8 Tinge, J.T., Drinkenburg, A.A.H., “The enhancement of the physical absorption of gases in aqueous activated carbon slurries”,, 50 (6), 937-942 (1995).

    9 Takeuchi, M., Kimura, T., Hidaka, M., Rakhmawaty, D., Anpo, M., “Photocatalytic oxidation of acetaldehyde with oxygen on TiO2/ZSM-5 photocatalysts: Effect of hydrophobicity of zeolites”,, 246 (2), 235-240 (2007).

    10 Vinke, H., Hamersma, P.J., Fortuin, J.M.H., “Enhancement of the gas-absorption rate in agitated slurry reactors by gas-adsorbing particles adhering to gas bubbles”,..., 48 (12), 2197-2210 (1993).

    11 Zhang, G.D., Cai, W.F., Xu, C.J., Zhou, M., “A general enhancement factor model of the physical absorption of gases in multiphase systems”,..., 61 (5), 558-568 (2006).

    12 Junker, B.H., Wang, D.I.C., Hatton, T.A., “Oxygen transfer enhancement in aqueous/perfluorocarbon fermentation systems (II) Theoretical analysis”,.., 35 (2), 586-597 (1990).

    13 Chen, N.Y., “Hydrophobic properties of zeolites”,..., 80 (1), 60-64 (1976).

    14 Camblor, M.A., Corma, A., Iborra, S., Miquel, S., Primo, J., Valencia, S., “Beta zeolite as a catalyst for the preparation of alkyl glucoside surfactants: the role of crystal size and hydorphobicity”,, 172 (1), 76-84 (1997).

    15 Cheng, H., Reinhard, M., “Sorption of trichloroethylene in hydrophobic micro pores of dealuminated Y zeolites and natural minerals”,..., 40 (24), 7694-7701(2006).

    16 Holstvoogd, R.D., van Swaaij, W.P.M., van Dierendonck, L.L., “The absorption of gases in aqueous activated carbon slurries enhanced by adsorbing or catalytic particles”,..., 43 (8), 2181-2187 (1988).

    17 Alper, E., Ozturk, S., “Effect of fine solid particles on gas-liquid mass transfer rate in a slurry reactor”,..., 46 (1), 147-158 (1986).

    18 Holstvoogd, R.D., van der Swaaii, W.P.M., “The influence of adsorption capacity on enhanced gas absorption in activated carbon slurries”,..., 45 (1), 151-162 (1990).

    19 Shen, S.H., Ma, Y.G., Zhu, C.Y., Lu, S.M., “Absorption enhancement of carbon dioxide in aqueous activated carbon slurries”,....(), 58 (4), 835-841 (2007).

    20 Dagaonkar, M.V., Heeres, H.J., Beenackers, A.A.C.M., Pangarkar, V.G., “The application of fine TiO2particles for enhanced gas absorption”,.., 92 (1), 151-159 (2003).

    2008-06-05,

    2008-10-07.

    the National Natural Science Foundation of China (20176036).

    ** To whom correspondence should be addressed. E-mail: ygma@tju.edu.cn

    国产亚洲av嫩草精品影院| 国产一区二区三区视频了| 在线观看av片永久免费下载| 久久久久久久久大av| 丰满乱子伦码专区| 给我免费播放毛片高清在线观看| 内地一区二区视频在线| 欧美乱码精品一区二区三区| 亚洲专区中文字幕在线| 久久久久久久久久黄片| 狠狠狠狠99中文字幕| 黄色片一级片一级黄色片| 99热这里只有精品一区| 成年版毛片免费区| 亚洲精品成人久久久久久| 变态另类丝袜制服| 欧美在线一区亚洲| 亚洲欧美精品综合久久99| 成人一区二区视频在线观看| 日韩中文字幕欧美一区二区| 一a级毛片在线观看| 嫩草影院精品99| 真人一进一出gif抽搐免费| 亚洲不卡免费看| 波多野结衣巨乳人妻| 国产精品99久久99久久久不卡| 2021天堂中文幕一二区在线观| www.999成人在线观看| 欧美黑人巨大hd| e午夜精品久久久久久久| 亚洲在线自拍视频| av天堂中文字幕网| av欧美777| 国产精品爽爽va在线观看网站| 最近最新免费中文字幕在线| 99热这里只有精品一区| 欧美不卡视频在线免费观看| 一a级毛片在线观看| 超碰av人人做人人爽久久 | 岛国在线观看网站| 国产av不卡久久| 最近最新中文字幕大全免费视频| xxxwww97欧美| 波多野结衣巨乳人妻| 99视频精品全部免费 在线| 日韩欧美精品v在线| 国产精品三级大全| 精品熟女少妇八av免费久了| 国产精品野战在线观看| 12—13女人毛片做爰片一| www.色视频.com| 亚洲av一区综合| 三级毛片av免费| 欧美最黄视频在线播放免费| 成人av一区二区三区在线看| 宅男免费午夜| 久久精品综合一区二区三区| 午夜激情福利司机影院| 欧美日本视频| 日韩免费av在线播放| 宅男免费午夜| 亚洲成av人片免费观看| 一级毛片女人18水好多| 欧美一区二区精品小视频在线| 亚洲激情在线av| 日韩av在线大香蕉| 欧美国产日韩亚洲一区| 动漫黄色视频在线观看| 波多野结衣高清作品| 亚洲成av人片免费观看| 国产成人av激情在线播放| 日本黄色视频三级网站网址| 美女高潮喷水抽搐中文字幕| 一本一本综合久久| 国产aⅴ精品一区二区三区波| 在线十欧美十亚洲十日本专区| 老熟妇仑乱视频hdxx| 男女床上黄色一级片免费看| 男人和女人高潮做爰伦理| 久久国产精品人妻蜜桃| 国产极品精品免费视频能看的| 亚洲激情在线av| 女人十人毛片免费观看3o分钟| 99久久精品国产亚洲精品| 成人欧美大片| 精品国产亚洲在线| 女生性感内裤真人,穿戴方法视频| 男人的好看免费观看在线视频| 亚洲国产精品久久男人天堂| 在线天堂最新版资源| 男女做爰动态图高潮gif福利片| 日韩av在线大香蕉| 性欧美人与动物交配| 午夜日韩欧美国产| 国产真实伦视频高清在线观看 | 亚洲精品美女久久久久99蜜臀| 国产精品 国内视频| 狂野欧美激情性xxxx| 真人做人爱边吃奶动态| 精品人妻1区二区| 19禁男女啪啪无遮挡网站| 亚洲五月天丁香| a在线观看视频网站| 欧美一级毛片孕妇| 国产色爽女视频免费观看| 天天一区二区日本电影三级| 国产午夜精品久久久久久一区二区三区 | 欧美zozozo另类| 色视频www国产| 波多野结衣巨乳人妻| 成人国产一区最新在线观看| 免费看美女性在线毛片视频| 精品午夜福利视频在线观看一区| 女同久久另类99精品国产91| 黄片小视频在线播放| 久久久久国内视频| 麻豆一二三区av精品| 老熟妇仑乱视频hdxx| 久久久精品欧美日韩精品| 亚洲一区高清亚洲精品| 国产精品98久久久久久宅男小说| 欧美黑人欧美精品刺激| 99精品久久久久人妻精品| 一级毛片高清免费大全| 国产av在哪里看| 国内毛片毛片毛片毛片毛片| 亚洲av电影不卡..在线观看| 精品一区二区三区人妻视频| 日韩欧美免费精品| 级片在线观看| 欧美又色又爽又黄视频| 国产精品久久视频播放| 免费在线观看日本一区| 国产三级在线视频| 俺也久久电影网| 脱女人内裤的视频| 国产午夜精品久久久久久一区二区三区 | 欧美3d第一页| 免费看光身美女| 久久这里只有精品中国| 国产淫片久久久久久久久 | 国产精品99久久久久久久久| 国产精品香港三级国产av潘金莲| 高清毛片免费观看视频网站| 免费看日本二区| 亚洲欧美日韩高清在线视频| 久久人妻av系列| 99久久精品一区二区三区| 欧美三级亚洲精品| 99久久精品热视频| 亚洲黑人精品在线| 亚洲国产精品久久男人天堂| 欧美日韩精品网址| 婷婷精品国产亚洲av在线| 波多野结衣高清作品| 国产精品 国内视频| 精品日产1卡2卡| 亚洲一区二区三区不卡视频| 精品电影一区二区在线| 天堂动漫精品| 午夜免费激情av| 日韩欧美在线二视频| 国产精品国产高清国产av| 成人国产一区最新在线观看| 亚洲熟妇熟女久久| 身体一侧抽搐| 最好的美女福利视频网| 88av欧美| 一本久久中文字幕| 蜜桃久久精品国产亚洲av| 日韩国内少妇激情av| 日韩 欧美 亚洲 中文字幕| а√天堂www在线а√下载| 特大巨黑吊av在线直播| 日韩精品中文字幕看吧| 精华霜和精华液先用哪个| 18禁在线播放成人免费| 三级毛片av免费| 看免费av毛片| 欧美区成人在线视频| 亚洲美女黄片视频| 一二三四社区在线视频社区8| 成人无遮挡网站| 丁香六月欧美| 搡老岳熟女国产| 桃红色精品国产亚洲av| 国产精品99久久久久久久久| 99在线人妻在线中文字幕| 久久草成人影院| 99视频精品全部免费 在线| 久久久久久久午夜电影| 久久人妻av系列| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久末码| 在线国产一区二区在线| 97超视频在线观看视频| 成熟少妇高潮喷水视频| 久久欧美精品欧美久久欧美| 午夜福利视频1000在线观看| 久久久久国产精品人妻aⅴ院| 国产高清视频在线观看网站| 日本三级黄在线观看| 国产爱豆传媒在线观看| 久久精品91无色码中文字幕| 国产亚洲精品一区二区www| 国产精品免费一区二区三区在线| 色视频www国产| 全区人妻精品视频| 亚洲黑人精品在线| 成人永久免费在线观看视频| 久久精品影院6| 亚洲精品456在线播放app | 久久精品亚洲精品国产色婷小说| 日本精品一区二区三区蜜桃| 亚洲国产中文字幕在线视频| 女人高潮潮喷娇喘18禁视频| 欧美日韩一级在线毛片| 国产视频一区二区在线看| 欧美性猛交黑人性爽| 色尼玛亚洲综合影院| 欧美+亚洲+日韩+国产| 亚洲黑人精品在线| 在线观看舔阴道视频| 国产欧美日韩一区二区三| 一级黄片播放器| 熟女电影av网| av视频在线观看入口| 一级毛片女人18水好多| 一区福利在线观看| 日本黄色片子视频| 嫩草影视91久久| 母亲3免费完整高清在线观看| 免费人成在线观看视频色| 热99在线观看视频| www国产在线视频色| 精品一区二区三区视频在线观看免费| 久久亚洲真实| 国产精品乱码一区二三区的特点| 国产亚洲欧美在线一区二区| 亚洲人成网站高清观看| 他把我摸到了高潮在线观看| 色av中文字幕| 好男人电影高清在线观看| 日本 欧美在线| 国产亚洲精品综合一区在线观看| 亚洲精品美女久久久久99蜜臀| 一卡2卡三卡四卡精品乱码亚洲| 老熟妇仑乱视频hdxx| 精品久久久久久久末码| 国产午夜精品论理片| 波多野结衣高清作品| 欧美日韩亚洲国产一区二区在线观看| 精品人妻1区二区| 欧美乱妇无乱码| 亚洲欧美日韩东京热| 亚洲内射少妇av| 日本三级黄在线观看| 国产av在哪里看| 国产精品嫩草影院av在线观看 | 国产精品 欧美亚洲| 人人妻,人人澡人人爽秒播| 高清毛片免费观看视频网站| 欧美日韩精品网址| 性色av乱码一区二区三区2| 99精品在免费线老司机午夜| 国产精品免费一区二区三区在线| 国产精品永久免费网站| 色噜噜av男人的天堂激情| 免费在线观看亚洲国产| 成人国产一区最新在线观看| 欧美日韩一级在线毛片| 国产亚洲精品久久久久久毛片| 欧美日韩乱码在线| 好看av亚洲va欧美ⅴa在| 天堂√8在线中文| 法律面前人人平等表现在哪些方面| av天堂在线播放| 给我免费播放毛片高清在线观看| 国产亚洲精品久久久久久毛片| 狠狠狠狠99中文字幕| 午夜免费男女啪啪视频观看 | 亚洲成av人片在线播放无| 国产精品一区二区三区四区久久| 制服人妻中文乱码| 国产伦精品一区二区三区视频9 | av天堂在线播放| 麻豆国产av国片精品| 国产老妇女一区| 女人十人毛片免费观看3o分钟| 免费av观看视频| 88av欧美| 99热这里只有是精品50| 丰满人妻一区二区三区视频av | 午夜福利18| 黄色片一级片一级黄色片| 999久久久精品免费观看国产| 色播亚洲综合网| 久久精品亚洲精品国产色婷小说| av在线天堂中文字幕| 脱女人内裤的视频| 老汉色av国产亚洲站长工具| 人妻丰满熟妇av一区二区三区| 免费av毛片视频| 亚洲av不卡在线观看| 神马国产精品三级电影在线观看| 午夜精品在线福利| 在线观看免费视频日本深夜| 欧美成人a在线观看| 欧美+日韩+精品| 亚洲av电影在线进入| 国产色婷婷99| 亚洲av成人av| 夜夜躁狠狠躁天天躁| 精品国产美女av久久久久小说| 特大巨黑吊av在线直播| eeuss影院久久| 成年免费大片在线观看| 亚洲真实伦在线观看| 麻豆成人午夜福利视频| 悠悠久久av| 18禁裸乳无遮挡免费网站照片| 亚洲最大成人中文| 成人午夜高清在线视频| 少妇熟女aⅴ在线视频| 国产精品自产拍在线观看55亚洲| 看黄色毛片网站| 精品欧美国产一区二区三| 日韩精品中文字幕看吧| 日韩av在线大香蕉| 亚洲av二区三区四区| 欧美日韩乱码在线| 伊人久久精品亚洲午夜| 国产高清有码在线观看视频| 色老头精品视频在线观看| 欧美一区二区亚洲| 国产伦一二天堂av在线观看| 国产黄a三级三级三级人| 国产又黄又爽又无遮挡在线| 岛国视频午夜一区免费看| 午夜久久久久精精品| 黄色女人牲交| 国产综合懂色| 久久精品国产亚洲av香蕉五月| 欧美一级毛片孕妇| 国产不卡一卡二| 亚洲精品456在线播放app | 日韩精品青青久久久久久| 国产真实乱freesex| 亚洲中文字幕一区二区三区有码在线看| 日韩高清综合在线| 一区二区三区激情视频| 真人一进一出gif抽搐免费| 国产午夜福利久久久久久| 俺也久久电影网| 在线观看免费视频日本深夜| 免费观看的影片在线观看| 久久香蕉精品热| 一区二区三区免费毛片| 亚洲国产高清在线一区二区三| 老鸭窝网址在线观看| 手机成人av网站| 欧美在线一区亚洲| 久久国产精品影院| 免费观看的影片在线观看| 日本黄色视频三级网站网址| tocl精华| 老熟妇仑乱视频hdxx| 成人性生交大片免费视频hd| 日韩欧美国产一区二区入口| xxxwww97欧美| 美女免费视频网站| 一卡2卡三卡四卡精品乱码亚洲| 3wmmmm亚洲av在线观看| 法律面前人人平等表现在哪些方面| 午夜a级毛片| 成熟少妇高潮喷水视频| 国产精品久久久人人做人人爽| 日韩欧美在线二视频| 国产伦精品一区二区三区视频9 | 亚洲片人在线观看| 国产精品 欧美亚洲| 九九久久精品国产亚洲av麻豆| 成人亚洲精品av一区二区| 中文字幕人成人乱码亚洲影| 日韩欧美在线二视频| 九九久久精品国产亚洲av麻豆| 色尼玛亚洲综合影院| 欧美午夜高清在线| 午夜精品一区二区三区免费看| 香蕉av资源在线| 国产高清videossex| 18禁国产床啪视频网站| 怎么达到女性高潮| 淫秽高清视频在线观看| 国产午夜精品论理片| 天美传媒精品一区二区| 亚洲av二区三区四区| 国模一区二区三区四区视频| 国产视频一区二区在线看| 免费观看的影片在线观看| 国产一区二区三区视频了| 久9热在线精品视频| 国内少妇人妻偷人精品xxx网站| 午夜激情欧美在线| 日韩欧美精品v在线| 老司机福利观看| 国产伦精品一区二区三区视频9 | 国产免费av片在线观看野外av| 亚洲男人的天堂狠狠| 久久精品国产亚洲av香蕉五月| 午夜久久久久精精品| 国产成年人精品一区二区| 精品国内亚洲2022精品成人| 中文字幕熟女人妻在线| 亚洲国产精品合色在线| 日韩高清综合在线| 老熟妇仑乱视频hdxx| 美女 人体艺术 gogo| 国产精品久久久久久亚洲av鲁大| 亚洲第一欧美日韩一区二区三区| 国产蜜桃级精品一区二区三区| 高清在线国产一区| АⅤ资源中文在线天堂| 欧美乱码精品一区二区三区| 欧美在线一区亚洲| 动漫黄色视频在线观看| 热99re8久久精品国产| 亚洲精品一区av在线观看| 国产精品久久久久久久久免 | 99在线人妻在线中文字幕| 小蜜桃在线观看免费完整版高清| 免费大片18禁| 黄色日韩在线| 亚洲最大成人手机在线| 神马国产精品三级电影在线观看| 精品日产1卡2卡| 国产精品久久久久久精品电影| 国产在线精品亚洲第一网站| 国产三级黄色录像| 国产探花极品一区二区| 性色avwww在线观看| 人妻夜夜爽99麻豆av| 成人性生交大片免费视频hd| 首页视频小说图片口味搜索| 国产一区在线观看成人免费| 最新美女视频免费是黄的| 国产av不卡久久| 91在线观看av| 夜夜爽天天搞| 亚洲精品在线美女| 老司机午夜十八禁免费视频| 国产真人三级小视频在线观看| 99久久成人亚洲精品观看| 97超视频在线观看视频| 亚洲国产欧美网| av视频在线观看入口| 女同久久另类99精品国产91| 18禁黄网站禁片午夜丰满| 无遮挡黄片免费观看| 日本三级黄在线观看| 波多野结衣高清作品| 99久久99久久久精品蜜桃| 两个人视频免费观看高清| 女同久久另类99精品国产91| 18禁黄网站禁片午夜丰满| 91av网一区二区| av黄色大香蕉| 欧美日韩中文字幕国产精品一区二区三区| 99国产精品一区二区三区| 亚洲精品久久国产高清桃花| 国产乱人视频| 色av中文字幕| 一二三四社区在线视频社区8| netflix在线观看网站| 欧美激情在线99| 国产乱人伦免费视频| 99国产精品一区二区蜜桃av| 怎么达到女性高潮| 免费一级毛片在线播放高清视频| 黄色女人牲交| 国产久久久一区二区三区| 丰满的人妻完整版| 国产精品一区二区免费欧美| 国产91精品成人一区二区三区| 亚洲男人的天堂狠狠| 欧美av亚洲av综合av国产av| 亚洲第一欧美日韩一区二区三区| 国内揄拍国产精品人妻在线| 色av中文字幕| 一a级毛片在线观看| 欧美一级毛片孕妇| 在线观看一区二区三区| 久久草成人影院| 国内少妇人妻偷人精品xxx网站| 最后的刺客免费高清国语| 免费一级毛片在线播放高清视频| or卡值多少钱| 欧美日韩国产亚洲二区| 51午夜福利影视在线观看| 久久精品亚洲精品国产色婷小说| 狠狠狠狠99中文字幕| 成人永久免费在线观看视频| а√天堂www在线а√下载| 欧美最新免费一区二区三区 | 国产成年人精品一区二区| 成人一区二区视频在线观看| 一个人免费在线观看的高清视频| 搞女人的毛片| 最近最新免费中文字幕在线| 老司机在亚洲福利影院| 欧美成人a在线观看| 亚洲中文字幕日韩| 嫁个100分男人电影在线观看| 午夜两性在线视频| 久久久国产成人免费| 日本五十路高清| 特大巨黑吊av在线直播| 麻豆成人av在线观看| 国产精华一区二区三区| 亚洲精品在线观看二区| 午夜福利视频1000在线观看| 99视频精品全部免费 在线| 欧美成人一区二区免费高清观看| 全区人妻精品视频| 成人av在线播放网站| 伊人久久大香线蕉亚洲五| xxxwww97欧美| 国产午夜精品久久久久久一区二区三区 | 在线观看美女被高潮喷水网站 | 日韩欧美国产在线观看| 男女做爰动态图高潮gif福利片| www.熟女人妻精品国产| 免费av毛片视频| 国产色爽女视频免费观看| 天堂√8在线中文| 亚洲中文日韩欧美视频| 叶爱在线成人免费视频播放| www日本在线高清视频| 日韩av在线大香蕉| 女同久久另类99精品国产91| 国产精品嫩草影院av在线观看 | 国产高清有码在线观看视频| 午夜免费男女啪啪视频观看 | 天堂√8在线中文| 制服人妻中文乱码| 一进一出好大好爽视频| 黄色丝袜av网址大全| 久久人人精品亚洲av| x7x7x7水蜜桃| 麻豆久久精品国产亚洲av| 俺也久久电影网| 99视频精品全部免费 在线| 亚洲黑人精品在线| 白带黄色成豆腐渣| 制服丝袜大香蕉在线| 免费一级毛片在线播放高清视频| 亚洲av成人av| xxx96com| 美女黄网站色视频| av黄色大香蕉| 99久久精品热视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品999在线| 国产成人欧美在线观看| 婷婷精品国产亚洲av在线| 成人av在线播放网站| 国产高清视频在线播放一区| 亚洲成av人片免费观看| 精品不卡国产一区二区三区| 日本a在线网址| 成人永久免费在线观看视频| 一个人免费在线观看的高清视频| 一本精品99久久精品77| 久久久久久久久大av| 国产av一区在线观看免费| 午夜福利欧美成人| 亚洲男人的天堂狠狠| 国产真人三级小视频在线观看| svipshipincom国产片| 十八禁网站免费在线| 亚洲午夜理论影院| 欧美性猛交╳xxx乱大交人| 免费看光身美女| 午夜福利在线观看吧| 欧美日韩黄片免| 老司机午夜十八禁免费视频| 欧美日本亚洲视频在线播放| 欧美中文日本在线观看视频| 国产伦精品一区二区三区视频9 | 身体一侧抽搐| 精品久久久久久成人av| or卡值多少钱| 欧美日韩黄片免| 内地一区二区视频在线| 欧美性猛交╳xxx乱大交人| 身体一侧抽搐| 欧美国产日韩亚洲一区| 少妇裸体淫交视频免费看高清| 国产高清视频在线播放一区| 久久久久精品国产欧美久久久| 观看美女的网站| 1000部很黄的大片| 黄色丝袜av网址大全| 极品教师在线免费播放| 亚洲成人久久性| 亚洲第一电影网av| 少妇裸体淫交视频免费看高清| 每晚都被弄得嗷嗷叫到高潮| 国产精品亚洲av一区麻豆| 久久久久久久久大av| 亚洲中文日韩欧美视频| 毛片女人毛片| 亚洲美女视频黄频| xxx96com| 18禁在线播放成人免费|