• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微波輔助加熱乙二醇法制備PtSn/CNT催化劑:pH值對其結(jié)構(gòu)和電氧化甲醇性能的影響

    2016-11-02 07:37:44黎海超陳水挾李啟漢劉風(fēng)雷
    新型炭材料 2016年3期
    關(guān)鍵詞:中山大學(xué)乙二醇碳納米管

    黎海超,陳水挾,2,李啟漢,劉風(fēng)雷

    (1.中山大學(xué) 化學(xué)與化學(xué)工程學(xué)院,聚合物復(fù)合材料與功能材料教育部重點實驗室,廣東 廣州510275;2.中山大學(xué) 材料科學(xué)研究所,廣東 廣州510275)

    ?

    微波輔助加熱乙二醇法制備PtSn/CNT催化劑:pH值對其結(jié)構(gòu)和電氧化甲醇性能的影響

    黎海超1,陳水挾1,2,李啟漢1,劉風(fēng)雷1

    (1.中山大學(xué) 化學(xué)與化學(xué)工程學(xué)院,聚合物復(fù)合材料與功能材料教育部重點實驗室,廣東 廣州510275;2.中山大學(xué) 材料科學(xué)研究所,廣東 廣州510275)

    采用微波輔助加熱乙二醇法制備了碳納米管(CNTs)負載的PtSn 雙組份催化劑。采用原子吸收光譜,X射線衍射儀和電子透射顯微鏡對產(chǎn)物進行了表征。結(jié)果表明,含金屬離子前驅(qū)體的乙二醇溶液的pH值對產(chǎn)物的金屬催化劑負載量、合金化程度和PtSn 粒子的形態(tài)有顯著的影響。在pH值為5時能得到組分配比為原始設(shè)計值的PtSn/CNT催化劑。在pH值2~7的范圍內(nèi)納米粒子的尺寸較小,隨著pH值的進一步提高,納米粒子直徑變大且發(fā)生團聚。電化學(xué)測試表明在pH值為5時得到的PtSn/CNT催化劑對甲醇電化學(xué)氧化具有最佳的催化作用。合適的金屬負載比例和良好的納米顆粒形狀和尺寸分布控制是得到優(yōu)異的催化性能的主要原因。

    微波輻照;碳納米管;PtSn催化劑;甲醇電化學(xué)氧化

    1 Introduction

    As the promising power sources for portable electronics,direct alcohol fuel cells (DAFCs) using methanol,ethanol,ethylene glycol (EG) and glycerol as fuels have drawn a great deal of attention owing to their high power density,low operation temperature,no corrosion problem and so on[1,2].As the anode catalysts for DAFCs,bimetallic Pt-based alloys,such as PtSn,PtRu,PtCo with modified Pt electronic properties and surface chemistry,have been of continuing interest owing to their higher activity as compared with Pt catalyst[3-12].Formation of electrocatalysts on carbon materials for DAFC applications is commonly realized by reductive deposition method.But this method based on wet impregnation and chemical reduction is usually time-consuming,while do not provide adequate control of particle shape,size and size distribution.Researchers have been devoted to find a simple,fast and efficient way to control the size of Pt catalysts.A colloid formation method based on microwave-assisted reduction of metal salts in polyol solution is mainly used to prepare metal particles with narrow size distribution and specific shape owing to its speediness and energy efficiency[13,14].

    PtSn catalyst for alcohol electrocatalytic oxidation has been extensively studied but few examinations investigated the pH influence on the PtSn catalyst.In this work,CNTs supported PtSn catalyst with a Pt/Sn atomic ratio of 3∶1 was prepared by intermittent microwave-assisted EG reduction method.PtSn/CNTs were synthesized at pH 2 to 12 in order to examine the influence of pH value.X-ray diffraction (XRD),transmission electron microscopy (TEM) and atomic absorption spectroscopy (AAS) were employed to characterize the structure and composition.The catalytic oxidation performance of this catalyst towards methanol was preliminary evaluated.

    2 Experimental

    2.1Materials

    All the chemical reagents employed in this study were of analytical grade.Chloroplatinic acid was purchased from ShenYang Jin Ke Chemical Factory,China.Stannous chloride dihydrate was supplied by Guanghua Chemical Factory,China.Mutiwalled carbon nanotubes (MWCNTs) with tube diameters of 40-60 nm were purchased from Shenzhen Nanotech Port Co.,Ltd.,in China.20 wt% Pt supported on Vulcan carbon black (Pt/C) catalyst was from Johnson Matthey Company and Nafion 5 wt% solution from Dupont.

    2.2Synthesis and characterization of the catalysts

    Oxidation treatment with concentrated HNO3and H2SO4was employed to purify the MWCNTs and introduce some oxygen-containing groups on the carbon surface.

    The 20 wt% PtSn/CNT with a Pt/Sn atomic ratio of 3∶1 was prepared by intermittent microwave-assisted EG reduction method.This catalyst was named as M-PtSn/CNT.The typical preparation procedure is as follows:1.12 mL of chloroplatinic acid in EG solution (3.7 mg Pt/mL EG) and 1.6 mg of stannous chloride dihydrate (SnCl2·2H2O) were quantitatively added into 40 mL of EG in a flask.20 mg of acid-treated MWCNTs were mixed with the solution of metallic precursors under ultrasonic treatment for 3 h.The synthesis solution pH was adjusted to 5 by adding 1.0 M NaOH EG solution.The microwave treatment was accomplished in a household microwave oven (Midea,PJ17C-M,2.45 GHz,700 W) for 3 times with 30 s irradiation on and 60 s irradiation off.The resulting suspension was filtered and the residue was washed thoroughly with deionized water.The solid product recovered as such was dried at 60 ℃ over night in a vacuum oven.As-prepared catalyst was denoted as PtSn/CNT.Four other such catalysts were prepared at the pH values of 2,7,9 and 12 to study the effect of pH value on the structure and electrocatalytic activity of PtSn/CNT catalysts.

    X-ray diffraction (XRD) patterns were obtained on a D8 ADVANCE (BRüCKNER Textile Technologies GmbH & Co.,KG) X-ray diffractometer using Cu Kαradiation (λ= 0.154 056 nm).The tube voltage was maintained at 40 kV and tube current at 40 mA.The 2θangles ranging from 20° to 70° were covered at a scan rate of 10(°)/min.Transmission electron microscopy (TEM) was performed on a JEOL JEM-2010HR operating at 200 kV.For the atomic absorption spectroscopy (AAS) analysis,PtSn/CNTs samples were immersed in aqua regia for 24 h to dissolve the PtSn particles.The undissolved CNTs were filtered by using a millipore membrane filter.The clear solution was then diluted to an appropriate concentration before the measurement.Zeta potential measurement was performed on a Zetaplus,Brookhaven Instruments Corp.Holtsville,NY.

    2.3Measurement of the electrochemical properties of the catalysts

    All electrochemical measurements were performed in a three-electrode electrochemical cell on an IM6ex electrochemical workstation (Zahner-Electrik,Germany) at room temperature.For the preparation of working electrodes,1 mg of catalyst and 0.5 mL of isopropyl aqueous solution (Visopropanol∶Vwater= 2∶1) were mixed ultrasonically.The well-mixed electrocatalyst ink (10 μL) was deposited onto the surface of a freshly polished glassy carbon disk (GC,3 mm in diameter and 0.070 65 cm2) and dried at 60 ℃ for 30 min.3 μL of Nafion solution was then sprayed on the PtSn/MWCNT catalyst surface to form a protective layer to avoid loss of catalyst during the test.A Pt foil and a saturated calomel electrode (SCE) were used as the counter and the reference electrodes,respectively.N2gas was purged for 30 min before the experiment.

    3 Results and discussion

    3.1Effect of pH value on metal loading of PtSn

    Metal catalyst loading is defined as the weight fraction of PtSn over the weights of the catalyst.The metal loading and compositions were analyzed by AAS (Table 1).It is found that the deposition efficiency and Pt/Sn weight ratio of the particles were sensitive to the pH values of EG solution.The initial composition based on precursors are 16.6 wt% and 3.4 wt% for Pt and Sn,respectively.Metal deposition efficiency could be over 95% for catalyst prepared at pH 5 and weight ratio of Pt/Sn of as-prepared catalyst was very close to the intended one.But catalysts prepared at pH 2,7 and 9 show deposition efficiencies of 60% to 90%,indicating that there were metals remained in the solution.And we found that metal loading on CNTs prepared at pH 12 is extremely low,only 1.6 wt% Pt and 0.15 wt% Sn.

    Table 1 Structure and compositions of PtSn/CNT and Pt/C catalysts.

    3.2Effect of pH value on structure of PtSn/CNT

    The X-ray diffraction patterns of PtSn/CNT electrocatalysts prepared in different pH values are shown in Fig.1.For the sake of comparison,the pattern of commercial Pt/C catalyst (Johnson Matthey,Pt:20 wt%) is also shown in the same figure.The peak at about 2θ= 25° was associated with C (200) plane.All the of the PtSn/CNTs catalysts,except the one prepared at the pH vuale of 12,showed peaks at approximate 2θ= 39°,45°,66° and 79°,which were the main characteristic peaks of crystalline Pt and Pt alloys.The absence of Pt diffraction peaks for the catalyst prepared at pH 12 (Fig.1f) may be attributed to a poor deposition efficiency.All these peaks shifted to lower 2θvalues for PtSn/CNTs electrocatalysts as compared with the commercial Pt/C catalyst,which is caused by the formation of an alloy due to incorporation of Sn atom into the Pt fcc structure,resulting in a lattice expansion[5].No distinct peaks of SnO2were detected possibly because the particles were amorphous or too small.It should be noted that as the pH value increased,the PtSn phase diffraction peaks shifted to high 2θangle,which revealed that the alloying degree of PtSn decreased.From literature data[21],a linear relationship of the lattice parameter and alloyed Sn atomic ratio xSnhas been proposed by the following equation.

    aPtSn=kxSn+aPt

    where aPt= 0.391 4 nm is the lattice parameter of Pt/C,aPtSnis the lattice parameter of PtSn,which can be evaluated according to the angular position of the Pt (220) peak,and k is a constant = 0.352.

    Table 1 clearly shows that alloyed Sn atomic ratio xSndecreased with the pH value.The average size of the catalysts was calculated from XRD data based on the broadening of the Pt (220) peak from the Scherrer equation[22].It was found that the PtSn/CNT catalysts had a crystallite size of around 3.6 nm.We could not obtain the information for the sample prepared at pH of 12 due to the absence of Pt diffraction peaks as lattice parameter,alloyed Sn atomic ratio and XRD mean particle size were calculated based on the AAS and XRD data.

    Fig.1 XRD patterns of (a) commercial Pt/C catalyst and PtSn/CNT prepared at different pH values: (b) 2,(c) 5,(d) 7,(e) 9 and (f) 12.

    3.3Effect of pH on morphology of PtSn/CNT

    Besides loading amount and composition,nanoparticle size,distribution and morphology are also vital to the electrochemical properties of the catalysts.Morphology of the CNT-supported PtSn catalysts observed by TEM was presented in Fig.2.The corresponding mean particle size of catalysts were also obtained by measuring over 100 particles from TEM and presented in Table 1.It can be seen that PtSn catalysts prepared at pH 5 and 7 showed the most satisfied distribution on CNTs,except for a slight particle agglomeration (Fig.2b and c).For the PtSn/CNT catalysts prepared at pH 2 and 9 (Fig.2a and d),nanoparticle agglomeration was easily observed.PtSn particles synthesized at pH 12 were rarely detected,and those located on the surface of the CNTs were large and agglomerated particles and as shown in the selected area (Fig.2e).A broader particle size distribution from 2.0 to 13.0 nm with a mean particle size of 7.6 nm was obtained.

    Fig.2 TEM images and corresponding particle size distribution histograms of PtSn/CNT prepared at different pH values:(a) 2; (b) 5; (c) 7; (d) 9 and (e) 12.

    3.4Insight into the reduction and deposition mechanism

    Fig.3 Zeta potential as a function of pH for acid-treated CNTs in EG solution.

    3.5Electrocatalytic properties

    The effect of pH values on the electrocatalytic activity of PtSn/CNT for methanol oxidation was examined by cyclic voltammetry and the result is presented in Fig.4.

    Fig.4 Catalytic activity of PtSn/CNT prepared at various pH values towards methanol electro-oxidation in 0.5 M H2SO4+ 1.0 M methanol with a sweep rate of 20 mV·s-1.

    The current values were normalized by the loading amount of Pt metal,taking account of the alcohol adsorption and dehydrogenation occurring on the Pt sites[29].Distinct changes in the peak currents for the catalysts prepared at different pH values were observed.The catalyst prepared at pH 5 showed the highest peak current density of 223 mA·mg-1Pt at 0.61 V.The mass activity decreased as the pH value increased.The peak currents were 191 and 153 mA·mg-1Pt for the catalysts prepared at pH 7 and 9,respectively.The catalyst prepared at pH 12 had nearly no activity.This result indicated that pH 5 is the optimum value for preparing the PtSn/CNT with a high electrocatalytic activity.

    4 Conclusions

    A microwave irradiation assisted EG reduction method was employed to prepare CNT-supported PtSn binary catalyst with high electrocatalytic activities for glycerol oxidation.It was found that pH value of the EG solution influenced significantly on the loading efficiency,compositions and morphology of as-prepared PtSn nanaparticles via influencing the adsorption condition of metallic precursors and stabilizing effect of glycolate.Desired catalyst with a composition close to the intended weight ratio of Pt to Sn of 16.6∶3.4 (wt/wt) was obtained by adjusting the pH value to about 5,near the IEP of the acid-treated CNTs.The PtSn nanoparticles displayed the most satisfying size distribution at pH 5 and 7.Overall the PtSn/CNT catalyst prepared at pH 5 exhibited the best catalytic activity for methanol electro-oxidation at room temperature mainly due to a high loading efficiency and adequate control of particle shape and size distribution.

    [1]Eileen Hao Yu,Xu Wang,Ulrike Krewer,et al.Direct oxidation alkaline fuel cells:from materials to systems[J].Energy Environ Sci,2012,5:5668-5680.

    [2]Kamarudin M Z F ,Kamarudin S K ,Masdar M S ,et al.Direct ethanol fuel cells[J].Int J Hydrogen Energ,2013,38(22):9438-9453.

    [3]Léger J M,Rousseau S,Coutanceau C,et al.How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol[J].Electrochim Acta,2005,50(25-26):5118-5125.

    [4]Antolini E.Catalysts for direct ethanol fuel cells[J].J Power Sources,2007,170(1):1-12.

    [5]Zheng L,Xiong L,Sun J,et al.Capping agent free synthesis of PtSn bimetallic nanoparticles with enhanced electrocatalytic activity and lifetime over methanol oxidation[J].Catal Commun,2008,9(5):624-629.

    [6]Seden Beyhan,Christophe Coutanceau.Promising anode candidates for direct ethanol fuel cell:Carbon supported PtSn-based trimetallic catalysts prepared by B?nnemann method[J].Int J Hydrogen Energ,2013,38(16):6830-6841.

    [7]Zhao S L,Yin H J,Du L,et al.Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells[J].J Mater Chem A,2014,2:3719-3724.

    [8]Yang C,Wang D,Hu X,et al.Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation[J].J Alloys Compd,2008,448(1-2):109-115.

    [9]Hsieh C T,Chou Y W,Chen W Y.Fabrication and electrochemical activity of carbon nanotubes decorated with PtRu nanoparticles in acid solution[J].J Alloys Compd,2008,466(466):233-240.

    [10]Okaya K,Yano H,Uchida H,et al.Control of particle size of Pt and Pt alloy electrocatalysts supported on carbon black by the nanocapsule method[J].ACS Appl Mater Interfaces,2010,2(2):888-895.

    [11]Nitul Kakati,Jatindranath Maiti,Seok Hee Lee,et al.Anode catalysts for direct methanol fuel cells in acidic media:Do we have any alternative for Pt or Pt-Ru?[J].Chem Rev,2014,114 (24):12397-12429.

    [12]Neto A O,Watanabe A Y,Brandalise M,et al.Preparation and characterization of Pt-Rare Earth/C electrocatalysts using an alcohol reduction process for methanol electro-oxidation[J].J Alloys Compd,2009,476(1-2):288-291.

    [13]Yin S,Shen P K,Song S,et al.Functionalization of carbon nanotubes by an effective intermittent microwave heating-assisted HF/H2O2treatment for electrocatalyst support of fuel cells[J].Electrochimica Acta,2009,54(27):6954-6958.

    [14]Chen W,Jie Z,Lee J Y,et al.Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation[J].Mater Chem Phys,2005,91(1):124-129.

    [15]Ahmadi T S,Wang Z L,Green T C,et al.Shape-controlled synthesis of colloidal Platinum nanoparticles[J].Science,1996,272(5270):1924-1926.

    [16]Christina B,Chantal P,Martin C,et al.Size-selected synthesis of PtRu nano-catalysts:Reaction and size control mechanism[J].J Am Chem Soc,2004,126(25):8028-8037.

    [17]Li X,Chen W X,Zhao J,et al.Microwave polyol synthesis of Pt/CNTs catalysts:Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization[J].Carbon,2005,43(10):2168-2174.

    [18]Dong H,Wang D,Sun G,et al.Assembly of metal nanoparticles on electrospun nylon 6 nanofibers by control of interfacial hydrogen-bonding interactions[J].Chem Mater,2008,20(21):6627-6632.

    [19]Xu Y,Xie X,Guo J,et al.Effects of annealing treatment and pH on preparation of citrate-stabilized PtRu/C catalyst[J].J Power Sources,2006,162(1):132-140.

    [20]Jeng K T,Chien C C,Hsu N Y,et al.Performance of direct methanol fuel cell using carbon nanotube-supported Pt-Ru anode catalyst with controlled composition[J].J Power Sources,2006,160(1):97-104.

    [21]Li H,Sun G,Lei C,et al.Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation[J].Electrochimica Acta,2007,52(24):6622-6629.

    [22]Hui X H,Shui X C,Yuan C.Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation[J].J Power Sources,2008,175(175):166-174.

    [23]Rodríguez-Reinoso F.The role of carbon materials in heterogeneous catalysis[J].Carbon,1998,36(3):159-175.

    [24]Radovic L R,Rodriguez-Reinoso F.In Chemistry and Physics of Carbon[M].Thrower P A,E Marcel Dekker Inc,New York,1996,25:243-360.

    [25]Yu R Q,Chen L W,Liu Q P,et al.Platinum deposition on carbon nanotubes via chemical modification[J].Chem Mater,1998,10(3):718-722.

    [26]Leon C A L Y,Solar J M,Calemma V,et al.Evidence for the protonation of basal plane sites on carbon[J].Carbon,1992,30(5):797-811.

    [27]Du H Y,Wang C H,Hsu H C,et al.Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation[J].Diamond Relat Mater,2008,17(4-5):535-541.

    [28]Jiang L,Lian G.Modified carbon nanotubes:An effective way to selective attachment of gold nanoparticles[J].Carbon,2003,41(15):2923-2929.

    [29]Neto A O,Dias R R,Tusi M M,et al.Electro-oxidation of methanol and ethanol using PtRu/C,PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process[J].J Power Sources,2007,166(1):87-91.

    Effect of the pH of the preparation medium on the microstructure and electrocatalytic activity of carbon nanotubes decorated with PtSn nanoparticles for use in methanol oxidation

    LI Hai-chao1,CHEN Shui-xia1,2,LI Qi-han1,LIU Feng-lei1

    (1.PCFM Lab,School of Chemistry and Chemical Engineering,Sun Yat-Sen University,Guangzhou510275,China;2.Materials Science Institute,Sun Yat-Sen University,Guangzhou510275,China)

    Carbon nanotubes (CNTs) decorated with PtSn nanoparticles (PtSn/CNT) were prepared by the microwave-assisted ethylene glycol reduction method and characterized by atomic adsorption spectroscopy,X-ray diffraction and transmission electron microscopy.Results indicated that the loading efficiency of the metal catalyst,and the degree of alloying and morphology of the PtSn nanoparticles were significantly affected by the solution pH value of the metallic ions in the ethylene glycol.The required composition of the PtSn/CNT catalysts could be obtained by adjusting the pH value to about 5,which is almost the isoelectric point of the acid-treated CNTs.The size of the PtSn nanoparticles decreased with the pH value in the range 2 to 7,but they became large and agglomerated when the pH value was greater than 7.Electrocatalytic activity tests indicated that the PtSn-CNTs prepared at pH 5 had the best catalytic performance towards methanol oxidation.The improvement in catalytic activity was mainly attributed to a high loading efficiency and control of particle shape and size distribution.

    Microwave irradiation; Carbon nanotubes; PtSn catalyst; Methanol electro-oxidation.

    date:2016-05-07;Revised date:2016-06-05

    National Natural Science Foundation of China (50373053); Science and Technology Project of Guangdong Province (2012B091000080).

    CHEN Shui-xia.E-mail:cescsx@mail.sysu.edu.cn

    1007-8827(2016)03-0293-08

    TB333

    A

    國家自然科學(xué)基金(50373053);廣東省科技計劃項目(2012B091000080).

    陳水挾,教授.E-mail:cescsx@mail.sysu.edu.cn

    English edition available online ScienceDirect (http:www.sciencedirect.comsciencejournal18725805 ).

    10.1016/S1872-5805(16)60014-8

    猜你喜歡
    中山大學(xué)乙二醇碳納米管
    新型裝配式CO2直冷和乙二醇載冷冰場的對比研究
    冰雪運動(2021年2期)2021-08-14 01:54:20
    我國最大海洋綜合科考實習(xí)船“中山大學(xué)號”下水
    軍事文摘(2020年22期)2021-01-04 02:16:46
    中山大學(xué)歷史地理信息系統(tǒng)(SYSU-HGIS)實驗室簡介
    乙二醇:需求端內(nèi)憂外患 疫情期亂了節(jié)奏
    廣州化工(2020年5期)2020-04-01 01:24:58
    一擊止“痛”!450余水產(chǎn)人聚焦第九屆中山大學(xué)水產(chǎn)飼料技術(shù)創(chuàng)新大會,教你從百億到百年
    努力把乙二醇項目建成行業(yè)示范工程——寫在中鹽紅四方公司二期30萬噸/年乙二醇項目建成投產(chǎn)之際
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    中山大學(xué)點滴回憶
    廣州文博(2016年0期)2016-02-27 12:49:15
    聚賴氨酸/多壁碳納米管修飾電極測定大米中的鉛
    拓撲缺陷對Armchair型小管徑多壁碳納米管輸運性質(zhì)的影響
    av又黄又爽大尺度在线免费看| 亚洲欧美精品自产自拍| 在线天堂中文资源库| 久久精品aⅴ一区二区三区四区 | 亚洲精品久久午夜乱码| 18禁裸乳无遮挡动漫免费视频| 久久99热这里只频精品6学生| 久久久久国产精品人妻一区二区| 亚洲人成网站在线观看播放| 永久免费av网站大全| av免费在线看不卡| 人妻人人澡人人爽人人| 久久久a久久爽久久v久久| www.av在线官网国产| 这个男人来自地球电影免费观看 | 视频区图区小说| 两个人看的免费小视频| 日韩一区二区三区影片| 国产成人午夜福利电影在线观看| 男女免费视频国产| 天天躁夜夜躁狠狠久久av| 永久网站在线| 国产av码专区亚洲av| 性高湖久久久久久久久免费观看| 伦精品一区二区三区| 亚洲在久久综合| 国产在线视频一区二区| videosex国产| 大话2 男鬼变身卡| av网站免费在线观看视频| 日韩av在线免费看完整版不卡| 亚洲精品,欧美精品| 成人黄色视频免费在线看| 免费观看a级毛片全部| 成人国产麻豆网| 国产精品人妻久久久影院| 大片免费播放器 马上看| 免费看av在线观看网站| 日韩在线高清观看一区二区三区| 国产极品天堂在线| 狂野欧美激情性xxxx在线观看| 男人爽女人下面视频在线观看| 97在线人人人人妻| 国产熟女欧美一区二区| 中国三级夫妇交换| 欧美国产精品va在线观看不卡| 天天躁夜夜躁狠狠躁躁| www.av在线官网国产| 蜜臀久久99精品久久宅男| 日本猛色少妇xxxxx猛交久久| 午夜福利视频精品| 亚洲欧美日韩卡通动漫| 亚洲经典国产精华液单| 久久久国产精品麻豆| 国产不卡av网站在线观看| 蜜桃在线观看..| 国产淫语在线视频| 热99久久久久精品小说推荐| 国产日韩欧美在线精品| 国产精品久久久av美女十八| 少妇的逼水好多| 捣出白浆h1v1| 熟女电影av网| 一级,二级,三级黄色视频| 久久精品久久久久久噜噜老黄| 一级毛片 在线播放| 国产亚洲午夜精品一区二区久久| 综合色丁香网| 曰老女人黄片| 精品视频人人做人人爽| 国产黄频视频在线观看| 少妇猛男粗大的猛烈进出视频| 成人二区视频| 黑丝袜美女国产一区| 亚洲国产av影院在线观看| 国产免费一区二区三区四区乱码| 久久久久久久亚洲中文字幕| 秋霞伦理黄片| 国产日韩欧美在线精品| 如何舔出高潮| 我要看黄色一级片免费的| 黄色视频在线播放观看不卡| 欧美bdsm另类| 欧美激情 高清一区二区三区| 欧美老熟妇乱子伦牲交| 看十八女毛片水多多多| 久久久久精品人妻al黑| 日本免费在线观看一区| 中文欧美无线码| 各种免费的搞黄视频| 亚洲 欧美一区二区三区| 亚洲欧美中文字幕日韩二区| 久久99热6这里只有精品| 一个人免费看片子| 国产一区二区三区综合在线观看 | 黄片播放在线免费| 久久国内精品自在自线图片| a级毛色黄片| 国产色婷婷99| a级毛片在线看网站| 黑人猛操日本美女一级片| 99热全是精品| 亚洲成av片中文字幕在线观看 | 日韩三级伦理在线观看| 亚洲精品成人av观看孕妇| 尾随美女入室| av福利片在线| 国产精品久久久久成人av| 国产又爽黄色视频| 久久久久久久久久久久大奶| 欧美日韩视频高清一区二区三区二| 亚洲国产欧美日韩在线播放| 天堂中文最新版在线下载| 国产成人精品婷婷| 亚洲av在线观看美女高潮| 自线自在国产av| 久久狼人影院| 国产成人精品在线电影| 国产欧美另类精品又又久久亚洲欧美| 侵犯人妻中文字幕一二三四区| 国产精品人妻久久久久久| 免费人妻精品一区二区三区视频| 精品卡一卡二卡四卡免费| 国产精品麻豆人妻色哟哟久久| 最近最新中文字幕大全免费视频 | 亚洲性久久影院| 欧美日韩视频精品一区| 午夜91福利影院| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 欧美精品av麻豆av| 黑人巨大精品欧美一区二区蜜桃 | 美国免费a级毛片| 精品国产一区二区三区四区第35| 国产永久视频网站| 91在线精品国自产拍蜜月| 久久人人97超碰香蕉20202| 大陆偷拍与自拍| av又黄又爽大尺度在线免费看| 亚洲欧美一区二区三区国产| 蜜桃在线观看..| 国产精品一国产av| 国产免费一区二区三区四区乱码| 日韩电影二区| 国产 一区精品| 精品少妇内射三级| 国产又爽黄色视频| 男人操女人黄网站| av电影中文网址| 国产xxxxx性猛交| 亚洲一区二区三区欧美精品| 免费观看无遮挡的男女| 在线观看免费视频网站a站| 国产黄色免费在线视频| 国产免费一区二区三区四区乱码| 青春草视频在线免费观看| 2022亚洲国产成人精品| 久久久久久久精品精品| 高清在线视频一区二区三区| 男女边摸边吃奶| 成人影院久久| 亚洲少妇的诱惑av| 在线看a的网站| 欧美少妇被猛烈插入视频| a级毛色黄片| 岛国毛片在线播放| 国产精品国产三级国产av玫瑰| 曰老女人黄片| 成人免费观看视频高清| 女人精品久久久久毛片| 欧美丝袜亚洲另类| 久久久国产精品麻豆| 免费不卡的大黄色大毛片视频在线观看| 国产 精品1| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品aⅴ在线观看| 99re6热这里在线精品视频| 在线观看人妻少妇| 亚洲经典国产精华液单| 免费高清在线观看视频在线观看| 中文精品一卡2卡3卡4更新| 啦啦啦中文免费视频观看日本| 国产成人免费无遮挡视频| 亚洲人与动物交配视频| 国产成人精品一,二区| 伊人亚洲综合成人网| 国产综合精华液| 晚上一个人看的免费电影| 国产av精品麻豆| 亚洲内射少妇av| 天堂俺去俺来也www色官网| 黄色配什么色好看| 亚洲综合色网址| 麻豆乱淫一区二区| 国产av码专区亚洲av| 多毛熟女@视频| 欧美丝袜亚洲另类| 亚洲av日韩在线播放| 中文字幕最新亚洲高清| 涩涩av久久男人的天堂| 亚洲精品久久久久久婷婷小说| 亚洲精品av麻豆狂野| 免费黄频网站在线观看国产| 全区人妻精品视频| 我的女老师完整版在线观看| 免费高清在线观看视频在线观看| 欧美激情国产日韩精品一区| 日本免费在线观看一区| 亚洲美女视频黄频| 色视频在线一区二区三区| 久久久精品区二区三区| 色5月婷婷丁香| 国产黄频视频在线观看| 国产精品一区二区在线不卡| 国产日韩欧美视频二区| 少妇被粗大的猛进出69影院 | 久久久久久伊人网av| 亚洲精品第二区| videosex国产| 黄片播放在线免费| 两个人免费观看高清视频| 欧美bdsm另类| 天堂俺去俺来也www色官网| 九九在线视频观看精品| 亚洲精品久久午夜乱码| 男人添女人高潮全过程视频| www.色视频.com| 麻豆乱淫一区二区| 成人毛片a级毛片在线播放| av国产精品久久久久影院| 亚洲国产看品久久| 亚洲av男天堂| 女的被弄到高潮叫床怎么办| 22中文网久久字幕| 亚洲精品国产av成人精品| 亚洲国产精品999| 亚洲成国产人片在线观看| 欧美成人午夜精品| 满18在线观看网站| 久久97久久精品| 成年女人在线观看亚洲视频| 国产一区二区在线观看日韩| 韩国av在线不卡| 国产男女超爽视频在线观看| 人人妻人人添人人爽欧美一区卜| 久久久国产欧美日韩av| 久久精品久久久久久噜噜老黄| 9热在线视频观看99| 久久久久国产网址| av一本久久久久| 97在线人人人人妻| 亚洲综合色惰| 久久精品久久久久久久性| 亚洲人成77777在线视频| 男女国产视频网站| 久久国产精品男人的天堂亚洲 | 国产亚洲精品第一综合不卡 | 久久久久久久亚洲中文字幕| 色婷婷av一区二区三区视频| 久久久久久久国产电影| 一级,二级,三级黄色视频| 一边亲一边摸免费视频| 日产精品乱码卡一卡2卡三| 久久久精品94久久精品| 高清欧美精品videossex| 国产成人精品一,二区| 大陆偷拍与自拍| 亚洲天堂av无毛| 国产av国产精品国产| 国产一级毛片在线| 国产一区二区激情短视频 | 精品人妻熟女毛片av久久网站| 日韩精品有码人妻一区| av国产久精品久网站免费入址| 丝袜喷水一区| 人成视频在线观看免费观看| 伦理电影免费视频| 丝袜在线中文字幕| 精品国产一区二区三区久久久樱花| 国产亚洲欧美精品永久| 成人二区视频| 两性夫妻黄色片 | 免费观看在线日韩| 精品国产国语对白av| 免费看光身美女| 中文字幕最新亚洲高清| 亚洲丝袜综合中文字幕| 午夜激情久久久久久久| 十八禁高潮呻吟视频| 最黄视频免费看| 久久人人爽人人片av| 国产福利在线免费观看视频| 国内精品宾馆在线| 狠狠婷婷综合久久久久久88av| 国产成人a∨麻豆精品| 99国产精品免费福利视频| 欧美国产精品一级二级三级| 亚洲国产看品久久| 高清av免费在线| av在线app专区| 免费播放大片免费观看视频在线观看| 国产精品久久久久久精品古装| 视频在线观看一区二区三区| a 毛片基地| 中文字幕人妻丝袜制服| 亚洲高清免费不卡视频| 精品少妇黑人巨大在线播放| 视频在线观看一区二区三区| 少妇人妻久久综合中文| 韩国高清视频一区二区三区| 亚洲精品久久久久久婷婷小说| 久久精品久久精品一区二区三区| 在线精品无人区一区二区三| 99久久中文字幕三级久久日本| 亚洲国产成人一精品久久久| 国产永久视频网站| 欧美日韩国产mv在线观看视频| 在线天堂中文资源库| 国产成人精品婷婷| 亚洲三级黄色毛片| 亚洲欧美成人综合另类久久久| 国产精品国产三级国产专区5o| 亚洲久久久国产精品| 国产精品免费大片| av线在线观看网站| 国产精品一国产av| 久久久久久久大尺度免费视频| 寂寞人妻少妇视频99o| 综合色丁香网| 捣出白浆h1v1| √禁漫天堂资源中文www| 狠狠精品人妻久久久久久综合| 国产精品无大码| 欧美人与性动交α欧美软件 | 毛片一级片免费看久久久久| 精品一品国产午夜福利视频| 99热国产这里只有精品6| 国产精品久久久久久久久免| 国产永久视频网站| 久久午夜福利片| 国产在线免费精品| 国产亚洲最大av| 亚洲美女搞黄在线观看| 一区在线观看完整版| 日韩免费高清中文字幕av| 蜜桃在线观看..| 草草在线视频免费看| 久久人人爽人人片av| 国产av精品麻豆| 久久精品国产综合久久久 | 日韩大片免费观看网站| 涩涩av久久男人的天堂| 日韩伦理黄色片| 成年人午夜在线观看视频| 国产高清不卡午夜福利| 国产成人免费观看mmmm| 十分钟在线观看高清视频www| 欧美人与性动交α欧美精品济南到 | 国产视频首页在线观看| 成年人午夜在线观看视频| 久久精品aⅴ一区二区三区四区 | 人妻 亚洲 视频| 汤姆久久久久久久影院中文字幕| 人人澡人人妻人| 中文字幕制服av| 久久久久久久久久成人| 99久久中文字幕三级久久日本| 国产老妇伦熟女老妇高清| 国产一区有黄有色的免费视频| 22中文网久久字幕| 久久国内精品自在自线图片| 边亲边吃奶的免费视频| 最后的刺客免费高清国语| 人人妻人人爽人人添夜夜欢视频| 国精品久久久久久国模美| 久热这里只有精品99| 日韩制服骚丝袜av| 欧美亚洲日本最大视频资源| 日韩中字成人| 国产乱来视频区| 五月开心婷婷网| 啦啦啦视频在线资源免费观看| 考比视频在线观看| 黑人高潮一二区| 亚洲国产看品久久| 99久久中文字幕三级久久日本| 丝袜喷水一区| 人人妻人人澡人人看| 性色av一级| 香蕉国产在线看| 老司机影院成人| 色94色欧美一区二区| 国产免费视频播放在线视频| 成人午夜精彩视频在线观看| 日韩大片免费观看网站| 一边摸一边做爽爽视频免费| 蜜臀久久99精品久久宅男| 婷婷色综合www| 亚洲国产精品一区二区三区在线| 国产免费一区二区三区四区乱码| 捣出白浆h1v1| 一区二区三区四区激情视频| 蜜桃在线观看..| 五月玫瑰六月丁香| 少妇被粗大的猛进出69影院 | 黄色怎么调成土黄色| 国产色爽女视频免费观看| 精品久久蜜臀av无| 伊人久久国产一区二区| 母亲3免费完整高清在线观看 | 亚洲av.av天堂| 亚洲国产毛片av蜜桃av| 人人妻人人澡人人看| 精品亚洲成a人片在线观看| 欧美精品一区二区免费开放| 韩国av在线不卡| 制服诱惑二区| 熟女人妻精品中文字幕| 在线天堂最新版资源| 欧美 亚洲 国产 日韩一| 五月开心婷婷网| 久久影院123| 美女中出高潮动态图| www.色视频.com| 97在线人人人人妻| a级毛片在线看网站| 在线观看美女被高潮喷水网站| 日本vs欧美在线观看视频| 中文乱码字字幕精品一区二区三区| 熟女电影av网| 中文精品一卡2卡3卡4更新| 国产亚洲一区二区精品| 久久久久久久久久人人人人人人| 免费久久久久久久精品成人欧美视频 | 极品人妻少妇av视频| 亚洲第一区二区三区不卡| 欧美少妇被猛烈插入视频| 丝袜喷水一区| 亚洲精品,欧美精品| 9191精品国产免费久久| 亚洲精品美女久久av网站| 亚洲综合色网址| av黄色大香蕉| 久久久久久久久久久久大奶| 最近中文字幕高清免费大全6| 午夜视频国产福利| 久久精品久久久久久噜噜老黄| 免费日韩欧美在线观看| 久久婷婷青草| 免费观看a级毛片全部| 在现免费观看毛片| 亚洲国产精品999| 亚洲美女黄色视频免费看| 成人无遮挡网站| 国产一区二区激情短视频 | www.av在线官网国产| videossex国产| 十八禁网站网址无遮挡| 亚洲av电影在线观看一区二区三区| 久久精品国产亚洲av涩爱| www.熟女人妻精品国产 | 在线观看国产h片| 日本欧美视频一区| 久久影院123| 18禁国产床啪视频网站| 精品少妇内射三级| 2022亚洲国产成人精品| 侵犯人妻中文字幕一二三四区| 亚洲欧美一区二区三区黑人 | 久热久热在线精品观看| 久久久久久伊人网av| 高清在线视频一区二区三区| 免费av中文字幕在线| 夜夜爽夜夜爽视频| 最黄视频免费看| 国产一级毛片在线| 日韩伦理黄色片| 国产日韩欧美在线精品| 一级片'在线观看视频| 人人妻人人爽人人添夜夜欢视频| 丰满迷人的少妇在线观看| 国产免费现黄频在线看| 成人无遮挡网站| 国产精品 国内视频| 国产老妇伦熟女老妇高清| 国产精品偷伦视频观看了| 熟女人妻精品中文字幕| 精品国产乱码久久久久久小说| 婷婷成人精品国产| 一级毛片 在线播放| 日日啪夜夜爽| 97在线视频观看| 亚洲精品久久成人aⅴ小说| 又粗又硬又长又爽又黄的视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产麻豆69| 纯流量卡能插随身wifi吗| 国产欧美日韩综合在线一区二区| 国产成人aa在线观看| 男女无遮挡免费网站观看| 人人妻人人爽人人添夜夜欢视频| 又大又黄又爽视频免费| 另类精品久久| 满18在线观看网站| 国产亚洲精品久久久com| 国产在线视频一区二区| 亚洲综合色网址| 精品99又大又爽又粗少妇毛片| 日韩一本色道免费dvd| 99九九在线精品视频| 久久女婷五月综合色啪小说| 免费大片18禁| 欧美激情国产日韩精品一区| 国产亚洲欧美精品永久| 免费看av在线观看网站| av播播在线观看一区| a 毛片基地| 一级片免费观看大全| 人妻人人澡人人爽人人| 插逼视频在线观看| 亚洲,一卡二卡三卡| 久久久精品免费免费高清| 日本猛色少妇xxxxx猛交久久| 一区二区日韩欧美中文字幕 | videosex国产| 亚洲av电影在线进入| 97在线视频观看| 五月伊人婷婷丁香| 亚洲成人手机| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 麻豆精品久久久久久蜜桃| 亚洲美女黄色视频免费看| 亚洲国产色片| 精品国产一区二区三区久久久樱花| 性色avwww在线观看| 亚洲精品美女久久av网站| 久久综合国产亚洲精品| 乱人伦中国视频| 精品一区二区三区四区五区乱码 | 久久久久精品人妻al黑| 黑人猛操日本美女一级片| 乱码一卡2卡4卡精品| 日韩制服骚丝袜av| 性色av一级| 制服丝袜香蕉在线| 在线观看免费高清a一片| 两个人免费观看高清视频| 免费av中文字幕在线| 97在线人人人人妻| 日本色播在线视频| 黄网站色视频无遮挡免费观看| 亚洲av电影在线进入| 成人无遮挡网站| 免费看光身美女| 国产片内射在线| 久久婷婷青草| 国产片内射在线| 天天影视国产精品| 亚洲精品,欧美精品| 人妻少妇偷人精品九色| 制服丝袜香蕉在线| 日本av手机在线免费观看| 男女无遮挡免费网站观看| 精品一区二区免费观看| 欧美日韩亚洲高清精品| 美女主播在线视频| 侵犯人妻中文字幕一二三四区| 黑丝袜美女国产一区| 精品少妇久久久久久888优播| 欧美97在线视频| 激情五月婷婷亚洲| 久久久久久久亚洲中文字幕| 欧美人与性动交α欧美精品济南到 | 欧美人与善性xxx| 国产男人的电影天堂91| 亚洲国产精品国产精品| 日韩中文字幕视频在线看片| 国产欧美日韩一区二区三区在线| 草草在线视频免费看| 少妇精品久久久久久久| 精品久久久久久电影网| 天天影视国产精品| 日韩中文字幕视频在线看片| 赤兔流量卡办理| 国产精品欧美亚洲77777| 97超碰精品成人国产| 欧美另类一区| 精品一品国产午夜福利视频| 国产视频首页在线观看| 久久久精品免费免费高清| 黑人欧美特级aaaaaa片| 亚洲精品一二三| 国产成人免费无遮挡视频| 亚洲精品久久成人aⅴ小说| 亚洲一级一片aⅴ在线观看| 在线观看人妻少妇| 男女下面插进去视频免费观看 | 高清欧美精品videossex| 欧美精品一区二区大全| 老司机亚洲免费影院| 不卡视频在线观看欧美| 日本爱情动作片www.在线观看| 成人18禁高潮啪啪吃奶动态图| 国产亚洲av片在线观看秒播厂| √禁漫天堂资源中文www| 亚洲三级黄色毛片| 人人澡人人妻人| 久久久久精品人妻al黑| 一本久久精品| 狠狠婷婷综合久久久久久88av| 人妻少妇偷人精品九色| 交换朋友夫妻互换小说| 嫩草影院入口| 久久99一区二区三区| 在现免费观看毛片|