• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Direct Urca Processes Involving Proton1S0Superfluidity in Neutron Star Cooling?

    2018-05-02 01:51:40YanXu許妍ZiYu喻孜XiaoJunZhang張曉軍CunBoFan范存波
    Communications in Theoretical Physics 2018年4期
    關鍵詞:張曉軍

    Yan Xu(許妍), Zi Yu(喻孜),Xiao-Jun Zhang(張曉軍),Cun-Bo Fan(范存波),

    Guang-Zhou Liu(劉廣洲),3En-Guang Zhao(趙恩廣),4Xiu-Lin Huang(黃修林),1,? and Cheng-Zhi Liu(劉承志)1,§

    1Changchun Observatory,National Astronomical Observatories,CAS,Changchun 130117,China

    2College of Science,Nanjing Forestry University,Nanjing 210037,China

    3Center for Theoretical Physics,Jilin University,Changchun 130023,China

    4Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    1 Introduction

    Neutron star(NS)constitutes one of the best astrophysical laboratories for studying dense matter physics.It arises at the end of life of a(8–20)M⊙massive stars and forms in the aftermath of the core collapse supernovae explosion.A newly born NS is very hot with temperature as high as(1011–1012)K,but rapidly cools to a temperature of less than 1010K within minutes.The cooling process of an NS is dominated by a combination of surface photon emission and interior neutrino emission.The latter is responsible for about(105–106)years until the interior temperature reaches 106K.It is generally known that photon luminosity is obviously lower than neutrino luminosity,meaning that the thermal radiation from an NS surface reflects the intensity of interior neutrino emission.[1?3]While neutrino emisision depends strongly on the composition of superdense matter in NSs.It is well known that NSs cores are dense enough to allow for emerging exotic matter with the strangeness quantum number through weak equilibrium,such as Λ,Σ0,Σ+,Σ?,Ξ0,Ξ?hyperons,referred as npheμmatter,except for the conventional nucleons and leptons(npeμ matter).[4?16]It means that all the possible baryon neutrino emission processes would happen during the neutrino cooling stage.[17?26]Among them,the most powerful enhancement of neutrino emission is provided by the nucleon direct Urca processes,secondarily is the hyperon direct Urca processes.[27?34]Prakash et al.(1992)have already indicated that NS matter with any proton/nucleon ratio can rapidly cool by the baryon direct Urca processes if Λ hyperons are present.[35?36]Besides,the degrees of freedom of hyperons tend to soften the equation of state(EOS)calculated in the relativistic mean field(RMF)model based on SU(6)spin-flavor symmetry(quark model for the vector mesonhyperon coupling constants),then reduce the maximum mass of NS to about(1.6–1.7)M⊙.[37?44]However,Demorest et al.in 2010[45]indicated that the binary millisecond pulsar PSR J1614-2230 expanded the maximum observational mass from 1.67±0.02 M⊙to 1.97±0.04 M⊙using the Shapiro delay measurements from radio timing observations.Antoniadis et al.in 2013[46]observed another massive neutron star PSR J0348+0432,whose mass is 2.01±0.04 M⊙.It is clear that the inclusion of hyperons in such heavy NS cores is difficult to explain by SU(6)spinlf avor symmetry in RMF model.And for this reason,the SU(3)flavor symmetry is widely applied to RMF model.It changes the strength of the isoscalar,vector-meson(ω and ?)couplings to the octet states,which can sustain an NS with mass of(1.8–2.1)M⊙even if hyperons exist in NS core.[47?50]Furthermore,baryons in NS interior can become the superfluid state related to the generation of Baryon-Baryon Cooper pairs under attractive interaction.The baryon superfluidity could suppress considerably the baryon direct Urca processes and thus affect the cooling rate of NS remarkably.[5,51]As we all know,the neutrons in the crust and protons,hyperons in the core undergo Cooper pair in1S0state,while neutrons in the core can pair in3P2state.

    It is well known that the EOS of hot nuclear matter plays important roles in determining the evolution of the NS at the birth stage,namely a protoneutron star is a finite temperature system.After birth,its neutrinos are trapped due to their short mean free paths.Then,neutrinos quickly diffuse and leave behind much of their energy which causes significant heating of ambient matter.[52?53]Beyond that,the effects of magnetic fields on NS have been a subject of interest from long time ago.The EOS for magnetized matter is important for the NS structure and the cooling of magnetized stars including and not including the anomalous magnetic moments.Moreover,since neutrinos are a fundamental piece in cooling processes,its emission and transport properties in the presence of magnetic fields were studied in detail.The results also show that the possibility for the baryon direct Urca processes to be open in the presence of a magnetic field B,even if the proton fraction is too low to open the process at B=0.[54?57]In this paper,because that we will mainly consider the influence of the hyperons and the hyperon direct Urca processes on the nucleon direct Urca processes and the proton1S0superfluidity in cold neutron star matter.We will further study the influence of temperature,neutrinos and magnetic fields on the properties of the NS cooling in the future work.This paper is arranged as follows.In Sec.2,we make a brief review for RMF and NS cooling theories as well as the gap equation for the proton1S0superfluid.The numerical results are discussed in Sec.3.Finally,we summarize our conclusions in Sec.4.

    2 Theoretical Framework

    2.1 RMF Theory

    In this calculation,we adopt RMF model to describe NS matter.The constituents of NSs fall into two categories:npeμ and npheμ matter.The strong interaction between baryons is mediated by the exchange of isoscalar scalar and vector mesons σ, ω,isovector vector meson ρ.The two additional strange mesons are also included,namely isoscalar scalar σ?and vector ? mesons.[41?42,58]The total Lagrangian is given by

    Here Wμv= ?μωv? ?vωμ,Rμv= ?μρv? ?vρμ,and Pμv= ?μ?v? ?v?μdenote the field tensors of ω,ρ and ? mesons,respectively.The sum on B and l runs over the octet baryons and leptons,namely,n,p,Λ,Σ0,Σ+,Σ?,Ξ0,Ξ?,e,μ. ψBand ψlare the Dirac fields of baryons and leptons,respectively.mBand mldenote the masses of baryon and lepton,respectively.γushows the Dirac matrice.The meson fields are replaced by their expectation values at the mean field level.Now we can solve the Euler-Lagrange equations by plugging in the above Lagrangian

    The equations of motion for each baryon and meson fields can be obtained in RMF approximation

    Here JBand I3Bexpress the spin and isospin projections of baryons,respectively.The Dirac effective mass of baryon is given by

    The scalar density nSBand baryon density nBare given by

    For a fixed total baryon number density

    The hadron phase should meet the local charge neutrality and beta-equilibrium conditions.The former is given by

    In the latter the chemical potentials of particles are related to each other by,

    where qBis the electric charge of baryon(in unit of e).

    We can solve Eqs.(3)–(14)self-consistently at a fixed total baryon number density nb.The total energy density and pressure of NS matter are

    Equations(15)and(16)as inputs,we can obtain the mass-radius relation by solving the Tolman-Oppenheimer-Volko ff(TOV)equation[59?60]

    We adopt two successful RMF parameter sets to describe NS matter,GM1 and TM1,as listed in Table 1.[48]These parameters have been determined by fitting to some ground state properties of nuclear matter.As for the couplings of the isoscalar vector mesons ω and ? to baryons,we adopt SU(6)spin-flavor symmetry based on the naive quark model and general SU(3)flavor symmetry as listed in Table 2,[49]respectively.

    Table 1 The parameter sets GM1 and TM1.The relations,gσ?N=gρΛ =0,are assumed.We take mω=783 MeV,mρ=770 MeV,mN=938 MeV.For the GM1 and TM1 models,mσ=550 MeV and 511.198 MeV,respectively.[48?49]

    Table 2 The other coupling constants for hyperons.The relations,gρN=(1/2)gρΣ =gρΞ,are assumed.[48?49]

    2.2 NS Cooling Theory

    The baryon direct Urca processes consist of two successive reactions,beta decay and capture,are listed in Table 3.[35]

    Here B1and B2represent baryons.Due to the EOSs of NSs are derived by RMF model,so the neutrino energy losses must be consistent with the used relativistic EOSs.In the free relativistic gas,the energy and momentum conservations require a large effective mass differece of B1and100 MeV,which is unlikely to appear in the reactions A,D,and G.The reason is that the effective masses of hyperons with the same species but the different isospins are same(see Eq.(9)for details).Therefore,in the relativistic regime,the energy conservation should be assured by considering the potential energy difference of B1and B2.The neutrino emissivity can be given by the Fermi Golden Rule

    where pj,εjexpress the momentum and kinetic energy of particle species j(j=1,2,3,and 4 refer to B1,B2,e and),respectively.fjis the Fermi-Dirac distribution functions of baryons and electrons,

    The delta functions δ(E1? E2? ε3? ε4)and δ(p1?p2?p3?p4)describe the energy and momentum conservation,respectively. E1,2=ε1,2+U1,2denote the single-particle energies of baryons,U1,2are the selfconsistent potentials of baryons,which can be obtained in Subsec.2.1 and have the following form

    Namely,

    |Mfi|2is the squared matrix element of the baryon direct Urca processes summed over spins of initial and final particles

    where Pj=(εj,pj).GF=1.436 × 10?49erg·cm3is the weak-coupling constant.f1,g1and C are the vector,axial-vector constants and Cabibbo angle,which are given in Table 3.

    Table 3 The constants of the baryon direct Urca processes.We take sinθc=0.231± 0.003,F=0.477±0.012,D=0.756±0.011.

    The relativistic expression of the energy loss Q per unit volume and time in NS matter is found to be[61?62]

    In this expression,pF1,pF2,and pF3are the Fermi momenta of baryons and leptons. εF1and εF2are the kinetic energy of baryon at the Fermi surface.Θ=1 if the Fermi momenta pF1,pF2,pF3satisfy the triangle condition and Θ=0 otherwise.The situation of muons is similar to that of electrons.

    The cooling equation based on the approximation of isothermal interior is,

    Here Lνand Lrare the total neutrino and photon luminosities,respectively.Cvis the total thermal capacity of NS matter.They are where σ is the Stefan-Boltzmann constant, eΦ=

    2.3 1S0Superfluidity of Protons

    The key quantity in determining the onset of the proton1S0superfluid is the gap function?(p),

    where ε(p)=E(p) ? E(pFp).V(p,p′)is the protonproton potential matrix element.In this work,we use the Reid soft core(RSC)potential for the proton-proton potential,[63?66]as an example to demonstrate the influence of hyperons on the proton1S0pairing gaps.The critical temperature Tcpof the proton1S0superfluid is given by the pairing gap?(p)at zero temperature approximation,

    As a result,the neutrino emissivity and thermal capacity can be written as

    Here RBand RCB0are the superfluid reduction factors of the neutrino emissivity and thermal capacity,respectively.

    For the proton1S0superfluid,the reduction factors Rpand RCp0are

    According to the discussion of the RMF approach above,we can obtain the EOS,the mass-radius relations,the neutrino emissivities of the baryon direct Urca processes,the Fermi momenta and the single particle energies of protons,the pairing gap and the critical temperature of the proton1S0superfluid as well as the speed of NS cooling.

    3 Results and Discussion

    In this section,we give three cases in Eq.(1)for RMF theory:(i)The non-strange σ,ω,ρ mesons are included in SU(6)spin-flavor symmetry;(ii)The σ,ω,ρ mesons including strange mesons σ?and ? are considered in SU(6)spin-flavor symmetry;(iii) σ,ω,ρ,σ?and ? mesons are taken into account in SU(3)flavor symmetry.We mainly study the effects of the degrees of freedom of hyperons and the reactions B,C on the EOS,the neutrino emissivity,the neutrino luminosity,the energy gap of the proton1S0superfluid and NS cooling.Then we compare our results with PSR J1614-2230 and J0348+0432,whose measured masses are used as reference values.

    Fig.1 EOSs including hyperons in NS matter.

    Fig.2 Mass of NS as a function of the total baryon number density nb.

    Fig.3 Neutrino emissivities of the reactions A,B and C as a function of the total baryon number density nbin npheμmatter.

    Fig.4 Total neutrino emissivities of the reactions AF as a function of the total baryon number density nb.The solid and dotted lines are the neutrino emissivity of the reaction A in npeμ and npheμ matter,respectively.The dashed line is the total neutrino emissivities of the reactions A-F in npheμmatter.

    Fig.5 Radial distributions of the total neutrino emissivities with different mass NSs in npeμ(solid lines)and npheμmatter(dotted lines)for the GM1 model.

    Figure 1 shows the EOSs in the three cases.Figure 2 shows the mass-radius relations of NSs by solving the TOV equation.The softest and hardest EOSs are obtained by cases(i)and(iii),respectively.Though the coupling gωNfor case(iii)is smaller than the corresponding value for case(i)as shown in Table 1,the total repulsive force is attributed not only to ω meson but also to ? meson.As seen in Figs.1 and 2,though we consider the contribution of the strange mesons σ?and ? on the EOS in case(ii),the coupling g?N=0.It means that ? meson only couples to hyperons and makes the EOS be not enough stiff.So the hardest EOS is obtained only through the ? meson in case(iii).From case(i)to(iii),the maximum mass of NS(the corresponding center density)sequently increases from 1.820(0.771),1.863(0.817)to 2.141 M⊙(0.871)for the GM1 model,1.686(0.673),1.729(0.754)to 2.038 M⊙(0.848)for the TM1 model,respectively(Fig.2).Namely,the EOS in SU(3)flavor symmetry could be consistent with the observed values of PSR J1614-2230 and J0348+0432 when hyperons appear in NS core.Figure 3 depicts the neutrino emissivities of the reactions A,B and C in npheμmatter for the three cases.As can be seen from Fig.3,the neutrino emissivity of the reaction A has a tendency to decrease with increasing of the total baryon number density nbwhich is due to that the presence of the degrees of freedom of hyperons in NS matter decreases the nucleon and lepton fractions in accordance with the charge neutrality and β equilibium conditions(Eqs.(13)and(14)).The neutrino emissivities of the reactions B and C are obviously less than that of the reaction A because of the smaller matrix elements of the reactions B and C in Eq.(23).The strongest neutrino emissivities of the reactions A and B are obtained in case(iii),while the weakest neutrino emissivities of the reactions A and B are given in case(i).For the reaction C,the neutrino emissivity in case(iii)is less than the corresponding values in cases(i)and(ii) firstly and then increases,equals or exceeds the values in cases(i)and(ii).In order to make the effects of hyperons more intuitive,the total neutrino emissivity of the reactions A-F in npheμmatter comparing with the neutrino emissivity of the reactions A in npeμmatter is depicted in Fig.4.We can see that the neutrino emissivity of the reactions A has been conspicuously suppressed because of the appearance of the degrees of freedom of hyperons.From Figs.2,3,and 4,the mass ranges of the reactions B and C in case(iii)are(1.671–2.141)M⊙and(1.888–2.141)M⊙for the GM1 model,(1.579–2.038)M⊙and(1.849–2.038)M⊙for TM1 model,respectively.Furthermore,the threshold densities of the reactions D-F are larger than the center densities for the maximum masses of NSs,it leads to that the reactions D-F would never happen within stable NSs.Given the above,we only consider the reactions A,B,and C in case(iii)for the following discussion.

    Figure 5 gives the radial distributions of the total neutrino emissivities of the reactions A,B,and C for the GM1 model in case(iii),we choose the mass of NS m=(1.98,2.00,2.10,and 2.12)M⊙.The radial distributions of the total neutrino emissivities for a fixed mass NS are nearly invariable when radius r is relatively large(sse Part I for details)with and without the degrees of freedom of hyperons.However,the reactions B and C happen in succession with the reduction of the radius(see Part II and III for details)which leads to that the radial distributions of the total neutrino emissivities with the degrees of freedom of hyperons are significantly larger than the corresponding values without the degrees of freedom of hyperons.Yet with growing mass,the appearance of hyperons obviously shrinks the scope of radius for the growth of the radial distributions of the total neutrino emissivities.The situation of the TM1 model is like the above in GM1 model.Figure 6 shows the total neutrino luminosity as a function of the NS’s mass for the GM1 and TM1 models in case(iii).As seen from Fig.6,whether hyperons are included or not,the neutrino luminosity increases firstly and then decreases with increasing of the NS’s mass.Once the NS’s mass reaches a value,one value of the neutrino luminosity corresponds to two different NSs.And the total neutrino luminosities of reactions A,B and C within the mass range(1.603–2.067)M⊙and(1.515–1.840)M⊙will be larger than the corresponding values in npeμmatter for the GM1 and TM1 models,respectively.Figure 7 shows the critical temperature of the proton1S0superfluid as a function of the total baryon number density nbfor case(iii)including and not including the degrees of freedom of hyperons,respectively.

    Fig.6 Total neutrino luminosities of the reactions A,B and C as a function of the NS’s mass m.The solid and dotted lines are the neutrino luminosity of the reaction A in npeμ and npheμ matter,respectively.The dashed line is the total neutrino luminositits of the reactions A,B and C in npheμmatter.

    Fig.7 The critical temperature Tcpof the proton1S0 superfluid as a function of the NS’s mass m in npeμ matter(solid lines)and npheμmatter(dashed lines),respectively.

    Fig.8 Observational data(error bars)on surface temperatures of 8 NSs as compared with theoretical cooling curves obtained by the proton1S0superfluid for the GM1 and TM1 models,respectively.The solid lines correspond to npeμmatter,the dashed lines correspond to npheμmatter with masses(from top to bottom)(1.7,1.95 and 2.03)M⊙for the GM1 model((1.6,1.93 and 2.0)M⊙for the TM1 model),respectively.The dotted lines represent cooling curves in the non-superfluid NS matter.

    In Fig.7,one can see that whether or not the NS core appears hyperons,the critical temperature of the proton1S0superfluid increases first,but it gradually decreases after it reaches maximum along with increasing of the total baryon number density nb.While when hyperons appear in NS core,the critical temperature of the proton1S0superfluid is first below and then above the corresponding values in npeμmatter within the density ranges of nb=(0.0–0.454)fm?3(nb=(0.0–0.418)fm?3for the TM1 model)and nb≥ 0.454 fm?3(nb≥ 0.418 fm?3for the TM1 model)for the GM1 model,respectively.This is because the total contributions of the Fermi momentum,the effective mass and the single-particle e nergy of protons result in the change of the critical temperature of the proton1S0superfluid.Furthermore,the appearance of hyperons widens the scope of the baryon number density for the proton1S0superfluid in NS matter,which can further inhibit the baryon direct Urca processes as well as affect the cooling of NSs.The theoretical cooling curves with the proton1S0superfluid assuming the isothermal stars are obtained in Fig.8 for the GM1 and TM1 models,respectively.Observational data of 8 isolated NSs whose effective surface temperatures have been measured or constrained is listed as compared with the theoretical cooling curves.[67?75]As you can see from Fig.8,the cooling curve of an NS with the moderate mass can be a great way to explain the observational data,while the cooling curves of massive NSs are difficult to explain the existing observational data due to the low surface temperature.The continued decline in the cooling curves along with the growth of the NS’s mass means that a massive NS will go through the fast cooling process whether the degrees of freedom of hyperons appear.In addition,from Fig.6 we can see that the neutrino luminosities of(1.70,1.95,2.03)M⊙NSs for the GM1 model((1.60,1.93,2.00)M⊙NSs for the TM1 model)in npheμmatter are greater than the corresponding values in npeμmatter,respectively.While from Fig.7,we can also see that the critical temperatures Tcpof(1.70,1.95,2.03)M⊙NS for the GM1 model((1.60,1.93,2.00)M⊙NSs for the TM1 model)in npheμmatter are lower than the corresponding values in npeμmatter.It results in the fact that the suppression of the neutrino emissivities for the reactions A and B is delayed in npheμmatter,so the cooling speeds of(1.70,1.95,2.03)M⊙NS for the GM1 model((1.60,1.93,2.00)M⊙NSs for the TM1 model)with the degrees of freedom of hyperons(dashed lines)are quicker than the corresponding values without the degrees of freedom of hyperons(solid lines).The proton1S0superfluid does not affect the reaction C in(1.70,1.95,2.03)M⊙NS for the GM1 model((1.60,1.93,2.00)M⊙NSs for the TM1 model),which is due to that the threshold density of the reaction C in the above NSs is higher than the baryon number density of the appearance of the proton1S0superfluid in the above NSs.Therefore,although the neutrino emissivities of the reactions A and B are suppressed with the presence of the proton1S0superfluid,the total contributions of reactions A,B and C can still speed up a massive NS cooling.Our model may be a simplification because it adopts the lowest level of approximation in the gap equation as well as neglecting the possible influence of inhomogeneity in NS crust and hyperon superfluidity in NS core on the reactions A,B and C,however,it can still clearly describe the effects of the proton1S0superfluid on the reactions A,B and C in NS matter.We will analyze more complicated models in future studies.

    4 Conclusion

    We have studied the effects of the degrees of freedom of hyperons,the reactions B and C on the reaction A in NS matter using the two popular RMF parameter sets,GM1 and TM1,respectively.Firstly,we used the SU(3)flavor symmetry to obtain the stiffEOS which led to the degrees of freedom of hyperons appearing in PSR J1614-2230 and J0348+0432.Secondly,the total neutrino luminosities of the reactions A,B and C were calculated in npeμand npheμmatter,respectively.We found that the presence of the reactions B and C made the total neutrino luminosities higher than the corresponding values without the reactions B and C within the mass range(1.603–2.067)M⊙for the GM1 model and(1.515–1.840)M⊙for the TM1 model,respectively.The cooling rate with hyperons was faster than the corresponding value without hyperons for a fixed NS.It illustrated that though the appearance of hyperons has obviously suppressed the neutrino emissivity of the reaction A,which had the highest neutrino emissivity in npeμmatter,the contribution of the reactions B and C could still lead to the rapid cooling for the massive NSs.In particular,because the threshold densities of the reaction C in PSR J1614-2230 and J0348+0432 were significantly higher than the baryon number density for the proton1S0superfluid,thus the reaction C was not suppressed by the proton1S0superfluid which will further speed up the two pulsars cooling.These features maybe can help to prove the presence of hyperons in the cores of PSR J1614-2230 and J0348+0432.

    [1]D.G.Yakovlev and C.J.Pethick,Ann.Rev.Astron.Astrophys.42(2004)169.

    [2]D.G.Yakovlev,et al.,AIP Conf.Series.983(2008)379.

    [3]J.J.Liu,Q.H.Peng,and D.M.Liu,Chin.Phys.C 41(2017)095101.

    [4]C.R.Ji and D.P.Min,Phys.Rev.D 57(1998)5963.

    [5]D.G.Yakovlev,K.P.Leven fish,and Y.A.Shibanov,Phys.Uspek.42(1999)737.

    [6]E.G.Zhao and F.Wang,Chin.Sci.Bull.56(2011)3797.

    [7]Z.F.Gao,et al.,Astrophys.Space Sci.334(2011)281.

    [8]H.Sotani,T.Maruyama,and T.Tatsumi,Nucl.Phys.A 906(2013)37.

    [9]C.Schaab,S.Balberg,and J.Schaffner-Bielich,Astrophys.J.504(1998)L99.

    [10]Y.N.Wang and H.Shen,Phys.Rev.C 81(2010)025801.

    [11]Y.Xu,et al.,Research in Astron.Astrophys.15(2015)725.

    [12]C.J.Xia,G.X.Peng,E.G.Zhao,and S.G.Zhou,Phys.Rev.D 93(2016)085025.

    [13]Z.F.Gao,H.Shan,W.Wang,and N.Wang,Astron.Nachr.338(2017)1066.

    [14]Y.Xu,et al.,Mon.Not.R.Astron.Soc.474(2018)3576.

    [15]C.J.Xia and S.G.Zhou,Nucl.Phys.B 916(2017)669.

    [16]C.Zhu,Z.F.Gao,X.D.Li,et al.,Mod.Phys.Lett.A 31(2016)1650070.

    [17]S.Tsuruta,Phd.Thesis,Columbia University(1964).

    [18]E.Flowers,M.Ruderman,and P.Sutherland,Astrophys.J.205(1976)541.

    [19]O.V.Maxwell,Astrophys.J.231(1979)201.

    [20]E.H.Gudmundsson,C.J.Pethick,and R.I.Epstein,Astrophys.J.272(1983)286.

    [21]D.Page and J.H.Applegate,Astrophys.J.394(1992)17.

    [22]A.D.Kaminker,P.Haensel,and D.G.Yakovlev,Astron.Astrophys.373(2001)L17.

    [23]D.G.Yakovlev,et al.,Nucl.Phys.A 752(2005)90.

    [24]C.Kouvaris,Phys.Rev.D 77(2008)023006.

    [25]D.Blaschke,H.Grigorian,D.N.Voskresensky,and F.Weber,Phys.Rev.C 85(2012)022802.

    [26]X.L.Mu,H.Y.Jia,X.Zhou,and H.Wang,Astrophys.J.846(2017)140.

    [27]J.M.Lattimer,C.J.Pethick,M.Prakash,and P.Haensel,Phys.Rev.Lett.66(1991)2701.

    [28]P.Haensel and O.Y.Gnedin,Astron.Astrophys.290(1994)458.

    [29]M.E.Gusakov,Astron.Astrophys.389(2002)702.

    [30]Y.Xu,et al.,Chin.Phys.Lett.28(2011)079701.

    [31]Y.Xu,et al.,Commun.Theor.Phys.56(2011)521.

    [32]X.Zhou,M.Kang,and N.Wang,Chin.Phys.C 37(2013)085101.

    [33]Y.Xu,et al.,Chin.Sci.Bull.59(2014)273.

    [34]X.Zhou,H.Jia,B.Hong,et al.,Int.J.Mod.Phys.D 26(2017)1750077.

    [35]M.Prakash,et al.,Astrophys.J.390(1992)77.

    [36]J.M.Lattimer,K.A.van Riper,M.Prakash,and M.Prakash,Astrophys.J.425(1994)802.

    [37]J.Boguta and A.R.Bodmer,Nucl.Phys.A 292(1977)413.

    [38]J.Boguta,Phys.Lett.B 106(1981)250.

    [39]J.Boguta and H.Stocker,Phys.Lett.B 120(1983)289.

    [40]W.Pannert,P.Ring,and J.Boguta,Phys.Rev.Lett.59(1987)2420.

    [41]J.Schaffner and I.N.Mishustin,Phys.Rev.C 53(1996)1416.

    [42]F.Yang and H.Shen,Phys.Rev.C 77(2008)025801.

    [43]Y.Xu,et al.,Chin.Phys.Lett.30(2013)129501.

    [44]Z.F.Gao,N.Wang,H.Shan,et al.,Astrophys.J.849(2017)19.

    [45]P.B.Demorest,et al.,Nature(London)467(2010)1081.

    [46]J.Antoniadis,et al.,Science 340(2013)448.

    [47]S.Weissenborn,D.Chatterjee,and J.Schaffner-Bielich,Phys.Rev.C 85(2012)065802.

    [48]T.Miyatsu,M.K.Cheoun,and K.Saito,Phys.Rev.C 88(2013)015802.

    [49]S.Weissenborn,D.Chatterjee,and J.Schaffner-Bielich,Nucl.Phys.A 914(2013)421.

    [50]L.L.Lopes and D.P.Menezes,Phys.Rev.C 89(2014)025805.

    [51]T.Takatsuka and R.Tamagaki,Nucl.Phys.A 738(2004)387.

    [52]J.J.Liu and D.M.Liu,arXiv:nucl-th/1711.01955.

    [53]J.J.Liu,Q.H.Peng,L.H.Hao,et al.,Research in Astron.Astrophys.17(2017)107.

    [54]Z.F.Gao,D.L.Song,Y.L.Liu,et al.,Accepted for Astron.Nachr.338(2017)1060.

    [55]Z.F.Gao,X.D.Li,N.Wang,et al.,Mon.Not.R.Astron.Soc.456(2016)55.

    [56]G.J.Mao,A.Iwamoto,and Z.X.Li,Chin.J.Astron.Astrophys.3(2003)359.

    [57]J.J.Liu and D.M.Liu,Chin.Phys.C 41(2017)125102.

    [58]Y.Xu,et al.,Chin.Phys.Lett.29(2012)059701.

    [59]J.R.Oppenheimer and G.M.Volko ff,Phys.Rev.55(1939)374.

    [60]R.C.Tolman,Phys.Rev.55(1939)364.

    [61]L.B.Leinson and A.P′erez,Phys.Lett.B 518(2001)15.

    [62]L.B.Leinson,Nucl.Phys.A 707(2002)543.

    [63]D.W.L.Sprung and P.K.Banerjee,Nucl.Phys.A 168(1971)273.

    [64]L.Amundsen and E.O/stgaard,Nucl.Phys.A 437(1985)487.

    [65]S.Nishizaki,T.Takatsuka,N.Yahagi,and J.Hiura,Prog.Theor.Phys.86(1991)853.

    [66]J.Wambach,T.L.Ainsworth,and D.Pines,Nucl.Phys.A 555(1993)128.

    [67]P.Slane,et al.,Astrophys.J.616(2004)403.

    [68]V.E.Zavlin,Astrophys.J.665(2007)L143.

    [69]J.P.Halpern,et al.,Astrophys.J.612(2004)398.

    [70]G.G.Pavlov,et al.,Astrophys.J.552(2001)129.

    [71]K.E.McGowan,et al.,Astrophys.J.600(2004)343.

    [72]V.E.Zavlin and G.G.Pavlov,Mem.Soc.Astron.Ital.75(2004)458.

    [73]A.Possenti,S.Mereghetti,and M.Colpi,Astron.Astrophys.313(1996)565.

    [74]O.Y.Kargaltsev,et al.,Astrophys.J.625(2005)307.

    [75]W.C.G.Ho,et al.,Astrophys.J.375(2007)821.

    猜你喜歡
    張曉軍
    小麥品系CH7034中耐鹽QTL定位
    作物學報(2022年10期)2022-07-21 03:14:30
    小長詩
    滇池(2022年4期)2022-03-24 01:43:42
    愛的直線
    小讀者(2021年8期)2021-11-24 05:59:50
    愛的直線
    啤酒里的“秘密”
    檢察風云(2021年21期)2021-01-13 08:23:49
    Neuroanatomy and morphological diversity of brain cells from adult crayfish Cherax quadricarinatus*
    愛的直線
    愛的直線
    故事會(2014年21期)2014-05-14 15:24:23
    国产精品秋霞免费鲁丝片| 51午夜福利影视在线观看| 男人舔女人的私密视频| 精品久久久精品久久久| 亚洲成国产人片在线观看| 婷婷色麻豆天堂久久| 国产精品.久久久| 精品亚洲成国产av| 国产精品久久久久久精品古装| 人人澡人人妻人| 亚洲精品日韩在线中文字幕| 午夜福利乱码中文字幕| 老司机亚洲免费影院| 久久精品亚洲av国产电影网| 精品人妻在线不人妻| 丰满少妇做爰视频| 两性夫妻黄色片| 久久亚洲国产成人精品v| 亚洲国产精品成人久久小说| 在线观看免费午夜福利视频| 国产一卡二卡三卡精品 | 久久午夜综合久久蜜桃| 丝袜人妻中文字幕| 蜜桃在线观看..| 青春草国产在线视频| 精品第一国产精品| 日本色播在线视频| 18在线观看网站| 亚洲国产日韩一区二区| 国产精品国产三级国产专区5o| 18禁裸乳无遮挡动漫免费视频| av女优亚洲男人天堂| 女人久久www免费人成看片| 国产精品熟女久久久久浪| xxx大片免费视频| 岛国毛片在线播放| 亚洲少妇的诱惑av| 少妇人妻精品综合一区二区| 亚洲,一卡二卡三卡| 国产精品人妻久久久影院| 人成视频在线观看免费观看| 欧美老熟妇乱子伦牲交| 熟妇人妻不卡中文字幕| 亚洲精品国产av成人精品| 日本欧美国产在线视频| 亚洲欧美精品综合一区二区三区| 麻豆乱淫一区二区| 啦啦啦视频在线资源免费观看| 狂野欧美激情性xxxx| 国产激情久久老熟女| 美女扒开内裤让男人捅视频| 成人黄色视频免费在线看| 精品国产乱码久久久久久小说| 午夜激情久久久久久久| 天堂8中文在线网| 久久久精品94久久精品| 91国产中文字幕| 一级毛片黄色毛片免费观看视频| 两个人免费观看高清视频| 亚洲精品中文字幕在线视频| 亚洲婷婷狠狠爱综合网| 欧美国产精品一级二级三级| 日本wwww免费看| 在线看a的网站| 久久久国产精品麻豆| 国产精品香港三级国产av潘金莲 | 91老司机精品| 免费不卡黄色视频| 婷婷色麻豆天堂久久| 亚洲人成77777在线视频| 两个人免费观看高清视频| 自线自在国产av| 国产片特级美女逼逼视频| 国产99久久九九免费精品| 一级片'在线观看视频| 精品国产乱码久久久久久小说| 美女午夜性视频免费| 一本大道久久a久久精品| 久久午夜综合久久蜜桃| 在线天堂最新版资源| 纯流量卡能插随身wifi吗| 啦啦啦在线免费观看视频4| 可以免费在线观看a视频的电影网站 | 亚洲av在线观看美女高潮| 久热爱精品视频在线9| 亚洲国产最新在线播放| 亚洲av电影在线观看一区二区三区| e午夜精品久久久久久久| 久久久久久久久久久久大奶| 久久精品人人爽人人爽视色| 少妇被粗大的猛进出69影院| 18禁动态无遮挡网站| 国产精品一区二区精品视频观看| 一二三四中文在线观看免费高清| 狂野欧美激情性xxxx| 久久精品亚洲av国产电影网| 99国产综合亚洲精品| 男女床上黄色一级片免费看| 亚洲国产毛片av蜜桃av| 丰满饥渴人妻一区二区三| 一本久久精品| 综合色丁香网| 国产精品三级大全| 国产成人91sexporn| 免费人妻精品一区二区三区视频| 黑丝袜美女国产一区| 欧美老熟妇乱子伦牲交| 无遮挡黄片免费观看| 国产欧美日韩一区二区三区在线| 精品亚洲成国产av| 午夜福利,免费看| 天堂中文最新版在线下载| 久久久久精品人妻al黑| 黄色视频不卡| 亚洲国产精品999| 精品少妇一区二区三区视频日本电影 | 又大又爽又粗| 别揉我奶头~嗯~啊~动态视频 | videos熟女内射| 免费在线观看完整版高清| 香蕉丝袜av| 中文字幕人妻熟女乱码| 男女边吃奶边做爰视频| 伦理电影免费视频| 在线观看三级黄色| 国产成人免费观看mmmm| 免费在线观看黄色视频的| 国产精品人妻久久久影院| 黄片播放在线免费| 中国国产av一级| 高清av免费在线| 国产精品一国产av| 精品酒店卫生间| kizo精华| 亚洲视频免费观看视频| 男女无遮挡免费网站观看| 国产成人一区二区在线| 国产午夜精品一二区理论片| 欧美精品高潮呻吟av久久| 国产成人系列免费观看| 波多野结衣av一区二区av| 久久久久久人妻| 伊人久久国产一区二区| 国产精品蜜桃在线观看| 久久精品久久精品一区二区三区| 国产亚洲最大av| 大片电影免费在线观看免费| 又大又爽又粗| 久久人妻熟女aⅴ| 亚洲人成77777在线视频| av在线观看视频网站免费| 亚洲伊人久久精品综合| 久久性视频一级片| 一区二区三区精品91| 国产免费现黄频在线看| 成人免费观看视频高清| 精品人妻在线不人妻| 国产精品久久久久久久久免| 最近2019中文字幕mv第一页| av卡一久久| 国产精品免费大片| 久久久精品国产亚洲av高清涩受| 超色免费av| 香蕉丝袜av| 日韩精品免费视频一区二区三区| 亚洲国产欧美日韩在线播放| 丝袜脚勾引网站| 青青草视频在线视频观看| 91老司机精品| 一本大道久久a久久精品| 亚洲欧美清纯卡通| 精品国产国语对白av| 青春草亚洲视频在线观看| 2018国产大陆天天弄谢| 日本一区二区免费在线视频| 街头女战士在线观看网站| 亚洲av国产av综合av卡| 成年美女黄网站色视频大全免费| 午夜福利免费观看在线| 国产不卡av网站在线观看| 精品人妻在线不人妻| 国产xxxxx性猛交| av线在线观看网站| 18禁动态无遮挡网站| 国产精品国产三级国产专区5o| 一级爰片在线观看| 美女午夜性视频免费| 少妇精品久久久久久久| 自线自在国产av| 久久精品国产a三级三级三级| 如何舔出高潮| 麻豆乱淫一区二区| 亚洲精品成人av观看孕妇| 欧美成人午夜精品| 美女国产高潮福利片在线看| 一本久久精品| 99久久99久久久精品蜜桃| 天天躁日日躁夜夜躁夜夜| 下体分泌物呈黄色| 啦啦啦啦在线视频资源| 日本欧美国产在线视频| 精品久久久精品久久久| 亚洲成人av在线免费| 免费人妻精品一区二区三区视频| 色精品久久人妻99蜜桃| 欧美日韩成人在线一区二区| 欧美精品人与动牲交sv欧美| 久久久亚洲精品成人影院| 免费观看人在逋| 女性生殖器流出的白浆| 免费高清在线观看日韩| 一级毛片黄色毛片免费观看视频| 国产有黄有色有爽视频| 亚洲国产日韩一区二区| 精品少妇黑人巨大在线播放| 国产一区二区三区综合在线观看| 久久久欧美国产精品| 国产色婷婷99| 熟妇人妻不卡中文字幕| 日韩中文字幕欧美一区二区 | 肉色欧美久久久久久久蜜桃| 免费在线观看完整版高清| 欧美黑人精品巨大| 午夜免费男女啪啪视频观看| 国产午夜精品一二区理论片| 国产不卡av网站在线观看| 亚洲视频免费观看视频| 亚洲,欧美,日韩| 亚洲欧美成人精品一区二区| 少妇被粗大的猛进出69影院| 欧美激情 高清一区二区三区| tube8黄色片| 国产成人欧美| 亚洲五月色婷婷综合| 9热在线视频观看99| 亚洲精品日本国产第一区| 欧美久久黑人一区二区| 男女高潮啪啪啪动态图| 狂野欧美激情性xxxx| 高清av免费在线| 亚洲国产欧美在线一区| 日韩中文字幕视频在线看片| 男女国产视频网站| 国产1区2区3区精品| 欧美人与性动交α欧美软件| 99久国产av精品国产电影| av电影中文网址| 99热全是精品| 欧美在线黄色| 免费观看人在逋| 电影成人av| 亚洲七黄色美女视频| 久久国产精品大桥未久av| 国产精品二区激情视频| 精品人妻在线不人妻| 国产爽快片一区二区三区| 最近的中文字幕免费完整| 欧美久久黑人一区二区| 哪个播放器可以免费观看大片| 91精品伊人久久大香线蕉| 亚洲国产中文字幕在线视频| av一本久久久久| 亚洲,欧美精品.| 国产深夜福利视频在线观看| 久久久久久人人人人人| 老司机亚洲免费影院| 亚洲欧美一区二区三区久久| 色播在线永久视频| 中文字幕精品免费在线观看视频| 国产视频首页在线观看| 成人漫画全彩无遮挡| 丰满迷人的少妇在线观看| 久久影院123| www.熟女人妻精品国产| 久久久久精品国产欧美久久久 | 成人手机av| 一级片免费观看大全| 国产精品 国内视频| 中文天堂在线官网| 男的添女的下面高潮视频| 欧美日韩视频精品一区| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产麻豆网| 亚洲一级一片aⅴ在线观看| 免费久久久久久久精品成人欧美视频| 大片电影免费在线观看免费| 久久久精品94久久精品| 在线观看国产h片| 亚洲欧美一区二区三区久久| 亚洲欧美日韩另类电影网站| 免费黄网站久久成人精品| 国产成人系列免费观看| 宅男免费午夜| 欧美黄色片欧美黄色片| 高清视频免费观看一区二区| av又黄又爽大尺度在线免费看| 国产亚洲欧美精品永久| 国产99久久九九免费精品| 一本大道久久a久久精品| 国产精品久久久久久久久免| 日本欧美视频一区| 久久久精品免费免费高清| 熟女av电影| 五月开心婷婷网| 在线天堂最新版资源| 久久久久久久久久久久大奶| 亚洲av成人精品一二三区| 亚洲国产av影院在线观看| 大码成人一级视频| 国产精品 欧美亚洲| 99久久精品国产亚洲精品| 黑人猛操日本美女一级片| 91老司机精品| 嫩草影院入口| 丝袜脚勾引网站| 女的被弄到高潮叫床怎么办| 国产xxxxx性猛交| 深夜精品福利| 国产免费现黄频在线看| 汤姆久久久久久久影院中文字幕| 91aial.com中文字幕在线观看| 精品国产乱码久久久久久小说| 国产极品天堂在线| 成人黄色视频免费在线看| 十分钟在线观看高清视频www| 最近中文字幕高清免费大全6| 午夜91福利影院| 一级a爱视频在线免费观看| 狠狠精品人妻久久久久久综合| 一区二区日韩欧美中文字幕| 欧美激情极品国产一区二区三区| 国产熟女欧美一区二区| 91国产中文字幕| 国产男女内射视频| 久久久久久久精品精品| 午夜福利影视在线免费观看| 国产精品国产三级国产专区5o| 天天影视国产精品| 黄片小视频在线播放| videosex国产| 女性生殖器流出的白浆| 大香蕉久久成人网| e午夜精品久久久久久久| 久久久久人妻精品一区果冻| 在现免费观看毛片| 青春草国产在线视频| 国产在线一区二区三区精| 人妻一区二区av| 日韩人妻精品一区2区三区| 欧美日韩福利视频一区二区| 国产精品亚洲av一区麻豆 | 亚洲精品国产av蜜桃| 免费少妇av软件| 亚洲精华国产精华液的使用体验| 黑丝袜美女国产一区| 别揉我奶头~嗯~啊~动态视频 | 精品一区二区免费观看| 国产视频首页在线观看| 亚洲精品国产色婷婷电影| 久久热在线av| 免费久久久久久久精品成人欧美视频| 国产精品一区二区在线不卡| 久久韩国三级中文字幕| 激情视频va一区二区三区| 国产又爽黄色视频| 久久鲁丝午夜福利片| 欧美精品一区二区大全| 精品久久蜜臀av无| 日日爽夜夜爽网站| 97人妻天天添夜夜摸| 午夜福利一区二区在线看| 日本黄色日本黄色录像| av网站免费在线观看视频| 精品一区二区三区四区五区乱码 | 黄色毛片三级朝国网站| 欧美日韩亚洲综合一区二区三区_| 国产熟女午夜一区二区三区| 亚洲色图综合在线观看| 国产精品久久久久久久久免| 久热这里只有精品99| 尾随美女入室| 最新的欧美精品一区二区| 亚洲国产av新网站| 精品第一国产精品| 国产黄色视频一区二区在线观看| avwww免费| 久久精品人人爽人人爽视色| 天天躁夜夜躁狠狠久久av| 99久久精品国产亚洲精品| 黑人欧美特级aaaaaa片| 国产1区2区3区精品| 九九爱精品视频在线观看| 亚洲成人国产一区在线观看 | 亚洲伊人色综图| 亚洲成人国产一区在线观看 | 亚洲av成人不卡在线观看播放网 | videosex国产| 一区在线观看完整版| 在线观看国产h片| 成年人午夜在线观看视频| 日韩制服丝袜自拍偷拍| 免费在线观看完整版高清| 国产黄色免费在线视频| 日韩中文字幕视频在线看片| 亚洲国产精品一区三区| 欧美精品亚洲一区二区| 午夜影院在线不卡| 欧美激情高清一区二区三区 | 天美传媒精品一区二区| 一二三四在线观看免费中文在| av视频免费观看在线观看| 精品国产露脸久久av麻豆| 亚洲激情五月婷婷啪啪| 国产精品一区二区在线不卡| 亚洲一区中文字幕在线| 丁香六月天网| 叶爱在线成人免费视频播放| 亚洲美女视频黄频| 亚洲av电影在线观看一区二区三区| 亚洲欧美一区二区三区国产| 99久久人妻综合| 亚洲人成77777在线视频| 少妇被粗大猛烈的视频| 亚洲av电影在线观看一区二区三区| 精品久久久精品久久久| 欧美在线黄色| av.在线天堂| 成人国语在线视频| 免费观看性生交大片5| 亚洲欧美精品综合一区二区三区| 欧美97在线视频| 人成视频在线观看免费观看| 国产97色在线日韩免费| www日本在线高清视频| 国产无遮挡羞羞视频在线观看| 亚洲欧美成人精品一区二区| 亚洲国产日韩一区二区| 国产精品av久久久久免费| 日韩精品有码人妻一区| 精品第一国产精品| 一本大道久久a久久精品| 巨乳人妻的诱惑在线观看| 亚洲av日韩在线播放| 一本—道久久a久久精品蜜桃钙片| 好男人视频免费观看在线| 丁香六月天网| 国产女主播在线喷水免费视频网站| 少妇被粗大的猛进出69影院| 亚洲在久久综合| 哪个播放器可以免费观看大片| 亚洲国产精品一区三区| 亚洲三区欧美一区| 国产一卡二卡三卡精品 | 亚洲天堂av无毛| 综合色丁香网| 国产亚洲av高清不卡| 赤兔流量卡办理| a级毛片在线看网站| 久久久精品94久久精品| 性色av一级| 人人妻人人爽人人添夜夜欢视频| 亚洲人成电影观看| 免费av中文字幕在线| 丝袜在线中文字幕| 成年人免费黄色播放视频| 香蕉国产在线看| 黄色毛片三级朝国网站| 精品人妻一区二区三区麻豆| 成人亚洲精品一区在线观看| 七月丁香在线播放| av国产久精品久网站免费入址| 国产乱人偷精品视频| 美女高潮到喷水免费观看| 国产 一区精品| 成人18禁高潮啪啪吃奶动态图| 久久久精品区二区三区| 欧美日本中文国产一区发布| 老汉色av国产亚洲站长工具| 欧美激情高清一区二区三区 | 欧美日韩综合久久久久久| 亚洲美女黄色视频免费看| 色吧在线观看| 日韩 亚洲 欧美在线| av视频免费观看在线观看| 久久国产精品大桥未久av| 日本一区二区免费在线视频| 欧美人与性动交α欧美软件| 久久久精品免费免费高清| 久久久久久久久久久久大奶| 免费av中文字幕在线| 日韩制服丝袜自拍偷拍| 在线天堂最新版资源| 中文精品一卡2卡3卡4更新| 亚洲精品成人av观看孕妇| 亚洲,欧美精品.| 69精品国产乱码久久久| 日日摸夜夜添夜夜爱| 精品国产一区二区三区四区第35| 国产av码专区亚洲av| 丰满乱子伦码专区| 久久久精品区二区三区| 十八禁网站网址无遮挡| 久久精品久久久久久噜噜老黄| 国产免费一区二区三区四区乱码| 日韩一区二区视频免费看| 久久天躁狠狠躁夜夜2o2o | 久久精品国产亚洲av高清一级| 午夜激情久久久久久久| 国产在视频线精品| 人妻一区二区av| 欧美日韩成人在线一区二区| 日日摸夜夜添夜夜爱| 久久精品aⅴ一区二区三区四区| 麻豆av在线久日| 久久韩国三级中文字幕| 亚洲国产欧美日韩在线播放| 精品免费久久久久久久清纯 | 高清av免费在线| 啦啦啦啦在线视频资源| 亚洲人成77777在线视频| 中国国产av一级| 99久久人妻综合| 国产黄色免费在线视频| 国产免费一区二区三区四区乱码| 欧美97在线视频| 少妇被粗大猛烈的视频| 在线免费观看不下载黄p国产| 久久鲁丝午夜福利片| 国产一区亚洲一区在线观看| 狂野欧美激情性bbbbbb| 波野结衣二区三区在线| 男女边吃奶边做爰视频| 亚洲美女搞黄在线观看| 两性夫妻黄色片| 亚洲自偷自拍图片 自拍| 国产av一区二区精品久久| 制服诱惑二区| 国产精品一区二区精品视频观看| 大香蕉久久网| 99热网站在线观看| 欧美亚洲日本最大视频资源| 中文字幕人妻丝袜制服| 亚洲 欧美一区二区三区| 亚洲视频免费观看视频| 极品人妻少妇av视频| 在线免费观看不下载黄p国产| 精品国产乱码久久久久久男人| 国产一区二区 视频在线| 十八禁高潮呻吟视频| 国产一区二区三区av在线| 午夜福利影视在线免费观看| 欧美黑人欧美精品刺激| 久久久精品94久久精品| 国产深夜福利视频在线观看| 1024视频免费在线观看| www日本在线高清视频| 99re6热这里在线精品视频| 久久久国产一区二区| 日本91视频免费播放| 丝袜人妻中文字幕| 丰满少妇做爰视频| 女性生殖器流出的白浆| 久久ye,这里只有精品| 日本五十路高清| 69av精品久久久久久| 怎么达到女性高潮| 久久中文看片网| 日韩一卡2卡3卡4卡2021年| 手机成人av网站| 90打野战视频偷拍视频| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区激情视频| 高清黄色对白视频在线免费看| 久久影院123| 女人高潮潮喷娇喘18禁视频| 别揉我奶头~嗯~啊~动态视频| 日韩精品中文字幕看吧| 精品久久久久久久毛片微露脸| 精品国产乱子伦一区二区三区| 一级a爱片免费观看的视频| 波多野结衣一区麻豆| 国产精品免费视频内射| 国产精品日韩av在线免费观看 | 色播在线永久视频| www.999成人在线观看| 亚洲精品国产一区二区精华液| 自线自在国产av| 制服诱惑二区| 少妇熟女aⅴ在线视频| 国产一区二区三区综合在线观看| 久久伊人香网站| 免费在线观看影片大全网站| 国产精品久久视频播放| 老熟妇乱子伦视频在线观看| 久久久水蜜桃国产精品网| 天堂影院成人在线观看| 少妇被粗大的猛进出69影院| 久久这里只有精品19| 变态另类成人亚洲欧美熟女 | 国产精品一区二区在线不卡| 免费看a级黄色片| 日本vs欧美在线观看视频| 色哟哟哟哟哟哟| 色精品久久人妻99蜜桃| 黄色丝袜av网址大全| 午夜福利18| 麻豆国产av国片精品| 欧美精品亚洲一区二区| 国产一区二区在线av高清观看| 极品人妻少妇av视频| 亚洲伊人色综图| 国产精品久久视频播放| 欧美精品亚洲一区二区| 黄频高清免费视频| 亚洲国产欧美网|